DIABETIC DATASET

encounter_id patient_nbr race gender age weight admission_type_id discharge_disposition_id admission_source_id time_in_hospital payer_code medical_specialty num_lab_procedures num_procedures num_medications number_outpatient number_emergency number_inpatient diag_1 diag_2 diag_3 number_diagnoses max_glu_serum A1Cresult metformin repaglinide nateglinide chlorpropamide glimepiride acetohexamide glipizide glyburide tolbutamide pioglitazone rosiglitazone acarbose miglitol troglitazone tolazamide examide citoglipton insulin glyburide.metformin glipizide.metformin glimepiride.pioglitazone metformin.rosiglitazone metformin.pioglitazone change diabetesMed readmitted
2278392 8222157 Caucasian Female [0-10) ? 6 25 1 1 ? Pediatrics-Endocrinology 41 0 1 0 0 0 250.83 ? ? 1 None None No No No No No No No No No No No No No No No No No No No No No No No No No NO
149190 55629189 Caucasian Female [10-20) ? 1 1 7 3 ? ? 59 0 18 0 0 0 276 250.01 255 9 None None No No No No No No No No No No No No No No No No No Up No No No No No Ch Yes >30
64410 86047875 AfricanAmerican Female [20-30) ? 1 1 7 2 ? ? 11 5 13 2 0 1 648 250 V27 6 None None No No No No No No Steady No No No No No No No No No No No No No No No No No Yes NO
500364 82442376 Caucasian Male [30-40) ? 1 1 7 2 ? ? 44 1 16 0 0 0 8 250.43 403 7 None None No No No No No No No No No No No No No No No No No Up No No No No No Ch Yes NO
16680 42519267 Caucasian Male [40-50) ? 1 1 7 1 ? ? 51 0 8 0 0 0 197 157 250 5 None None No No No No No No Steady No No No No No No No No No No Steady No No No No No Ch Yes NO
35754 82637451 Caucasian Male [50-60) ? 2 1 2 3 ? ? 31 6 16 0 0 0 414 411 250 9 None None No No No No No No No No No No No No No No No No No Steady No No No No No No Yes >30

DATA PRE-PROCESSING

Checking for the missing values

summary(diabetic_datadup)
  encounter_id        patient_nbr                     race      
 Min.   :    12522   Min.   :      135   ?              : 2273  
 1st Qu.: 84961194   1st Qu.: 23413221   AfricanAmerican:19210  
 Median :152388987   Median : 45505143   Asian          :  641  
 Mean   :165201646   Mean   : 54330401   Caucasian      :76099  
 3rd Qu.:230270888   3rd Qu.: 87545950   Hispanic       : 2037  
 Max.   :443867222   Max.   :189502619   Other          : 1506  
                                                                
             gender           age              weight     
 Female         :54708   [70-80):26068   ?        :98569  
 Male           :47055   [60-70):22483   [75-100) : 1336  
 Unknown/Invalid:    3   [50-60):17256   [50-75)  :  897  
                         [80-90):17197   [100-125):  625  
                         [40-50): 9685   [125-150):  145  
                         [30-40): 3775   [25-50)  :   97  
                         (Other): 5302   (Other)  :   97  
 admission_type_id discharge_disposition_id admission_source_id
 Min.   :1.000     Min.   : 1.000           Min.   : 1.000     
 1st Qu.:1.000     1st Qu.: 1.000           1st Qu.: 1.000     
 Median :1.000     Median : 1.000           Median : 7.000     
 Mean   :2.024     Mean   : 3.716           Mean   : 5.754     
 3rd Qu.:3.000     3rd Qu.: 4.000           3rd Qu.: 7.000     
 Max.   :8.000     Max.   :28.000           Max.   :25.000     
                                                               
 time_in_hospital   payer_code                 medical_specialty
 Min.   : 1.000   ?      :40256   ?                     :49949  
 1st Qu.: 2.000   MC     :32439   InternalMedicine      :14635  
 Median : 4.000   HM     : 6274   Emergency/Trauma      : 7565  
 Mean   : 4.396   SP     : 5007   Family/GeneralPractice: 7440  
 3rd Qu.: 6.000   BC     : 4655   Cardiology            : 5352  
 Max.   :14.000   MD     : 3532   Surgery-General       : 3099  
                  (Other): 9603   (Other)               :13726  
 num_lab_procedures num_procedures num_medications number_outpatient
 Min.   :  1.0      Min.   :0.00   Min.   : 1.00   Min.   : 0.0000  
 1st Qu.: 31.0      1st Qu.:0.00   1st Qu.:10.00   1st Qu.: 0.0000  
 Median : 44.0      Median :1.00   Median :15.00   Median : 0.0000  
 Mean   : 43.1      Mean   :1.34   Mean   :16.02   Mean   : 0.3694  
 3rd Qu.: 57.0      3rd Qu.:2.00   3rd Qu.:20.00   3rd Qu.: 0.0000  
 Max.   :132.0      Max.   :6.00   Max.   :81.00   Max.   :42.0000  
                                                                    
