DIABETIC DATASET
| 2278392 |
8222157 |
Caucasian |
Female |
[0-10) |
? |
6 |
25 |
1 |
1 |
? |
Pediatrics-Endocrinology |
41 |
0 |
1 |
0 |
0 |
0 |
250.83 |
? |
? |
1 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
NO |
| 149190 |
55629189 |
Caucasian |
Female |
[10-20) |
? |
1 |
1 |
7 |
3 |
? |
? |
59 |
0 |
18 |
0 |
0 |
0 |
276 |
250.01 |
255 |
9 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Up |
No |
No |
No |
No |
No |
Ch |
Yes |
>30 |
| 64410 |
86047875 |
AfricanAmerican |
Female |
[20-30) |
? |
1 |
1 |
7 |
2 |
? |
? |
11 |
5 |
13 |
2 |
0 |
1 |
648 |
250 |
V27 |
6 |
None |
None |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Yes |
NO |
| 500364 |
82442376 |
Caucasian |
Male |
[30-40) |
? |
1 |
1 |
7 |
2 |
? |
? |
44 |
1 |
16 |
0 |
0 |
0 |
8 |
250.43 |
403 |
7 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Up |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
| 16680 |
42519267 |
Caucasian |
Male |
[40-50) |
? |
1 |
1 |
7 |
1 |
? |
? |
51 |
0 |
8 |
0 |
0 |
0 |
197 |
157 |
250 |
5 |
None |
None |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
| 35754 |
82637451 |
Caucasian |
Male |
[50-60) |
? |
2 |
1 |
2 |
3 |
? |
? |
31 |
6 |
16 |
0 |
0 |
0 |
414 |
411 |
250 |
9 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
Yes |
>30 |
DATA PRE-PROCESSING
Checking for the missing values
summary(diabetic_datadup)
encounter_id patient_nbr race
Min. : 12522 Min. : 135 ? : 2273
1st Qu.: 84961194 1st Qu.: 23413221 AfricanAmerican:19210
Median :152388987 Median : 45505143 Asian : 641
Mean :165201646 Mean : 54330401 Caucasian :76099
3rd Qu.:230270888 3rd Qu.: 87545950 Hispanic : 2037
Max. :443867222 Max. :189502619 Other : 1506
gender age weight
Female :54708 [70-80):26068 ? :98569
Male :47055 [60-70):22483 [75-100) : 1336
Unknown/Invalid: 3 [50-60):17256 [50-75) : 897
[80-90):17197 [100-125): 625
[40-50): 9685 [125-150): 145
[30-40): 3775 [25-50) : 97
(Other): 5302 (Other) : 97
admission_type_id discharge_disposition_id admission_source_id
Min. :1.000 Min. : 1.000 Min. : 1.000
1st Qu.:1.000 1st Qu.: 1.000 1st Qu.: 1.000
Median :1.000 Median : 1.000 Median : 7.000
Mean :2.024 Mean : 3.716 Mean : 5.754
3rd Qu.:3.000 3rd Qu.: 4.000 3rd Qu.: 7.000
Max. :8.000 Max. :28.000 Max. :25.000
time_in_hospital payer_code medical_specialty
Min. : 1.000 ? :40256 ? :49949
1st Qu.: 2.000 MC :32439 InternalMedicine :14635
Median : 4.000 HM : 6274 Emergency/Trauma : 7565
Mean : 4.396 SP : 5007 Family/GeneralPractice: 7440
3rd Qu.: 6.000 BC : 4655 Cardiology : 5352
Max. :14.000 MD : 3532 Surgery-General : 3099
(Other): 9603 (Other) :13726
num_lab_procedures num_procedures num_medications number_outpatient
Min. : 1.0 Min. :0.00 Min. : 1.00 Min. : 0.0000
1st Qu.: 31.0 1st Qu.:0.00 1st Qu.:10.00 1st Qu.: 0.0000
Median : 44.0 Median :1.00 Median :15.00 Median : 0.0000
Mean : 43.1 Mean :1.34 Mean :16.02 Mean : 0.3694
3rd Qu.: 57.0 3rd Qu.:2.00 3rd Qu.:20.00 3rd Qu.: 0.0000
Max. :132.0 Max. :6.00 Max. :81.00 Max. :42.0000
number_emergency number_inpatient diag_1 diag_2
Min. : 0.0000 Min. : 0.0000 428 : 6862 276 : 6752
1st Qu.: 0.0000 1st Qu.: 0.0000 414 : 6581 428 : 6662
Median : 0.0000 Median : 0.0000 786 : 4016 250 : 6071
Mean : 0.1978 Mean : 0.6356 410 : 3614 427 : 5036
3rd Qu.: 0.0000 3rd Qu.: 1.0000 486 : 3508 401 : 3736
Max. :76.0000 Max. :21.0000 427 : 2766 496 : 3305
(Other):74419 (Other):70204
diag_3 number_diagnoses max_glu_serum A1Cresult
250 :11555 Min. : 1.000 >200: 1485 >7 : 3812
401 : 8289 1st Qu.: 6.000 >300: 1264 >8 : 8216
276 : 5175 Median : 8.000 None:96420 None:84748
428 : 4577 Mean : 7.423 Norm: 2597 Norm: 4990
427 : 3955 3rd Qu.: 9.000
414 : 3664 Max. :16.000
(Other):64551
metformin repaglinide nateglinide chlorpropamide
Down : 575 Down : 45 Down : 11 Down : 1
No :81778 No :100227 No :101063 No :101680
Steady:18346 Steady: 1384 Steady: 668 Steady: 79
Up : 1067 Up : 110 Up : 24 Up : 6
glimepiride acetohexamide glipizide glyburide
Down : 194 No :101765 Down : 560 Down : 564
No :96575 Steady: 1 No :89080 No :91116
Steady: 4670 Steady:11356 Steady: 9274
Up : 327 Up : 770 Up : 812
tolbutamide pioglitazone rosiglitazone acarbose
No :101743 Down : 118 Down : 87 Down : 3
Steady: 23 No :94438 No :95401 No :101458
Steady: 6976 Steady: 6100 Steady: 295
Up : 234 Up : 178 Up : 10
miglitol troglitazone tolazamide examide citoglipton
Down : 5 No :101763 No :101727 No:101766 No:101766
No :101728 Steady: 3 Steady: 38
Steady: 31 Up : 1
Up : 2
insulin glyburide.metformin glipizide.metformin
Down :12218 Down : 6 No :101753
No :47383 No :101060 Steady: 13
Steady:30849 Steady: 692
Up :11316 Up : 8
glimepiride.pioglitazone metformin.rosiglitazone metformin.pioglitazone
No :101765 No :101764 No :101765
Steady: 1 Steady: 2 Steady: 1
change diabetesMed readmitted
Ch:47011 No :23403 <30:11357
No:54755 Yes:78363 >30:35545
NO :54864
Here,in the dataset there are missing values in certain variables,as we can see missing values in variable 'race' which are 2273(i.e. nearly 2%) we shouldnt exclude the race variable.
But in variable 'weight' there are 98569 missing values which accounts to nearly 97% which clearly indicates that the data is not sufficient in weight variable, so we have to exclude it.
Similarly, in variable 'payer code' it has 40256 missing values (i.e.nearly 40%) so we can exclude it.
Similarly in variable 'medical_specialty' there are 49949 missing values (i.e. nearly 49%)so we can exclude this variable.
Removing insignificant variables
diabetic_datadup<-subset(diabetic_datadup,select = -c(weight,payer_code,medical_specialty))
View(diabetic_datadup)
summary(diabetic_datadup)
encounter_id patient_nbr race
Min. : 12522 Min. : 135 ? : 2273
1st Qu.: 84961194 1st Qu.: 23413221 AfricanAmerican:19210
Median :152388987 Median : 45505143 Asian : 641
Mean :165201646 Mean : 54330401 Caucasian :76099
3rd Qu.:230270888 3rd Qu.: 87545950 Hispanic : 2037