 number_emergency  number_inpatient      diag_1          diag_2     
 Min.   : 0.0000   Min.   : 0.0000   428    : 6862   276    : 6752  
 1st Qu.: 0.0000   1st Qu.: 0.0000   414    : 6581   428    : 6662  
 Median : 0.0000   Median : 0.0000   786    : 4016   250    : 6071  
 Mean   : 0.1978   Mean   : 0.6356   410    : 3614   427    : 5036  
 3rd Qu.: 0.0000   3rd Qu.: 1.0000   486    : 3508   401    : 3736  
 Max.   :76.0000   Max.   :21.0000   427    : 2766   496    : 3305  
                                     (Other):74419   (Other):70204  
     diag_3      number_diagnoses max_glu_serum A1Cresult   
 250    :11555   Min.   : 1.000   >200: 1485    >7  : 3812  
 401    : 8289   1st Qu.: 6.000   >300: 1264    >8  : 8216  
 276    : 5175   Median : 8.000   None:96420    None:84748  
 428    : 4577   Mean   : 7.423   Norm: 2597    Norm: 4990  
 427    : 3955   3rd Qu.: 9.000                             
 414    : 3664   Max.   :16.000                             
 (Other):64551                                              
  metformin     repaglinide     nateglinide     chlorpropamide 
 Down  :  575   Down  :    45   Down  :    11   Down  :     1  
 No    :81778   No    :100227   No    :101063   No    :101680  
 Steady:18346   Steady:  1384   Steady:   668   Steady:    79  
 Up    : 1067   Up    :   110   Up    :    24   Up    :     6  
                                                               
                                                               
                                                               
 glimepiride    acetohexamide    glipizide      glyburide    
 Down  :  194   No    :101765   Down  :  560   Down  :  564  
 No    :96575   Steady:     1   No    :89080   No    :91116  
 Steady: 4670                   Steady:11356   Steady: 9274  
 Up    :  327                   Up    :  770   Up    :  812  
                                                             
                                                             
                                                             
 tolbutamide     pioglitazone   rosiglitazone    acarbose     
 No    :101743   Down  :  118   Down  :   87   Down  :     3  
 Steady:    23   No    :94438   No    :95401   No    :101458  
                 Steady: 6976   Steady: 6100   Steady:   295  
                 Up    :  234   Up    :  178   Up    :    10  
                                                              
                                                              
                                                              
   miglitol      troglitazone     tolazamide     examide     citoglipton
 Down  :     5   No    :101763   No    :101727   No:101766   No:101766  
 No    :101728   Steady:     3   Steady:    38                          
 Steady:    31                   Up    :     1                          
 Up    :     2                                                          
                                                                        
                                                                        
                                                                        
   insulin      glyburide.metformin glipizide.metformin
 Down  :12218   Down  :     6       No    :101753      
 No    :47383   No    :101060       Steady:    13      
 Steady:30849   Steady:   692                          
 Up    :11316   Up    :     8                          
                                                       
                                                       
                                                       
 glimepiride.pioglitazone metformin.rosiglitazone metformin.pioglitazone
 No    :101765            No    :101764           No    :101765         
 Steady:     1            Steady:     2           Steady:     1         
                                                                        
                                                                        
                                                                        
                                                                        
                                                                        
 change     diabetesMed readmitted 
 Ch:47011   No :23403   <30:11357  
 No:54755   Yes:78363   >30:35545  
                        NO :54864  
                                   
                                   
                                   
                                   
 Here,in the dataset there are missing values in certain variables,as we can see missing values in variable 'race' which are 2273(i.e. nearly 2%) we shouldnt exclude the race variable.
 But in variable 'weight' there are 98569 missing values which accounts to nearly 97% which clearly indicates that the data is not sufficient in weight variable, so we have to exclude it.
 Similarly, in variable 'payer code' it has 40256 missing values (i.e.nearly 40%) so we can exclude it.
 Similarly in variable 'medical_specialty' there are 49949 missing values (i.e. nearly 49%)so we can exclude this variable.