Max. :443867222 Max. :189502619 Other : 1506
gender age admission_type_id
Female :54708 [70-80):26068 Min. :1.000
Male :47055 [60-70):22483 1st Qu.:1.000
Unknown/Invalid: 3 [50-60):17256 Median :1.000
[80-90):17197 Mean :2.024
[40-50): 9685 3rd Qu.:3.000
[30-40): 3775 Max. :8.000
(Other): 5302
discharge_disposition_id admission_source_id time_in_hospital
Min. : 1.000 Min. : 1.000 Min. : 1.000
1st Qu.: 1.000 1st Qu.: 1.000 1st Qu.: 2.000
Median : 1.000 Median : 7.000 Median : 4.000
Mean : 3.716 Mean : 5.754 Mean : 4.396
3rd Qu.: 4.000 3rd Qu.: 7.000 3rd Qu.: 6.000
Max. :28.000 Max. :25.000 Max. :14.000
num_lab_procedures num_procedures num_medications number_outpatient
Min. : 1.0 Min. :0.00 Min. : 1.00 Min. : 0.0000
1st Qu.: 31.0 1st Qu.:0.00 1st Qu.:10.00 1st Qu.: 0.0000
Median : 44.0 Median :1.00 Median :15.00 Median : 0.0000
Mean : 43.1 Mean :1.34 Mean :16.02 Mean : 0.3694
3rd Qu.: 57.0 3rd Qu.:2.00 3rd Qu.:20.00 3rd Qu.: 0.0000
Max. :132.0 Max. :6.00 Max. :81.00 Max. :42.0000
number_emergency number_inpatient diag_1 diag_2
Min. : 0.0000 Min. : 0.0000 428 : 6862 276 : 6752
1st Qu.: 0.0000 1st Qu.: 0.0000 414 : 6581 428 : 6662
Median : 0.0000 Median : 0.0000 786 : 4016 250 : 6071
Mean : 0.1978 Mean : 0.6356 410 : 3614 427 : 5036
3rd Qu.: 0.0000 3rd Qu.: 1.0000 486 : 3508 401 : 3736
Max. :76.0000 Max. :21.0000 427 : 2766 496 : 3305
(Other):74419 (Other):70204
diag_3 number_diagnoses max_glu_serum A1Cresult
250 :11555 Min. : 1.000 >200: 1485 >7 : 3812
401 : 8289 1st Qu.: 6.000 >300: 1264 >8 : 8216
276 : 5175 Median : 8.000 None:96420 None:84748
428 : 4577 Mean : 7.423 Norm: 2597 Norm: 4990
427 : 3955 3rd Qu.: 9.000
414 : 3664 Max. :16.000
(Other):64551
metformin repaglinide nateglinide chlorpropamide
Down : 575 Down : 45 Down : 11 Down : 1
No :81778 No :100227 No :101063 No :101680
Steady:18346 Steady: 1384 Steady: 668 Steady: 79
Up : 1067 Up : 110 Up : 24 Up : 6
glimepiride acetohexamide glipizide glyburide
Down : 194 No :101765 Down : 560 Down : 564
No :96575 Steady: 1 No :89080 No :91116
Steady: 4670 Steady:11356 Steady: 9274
Up : 327 Up : 770 Up : 812
tolbutamide pioglitazone rosiglitazone acarbose
No :101743 Down : 118 Down : 87 Down : 3
Steady: 23 No :94438 No :95401 No :101458
Steady: 6976 Steady: 6100 Steady: 295
Up : 234 Up : 178 Up : 10
miglitol troglitazone tolazamide examide citoglipton
Down : 5 No :101763 No :101727 No:101766 No:101766
No :101728 Steady: 3 Steady: 38
Steady: 31 Up : 1
Up : 2
insulin glyburide.metformin glipizide.metformin
Down :12218 Down : 6 No :101753
No :47383 No :101060 Steady: 13
Steady:30849 Steady: 692
Up :11316 Up : 8
glimepiride.pioglitazone metformin.rosiglitazone metformin.pioglitazone
No :101765 No :101764 No :101765
Steady: 1 Steady: 2 Steady: 1
change diabetesMed readmitted
Ch:47011 No :23403 <30:11357
No:54755 Yes:78363 >30:35545
NO :54864
Hence, the unwanted variables are ejected from the dataset.
Replacing missing values
class(diabetic_datadup$race)
[1] "factor"
diabetic_datadup$race<-as.character(diabetic_datadup$race)
class(diabetic_datadup$race)
[1] "character"
diabetic_datadup$race<-ifelse(diabetic_datadup$race=="?","Caucasian",diabetic_datadup$race)
View(diabetic_datadup)
summary(diabetic_datadup)
encounter_id patient_nbr race
Min. : 12522 Min. : 135 Length:101766
1st Qu.: 84961194 1st Qu.: 23413221 Class :character
Median :152388987 Median : 45505143 Mode :character
Mean :165201646 Mean : 54330401
3rd Qu.:230270888 3rd Qu.: 87545950
Max. :443867222 Max. :189502619
gender age admission_type_id
Female :54708 [70-80):26068 Min. :1.000
Male :47055 [60-70):22483 1st Qu.:1.000
Unknown/Invalid: 3 [50-60):17256 Median :1.000
[80-90):17197 Mean :2.024
[40-50): 9685 3rd Qu.:3.000
[30-40): 3775 Max. :8.000
(Other): 5302
discharge_disposition_id admission_source_id time_in_hospital
Min. : 1.000 Min. : 1.000 Min. : 1.000
1st Qu.: 1.000 1st Qu.: 1.000 1st Qu.: 2.000
Median : 1.000 Median : 7.000 Median : 4.000
Mean : 3.716 Mean : 5.754 Mean : 4.396
3rd Qu.: 4.000 3rd Qu.: 7.000 3rd Qu.: 6.000
Max. :28.000 Max. :25.000 Max. :14.000
num_lab_procedures num_procedures num_medications number_outpatient
Min. : 1.0 Min. :0.00 Min. : 1.00 Min. : 0.0000
1st Qu.: 31.0 1st Qu.:0.00 1st Qu.:10.00 1st Qu.: 0.0000
Median : 44.0 Median :1.00 Median :15.00 Median : 0.0000
Mean : 43.1 Mean :1.34 Mean :16.02 Mean : 0.3694
3rd Qu.: 57.0 3rd Qu.:2.00 3rd Qu.:20.00 3rd Qu.: 0.0000
Max. :132.0 Max. :6.00 Max. :81.00 Max. :42.0000
number_emergency number_inpatient diag_1 diag_2
Min. : 0.0000 Min. : 0.0000 428 : 6862 276 : 6752
1st Qu.: 0.0000 1st Qu.: 0.0000 414 : 6581 428 : 6662
Median : 0.0000 Median : 0.0000 786 : 4016 250 : 6071
Mean : 0.1978 Mean : 0.6356 410 : 3614 427 : 5036
3rd Qu.: 0.0000 3rd Qu.: 1.0000 486 : 3508 401 : 3736
Max. :76.0000 Max. :21.0000 427 : 2766 496 : 3305
(Other):74419 (Other):70204
diag_3 number_diagnoses max_glu_serum A1Cresult
250 :11555 Min. : 1.000 >200: 1485 >7 : 3812
401 : 8289 1st Qu.: 6.000 >300: 1264 >8 : 8216
276 : 5175 Median : 8.000 None:96420 None:84748
428 : 4577 Mean : 7.423 Norm: 2597 Norm: 4990
427 : 3955 3rd Qu.: 9.000
414 : 3664 Max. :16.000
(Other):64551
metformin repaglinide nateglinide chlorpropamide
Down : 575 Down : 45 Down : 11 Down : 1
No :81778 No :100227 No :101063 No :101680
Steady:18346 Steady: 1384 Steady: 668 Steady: 79
Up : 1067 Up : 110 Up : 24 Up : 6
glimepiride acetohexamide glipizide glyburide
Down : 194 No :101765 Down : 560 Down : 564
No :96575 Steady: 1 No :89080 No :91116
Steady: 4670 Steady:11356 Steady: 9274
Up : 327 Up : 770 Up : 812
tolbutamide pioglitazone rosiglitazone acarbose
No :101743 Down : 118 Down : 87 Down : 3
Steady: 23 No :94438 No :95401 No :101458
Steady: 6976 Steady: 6100 Steady: 295
Up : 234 Up : 178 Up : 10
miglitol troglitazone tolazamide examide citoglipton
Down : 5 No :101763 No :101727 No:101766 No:101766
No :101728 Steady: 3 Steady: 38
Steady: 31 Up : 1
Up : 2
insulin glyburide.metformin glipizide.metformin
Down :12218 Down : 6 No :101753
No :47383 No :101060 Steady: 13
Steady:30849 Steady: 692
Up :11316 Up : 8
glimepiride.pioglitazone metformin.rosiglitazone metformin.pioglitazone
No :101765 No :101764 No :101765
Steady: 1 Steady: 2 Steady: 1
change diabetesMed readmitted
Ch:47011 No :23403 <30:11357
No:54755 Yes:78363 >30:35545
NO :54864
Here,the missing values in the variable 'race' are to be properly replaced by some value, as we have more 'caucasian' classes (nearly 78372 values) we will replace the missing values with the caucasian class.
After replacing the missing values check if still there are any missing values,here we can see that no missing values available.