Removing insignificant variables

diabetic_datadup<-subset(diabetic_datadup,select = -c(weight,payer_code,medical_specialty))
View(diabetic_datadup)
summary(diabetic_datadup)
  encounter_id        patient_nbr                     race      
 Min.   :    12522   Min.   :      135   ?              : 2273  
 1st Qu.: 84961194   1st Qu.: 23413221   AfricanAmerican:19210  
 Median :152388987   Median : 45505143   Asian          :  641  
 Mean   :165201646   Mean   : 54330401   Caucasian      :76099  
 3rd Qu.:230270888   3rd Qu.: 87545950   Hispanic       : 2037  
 Max.   :443867222   Max.   :189502619   Other          : 1506  
                                                                
             gender           age        admission_type_id
 Female         :54708   [70-80):26068   Min.   :1.000    
 Male           :47055   [60-70):22483   1st Qu.:1.000    
 Unknown/Invalid:    3   [50-60):17256   Median :1.000    
                         [80-90):17197   Mean   :2.024    
                         [40-50): 9685   3rd Qu.:3.000    
                         [30-40): 3775   Max.   :8.000    
                         (Other): 5302                    
 discharge_disposition_id admission_source_id time_in_hospital
 Min.   : 1.000           Min.   : 1.000      Min.   : 1.000  
 1st Qu.: 1.000           1st Qu.: 1.000      1st Qu.: 2.000  
 Median : 1.000           Median : 7.000      Median : 4.000  
 Mean   : 3.716           Mean   : 5.754      Mean   : 4.396  
 3rd Qu.: 4.000           3rd Qu.: 7.000      3rd Qu.: 6.000  
 Max.   :28.000           Max.   :25.000      Max.   :14.000  
                                                              
 num_lab_procedures num_procedures num_medications number_outpatient
 Min.   :  1.0      Min.   :0.00   Min.   : 1.00   Min.   : 0.0000  
 1st Qu.: 31.0      1st Qu.:0.00   1st Qu.:10.00   1st Qu.: 0.0000  
 Median : 44.0      Median :1.00   Median :15.00   Median : 0.0000  
 Mean   : 43.1      Mean   :1.34   Mean   :16.02   Mean   : 0.3694  
 3rd Qu.: 57.0      3rd Qu.:2.00   3rd Qu.:20.00   3rd Qu.: 0.0000  
 Max.   :132.0      Max.   :6.00   Max.   :81.00   Max.   :42.0000  
                                                                    
 number_emergency  number_inpatient      diag_1          diag_2     
 Min.   : 0.0000   Min.   : 0.0000   428    : 6862   276    : 6752  
 1st Qu.: 0.0000   1st Qu.: 0.0000   414    : 6581   428    : 6662  
 Median : 0.0000   Median : 0.0000   786    : 4016   250    : 6071  
 Mean   : 0.1978   Mean   : 0.6356   410    : 3614   427    : 5036  
 3rd Qu.: 0.0000   3rd Qu.: 1.0000   486    : 3508   401    : 3736  
 Max.   :76.0000   Max.   :21.0000   427    : 2766   496    : 3305  
                                     (Other):74419   (Other):70204  
     diag_3      number_diagnoses max_glu_serum A1Cresult   
 250    :11555   Min.   : 1.000   >200: 1485    >7  : 3812  
 401    : 8289   1st Qu.: 6.000   >300: 1264    >8  : 8216  
 276    : 5175   Median : 8.000   None:96420    None:84748  
 428    : 4577   Mean   : 7.423   Norm: 2597    Norm: 4990  
 427    : 3955   3rd Qu.: 9.000                             
 414    : 3664   Max.   :16.000                             
 (Other):64551                                              
  metformin     repaglinide     nateglinide     chlorpropamide 
 Down  :  575   Down  :    45   Down  :    11   Down  :     1  
 No    :81778   No    :100227   No    :101063   No    :101680  
 Steady:18346   Steady:  1384   Steady:   668   Steady:    79  
 Up    : 1067   Up    :   110   Up    :    24   Up    :     6  
                                                               
                                                               
                                                               
 glimepiride    acetohexamide    glipizide      glyburide    
 Down  :  194   No    :101765   Down  :  560   Down  :  564  
 No    :96575   Steady:     1   No    :89080   No    :91116  
 Steady: 4670                   Steady:11356   Steady: 9274  
 Up    :  327                   Up    :  770   Up    :  812  
                                                             