BUILD THE MODEL
library(naivebayes)
model<-naive_bayes(readmitted ~ ., data=diabetic_datadup)
model
===================== Naive Bayes =====================
Call:
naive_bayes.formula(formula = readmitted ~ ., data = diabetic_datadup)
A priori probabilities:
<30 >30 NO
0.1115992 0.3492817 0.5391192
Tables:
encounter_id <30 >30 NO
mean 162734709 160384538 168833191
sd 101777344 96212488 106632747
patient_nbr <30 >30 NO
mean 55192188 58146748 51679493
sd 37804417 36614253 39956952
race <30 >30 NO
AfricanAmerican 0.189750814 0.186636658 0.189942403
Asian 0.005723342 0.004529470 0.007564159
Caucasian 0.773091485 0.778224785 0.764253427
Hispanic 0.018666901 0.018061612 0.021562409
Other 0.012767456 0.012547475 0.016677603
gender <30 >30 NO
Female 5.416923e-01 5.491068e-01 5.292724e-01
Male 4.583077e-01 4.508932e-01 4.706729e-01
Unknown/Invalid 0.000000e+00 0.000000e+00 5.468066e-05
age <30 >30 NO
[0-10) 0.0002641543 0.0007314672 0.0024059493
[10-20) 0.0035220569 0.0063018709 0.0077828813
[20-30) 0.0207801356 0.0143480096 0.0166046952
[30-40) 0.0373338029 0.0333942889 0.0394429863
[40-50) 0.0904288104 0.0922211281 0.0980606591
[50-60) 0.1468697719 0.1664650443 0.1762722368
[60-70) 0.2203046579 0.2221690814 0.2202537183
[70-80) 0.2702298142 0.2665635110 0.2465004374
[80-90) 0.1829708550 0.1750738500 0.1621463984
[90-100) 0.0272959408 0.0227317485 0.0305300379
# ... and 41 more tables
Here, out of many classification models only naive bayes model(probabilistic mmodel) was working on this dataset.
PREDICT THE OUTCOME
predicted_values<-predict(model,diabetic_datadup,type="class")
observed_values<-diabetic_datadup$readmitted
final<-data.frame(observed_values,predicted_values)
Confusion matrix
library(caret)
Loading required package: lattice
Loading required package: ggplot2
confusionMatrix(diabetic_datadup$readmitted,predicted_values)
Confusion Matrix and Statistics
Reference
Prediction <30 >30 NO
<30 1455 2202 7700
>30 2017 7800 25728
NO 1282 4796 48786
Overall Statistics
Accuracy : 0.5703
95% CI : (0.5673, 0.5734)
No Information Rate : 0.8079
P-Value [Acc > NIR] : 1
Kappa : 0.155
Mcnemar's Test P-Value : <2e-16
Statistics by Class:
Class: <30 Class: >30 Class: NO
Sensitivity 0.30606 0.52710 0.5934
Specificity 0.89793 0.68097 0.6891
Pos Pred Value 0.12811 0.21944 0.8892
Neg Pred Value 0.96351 0.89432 0.2873
Prevalence 0.04672 0.14541 0.8079
Detection Rate 0.01430 0.07665 0.4794
Detection Prevalence 0.11160 0.34928 0.5391
Balanced Accuracy 0.60199 0.60404 0.6413
Here, we get contingency table and we can see that the accuracy is very less(57%) and from the cohens kappa value being very much less than 0.70 we interpret that inter-rater reliability is not satisfactory.
And the true positive rate and true negative rate is also less.
Area under curve
library(pROC)
Type 'citation("pROC")' for a citation.
Attaching package: 'pROC'
The following objects are masked from 'package:stats':
cov, smooth, var
library(InformationValue)
Attaching package: 'InformationValue'
The following objects are masked from 'package:caret':
confusionMatrix, precision, sensitivity, specificity
multiclass.roc(as.numeric(diabetic_datadup$readmitted),as.numeric(predicted_values))
Call:
multiclass.roc.default(response = as.numeric(diabetic_datadup$readmitted), predictor = as.numeric(predicted_values))
Data: as.numeric(predicted_values) with 3 levels of as.numeric(diabetic_datadup$readmitted): 1, 2, 3.
Multi-class area under the curve: 0.5743
area<-multiclass.roc(as.numeric(diabetic_datadup$readmitted),as.numeric(predicted_values),threshold = 0.5)
auc(area)
Multi-class area under the curve: 0.5743
Here,the area under the curve is 57% which is very less and i think that this model is giving a bad performance.
FINAL DATASET
| 2278392 |
8222157 |
Caucasian |
Female |
[0-10) |
6 |
25 |
1 |
1 |
41 |
0 |
1 |
0 |
0 |
0 |
250.83 |
? |
? |
1 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
NO |
NO |
| 149190 |
55629189 |
Caucasian |
Female |
[10-20) |
1 |
1 |
7 |
3 |
59 |
0 |
18 |
0 |
0 |
0 |
276 |
250.01 |
255 |
9 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Up |
No |
No |
No |
No |
No |
Ch |
Yes |
>30 |
NO |
| 64410 |
86047875 |
AfricanAmerican |
Female |
[20-30) |
1 |
1 |
7 |
2 |
11 |
5 |
13 |
2 |
0 |
1 |
648 |
250 |
V27 |
6 |
None |
None |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Yes |
NO |
NO |
| 500364 |
82442376 |
Caucasian |
Male |
[30-40) |
1 |
1 |
7 |
2 |
44 |
1 |
16 |
0 |
0 |
0 |
8 |
250.43 |
403 |
7 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Up |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
NO |
| 16680 |
42519267 |
Caucasian |
Male |
[40-50) |
1 |
1 |
7 |
1 |
51 |
0 |
8 |
0 |
0 |
0 |
197 |
157 |
250 |
5 |
None |
None |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
NO |
| 35754 |
82637451 |
Caucasian |
Male |
[50-60) |
2 |
1 |
2 |
3 |
31 |
6 |
16 |
0 |
0 |
0 |
414 |
411 |
250 |
9 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
Yes |
>30 |
NO |
| 55842 |
84259809 |
Caucasian |
Male |
[60-70) |
3 |
1 |
2 |
4 |
70 |
1 |
21 |
0 |
0 |
0 |
414 |
411 |
V45 |
7 |
None |
None |
Steady |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
NO |
| 63768 |
114882984 |
Caucasian |
Male |
[70-80) |
1 |
1 |
7 |
5 |
73 |
0 |
12 |
0 |
0 |
0 |
428 |
492 |
250 |
8 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Yes |
>30 |
NO |
| 12522 |
48330783 |
Caucasian |
Female |
[80-90) |
2 |
1 |
4 |
13 |
68 |
2 |
28 |
0 |
0 |
0 |
398 |
427 |
38 |
8 |
None |
None |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
NO |
| 15738 |
63555939 |
Caucasian |
Female |
[90-100) |
3 |
3 |
4 |
12 |
33 |
3 |
18 |
0 |
0 |
0 |
434 |
198 |
486 |
8 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
NO |
| 28236 |
89869032 |
AfricanAmerican |
Female |
[40-50) |
1 |
1 |
7 |
9 |
47 |
2 |
17 |
0 |
0 |
0 |
250.7 |
403 |
996 |
9 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
Yes |
>30 |
NO |
| 36900 |
77391171 |
AfricanAmerican |
Male |
[60-70) |
2 |
1 |
4 |
7 |
62 |
0 |
11 |
0 |
0 |
0 |
157 |
288 |
197 |
7 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
Up |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
Ch |
Yes |
<30 |
NO |
| 40926 |
85504905 |
Caucasian |
Female |
[40-50) |
1 |
3 |
7 |
7 |
60 |
0 |
15 |
0 |
1 |
0 |
428 |
250.43 |
250.6 |
8 |
None |
None |
Steady |
Up |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Down |
No |
No |
No |
No |
No |
Ch |
Yes |
<30 |
>30 |
| 42570 |
77586282 |
Caucasian |
Male |
[80-90) |
1 |
6 |
7 |
10 |
55 |
1 |
31 |
0 |
0 |
0 |
428 |
411 |
427 |
8 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
Yes |
NO |
NO |
| 62256 |
49726791 |
AfricanAmerican |
Female |
[60-70) |
3 |
1 |
2 |
1 |
49 |
5 |
2 |
0 |
0 |
0 |
518 |
998 |
627 |
8 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
Yes |
>30 |
NO |
| 73578 |
86328819 |
AfricanAmerican |
Male |
[60-70) |
1 |
3 |
7 |
12 |
75 |
5 |
13 |
0 |
0 |
0 |
999 |
507 |
996 |
9 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Up |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
NO |
| 77076 |
92519352 |
AfricanAmerican |
Male |
[50-60) |
1 |
1 |
7 |
4 |
45 |
4 |
17 |
0 |
0 |
0 |
410 |
411 |
414 |
8 |
None |
None |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
Ch |
Yes |
<30 |
NO |
| 84222 |
108662661 |
Caucasian |
Female |
[50-60) |
1 |
1 |
7 |
3 |
29 |
0 |
11 |
0 |
0 |
0 |
682 |
174 |
250 |
3 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Yes |
NO |
NO |
| 89682 |
107389323 |
AfricanAmerican |
Male |
[70-80) |
1 |
1 |
7 |
5 |
35 |
5 |
23 |
0 |
0 |
0 |
402 |
425 |
416 |
9 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
Yes |
>30 |
NO |
| 148530 |
69422211 |
Caucasian |
Male |
[70-80) |
3 |
6 |
2 |
6 |
42 |
2 |
23 |
0 |
0 |
0 |
737 |
427 |
714 |
8 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
Down |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
NO |
| 150006 |
22864131 |
Caucasian |
Female |
[50-60) |
2 |
1 |
4 |
2 |
66 |
1 |
19 |
0 |
0 |
0 |
410 |
427 |
428 |
7 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Down |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
NO |
| 150048 |
21239181 |
Caucasian |
Male |
[60-70) |
2 |
1 |
4 |
2 |
36 |
2 |
11 |
0 |
0 |
0 |
572 |
456 |
427 |
6 |
None |
None |
Steady |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
NO |
| 182796 |
63000108 |
AfricanAmerican |
Female |
[70-80) |
2 |
1 |
4 |
2 |
47 |
0 |
12 |
0 |
0 |
0 |
410 |
401 |
582 |
8 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
NO |
NO |
| 183930 |
107400762 |
Caucasian |
Female |
[80-90) |
2 |
6 |
1 |
11 |
42 |
2 |
19 |
0 |
0 |
0 |
V57 |
715 |
V43 |
8 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
>30 |
NO |
| 216156 |
62718876 |
AfricanAmerican |
Female |
[70-80) |
3 |
1 |
2 |
3 |
19 |
4 |
18 |
0 |
0 |
0 |
189 |
496 |
427 |
6 |
None |
None |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
NO |
| 221634 |
21861756 |
Other |
Female |
[50-60) |
1 |
1 |
7 |
1 |
33 |
0 |
7 |
0 |
0 |
0 |
786 |
401 |
250 |
3 |
None |
None |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Yes |
NO |
NO |
| 236316 |
40523301 |
Caucasian |
Male |
[80-90) |
1 |
3 |
7 |
6 |
64 |
3 |
18 |
0 |
0 |
0 |
427 |
428 |
414 |
7 |
None |
>7 |
Steady |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
NO |
| 248916 |
115196778 |
Caucasian |
Female |
[50-60) |
1 |
1 |
1 |
2 |
25 |
2 |
11 |
0 |
0 |
0 |
996 |
585 |
250.01 |
3 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
Yes |
>30 |
NO |
| 250872 |
41606064 |
Caucasian |
Male |
[20-30) |
2 |
1 |
2 |
10 |
53 |
0 |
20 |
0 |
0 |
0 |
277 |
250.02 |
263 |
6 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Down |
No |
No |
No |
No |
No |
Ch |
Yes |
>30 |
NO |
| 252822 |
18196434 |
Caucasian |
Female |
[80-90) |
1 |
2 |
7 |
5 |
52 |
0 |
14 |
0 |
0 |
0 |
428 |
410 |
414 |
8 |
None |
None |
Steady |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Ch |
Yes |
>30 |
NO |
| 253380 |
56480238 |
AfricanAmerican |
Female |
[60-70) |
1 |
1 |
7 |
6 |
87 |
0 |
18 |
0 |
0 |
0 |
584 |
496 |
250.42 |
9 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
Up |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
NO |
| 253722 |
96664626 |
AfricanAmerican |
Male |
[70-80) |
1 |
5 |
7 |
1 |
53 |
0 |
10 |
0 |
0 |
0 |
462 |
250.01 |
276 |
8 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Down |
No |
No |
No |
No |
No |
Ch |
Yes |
>30 |
NO |
| 260166 |
80845353 |
Caucasian |
Female |
[70-80) |
1 |
1 |
7 |
6 |
27 |
0 |
16 |
0 |
0 |
0 |
996 |
999 |
250.01 |
8 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
Yes |
>30 |
NO |
| 293058 |
114715242 |
Caucasian |
Male |
[60-70) |
2 |
6 |
2 |
5 |
37 |
0 |
18 |
0 |
0 |
0 |
473 |
996 |
482 |
8 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
Yes |
>30 |
NO |
| 293118 |
3327282 |
Caucasian |
Female |
[70-80) |
2 |
11 |
2 |
5 |
46 |
2 |
20 |
0 |
0 |
0 |
428 |
585 |
414 |
9 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Down |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
NO |
| 325848 |
63023292 |
Caucasian |
Female |
[60-70) |
1 |
1 |
7 |
2 |
41 |
0 |
11 |
0 |
0 |
0 |
411 |
250.01 |
401 |
6 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
Down |
No |
No |
No |
No |
No |
Ch |
Yes |
>30 |
NO |
| 325866 |
98427861 |
Caucasian |
Female |
[70-80) |
3 |
1 |
2 |
3 |
33 |
1 |
8 |
0 |
0 |
0 |
174 |
135 |
250 |
5 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
Yes |
NO |
NO |
| 326028 |
112002975 |
Caucasian |
Female |
[60-70) |
1 |
1 |
7 |
4 |
33 |
0 |
12 |
0 |
0 |
0 |
486 |
244 |
250 |
3 |
None |
None |
Steady |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
Ch |
Yes |
>30 |
NO |
| 358776 |
101002446 |
Caucasian |
Male |
[70-80) |
1 |
6 |
7 |
7 |
47 |
2 |
22 |
0 |
0 |
0 |
998 |
41 |
414 |
8 |
None |
None |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
NO |
| 377268 |
104672268 |
Caucasian |
Male |
[50-60) |
2 |
1 |
2 |
1 |
44 |
1 |
15 |
0 |
0 |
0 |
996 |
403 |
250.41 |
9 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
Yes |
>30 |
NO |
| 383430 |
80588529 |
Caucasian |
Female |
[70-80) |
1 |
2 |
7 |
1 |
28 |
0 |
15 |
0 |
0 |
0 |
414 |
411 |
250.01 |
4 |
None |
None |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Down |
No |
No |
No |
No |
No |
Ch |
Yes |
>30 |
NO |
| 419304 |
99715041 |
Caucasian |
Male |
[40-50) |
2 |
1 |
2 |
7 |
36 |
2 |
9 |
0 |
0 |
0 |
511 |
571 |
585 |
5 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
Yes |
>30 |
NO |
| 421194 |
96435585 |
Caucasian |
Female |
[70-80) |
2 |
1 |
1 |
13 |
48 |
2 |
18 |
0 |
0 |
1 |
V57 |
276 |
781 |
8 |
None |
None |
Steady |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
Ch |
Yes |
>30 |
NO |
| 449142 |
66274866 |
Caucasian |
Male |
[50-60) |
1 |
1 |
7 |
3 |
59 |
0 |
11 |
0 |
0 |
0 |
428 |
496 |
278 |
6 |
None |
None |
Steady |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
Ch |
Yes |
>30 |
NO |
| 450210 |
80177094 |
Caucasian |
Female |
[80-90) |
1 |
11 |
7 |
7 |
72 |
1 |
27 |
0 |
0 |
0 |
432 |
997 |
427 |
9 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
Yes |
NO |
NO |
| 464994 |
106936875 |
Caucasian |
Female |
[40-50) |
3 |
1 |
2 |
2 |
10 |
3 |
8 |
0 |
0 |
0 |
626 |
250.01 |
998 |
5 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
Yes |
NO |
NO |
| 486156 |
86240259 |
Caucasian |
Female |
[70-80) |
3 |
5 |
4 |
9 |
25 |
3 |
16 |
0 |
0 |
2 |
428 |
427 |
250.01 |
7 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Down |
No |
No |
No |
No |
No |
Ch |
Yes |
<30 |
>30 |
| 498030 |
51838164 |
Caucasian |
Male |
[70-80) |
3 |
3 |
4 |
9 |
2 |
0 |
12 |
0 |
0 |
1 |
295 |
599 |
250 |
3 |
None |
None |
Up |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
NO |
| 537834 |
90097839 |
Caucasian |
Male |
[50-60) |
3 |
1 |
2 |
6 |
65 |
5 |
19 |
0 |
0 |
0 |
414 |
424 |
428 |
9 |
None |
None |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Up |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
NO |
| 544194 |
34997814 |
Caucasian |
Male |
[60-70) |
2 |
6 |
4 |
11 |
67 |
2 |
25 |
0 |
0 |
0 |
428 |
491 |
427 |
9 |
None |
None |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
No |
No |
No |
No |
No |
Steady |
No |
No |
No |
No |
No |
Ch |
Yes |
NO |
NO |