                                                             
                                                             
 tolbutamide     pioglitazone   rosiglitazone    acarbose     
 No    :101743   Down  :  118   Down  :   87   Down  :     3  
 Steady:    23   No    :94438   No    :95401   No    :101458  
                 Steady: 6976   Steady: 6100   Steady:   295  
                 Up    :  234   Up    :  178   Up    :    10  
                                                              
                                                              
                                                              
   miglitol      troglitazone     tolazamide     examide     citoglipton
 Down  :     5   No    :101763   No    :101727   No:101766   No:101766  
 No    :101728   Steady:     3   Steady:    38                          
 Steady:    31                   Up    :     1                          
 Up    :     2                                                          
                                                                        
                                                                        
                                                                        
   insulin      glyburide.metformin glipizide.metformin
 Down  :12218   Down  :     6       No    :101753      
 No    :47383   No    :101060       Steady:    13      
 Steady:30849   Steady:   692                          
 Up    :11316   Up    :     8                          
                                                       
                                                       
                                                       
 glimepiride.pioglitazone metformin.rosiglitazone metformin.pioglitazone
 No    :101765            No    :101764           No    :101765         
 Steady:     1            Steady:     2           Steady:     1         
                                                                        
                                                                        
                                                                        
                                                                        
                                                                        
 change     diabetesMed readmitted 
 Ch:47011   No :23403   <30:11357  
 No:54755   Yes:78363   >30:35545  
                        NO :54864  
                                   
                                   
                                   
                                   
   Hence, the unwanted variables are ejected from the dataset.

Replacing missing values

class(diabetic_datadup$race)
[1] "factor"
diabetic_datadup$race<-as.character(diabetic_datadup$race)
class(diabetic_datadup$race)
[1] "character"
diabetic_datadup$race<-ifelse(diabetic_datadup$race=="?","Caucasian",diabetic_datadup$race)
View(diabetic_datadup)
summary(diabetic_datadup)
  encounter_id        patient_nbr            race          
 Min.   :    12522   Min.   :      135   Length:101766     
 1st Qu.: 84961194   1st Qu.: 23413221   Class :character  
 Median :152388987   Median : 45505143   Mode  :character  
 Mean   :165201646   Mean   : 54330401                     
 3rd Qu.:230270888   3rd Qu.: 87545950                     
 Max.   :443867222   Max.   :189502619                     
                                                           
             gender           age        admission_type_id
 Female         :54708   [70-80):26068   Min.   :1.000    
 Male           :47055   [60-70):22483   1st Qu.:1.000    
 Unknown/Invalid:    3   [50-60):17256   Median :1.000    
                         [80-90):17197   Mean   :2.024    
                         [40-50): 9685   3rd Qu.:3.000    
                         [30-40): 3775   Max.   :8.000    
                         (Other): 5302                    
 discharge_disposition_id admission_source_id time_in_hospital
 Min.   : 1.000           Min.   : 1.000      Min.   : 1.000  
 1st Qu.: 1.000           1st Qu.: 1.000      1st Qu.: 2.000  
 Median : 1.000           Median : 7.000      Median : 4.000  
 Mean   : 3.716           Mean   : 5.754      Mean   : 4.396  
 3rd Qu.: 4.000           3rd Qu.: 7.000      3rd Qu.: 6.000  
 Max.   :28.000           Max.   :25.000      Max.   :14.000  
                                                              
 num_lab_procedures num_procedures num_medications number_outpatient
 Min.   :  1.0      Min.   :0.00   Min.   : 1.00   Min.   : 0.0000  
 1st Qu.: 31.0      1st Qu.:0.00   1st Qu.:10.00   1st Qu.: 0.0000  
 Median : 44.0      Median :1.00   Median :15.00   Median : 0.0000  
 Mean   : 43.1      Mean   :1.34   Mean   :16.02   Mean   : 0.3694  
 3rd Qu.: 57.0      3rd Qu.:2.00   3rd Qu.:20.00   3rd Qu.: 0.0000  
 Max.   :132.0      Max.   :6.00   Max.   :81.00   Max.   :42.0000  
                                                                    
 number_emergency  number_inpatient      diag_1          diag_2     
 Min.   : 0.0000   Min.   : 0.0000   428    : 6862   276    : 6752  
 1st Qu.: 0.0000   1st Qu.: 0.0000   414    : 6581   428    : 6662  
 Median : 0.0000   Median : 0.0000   786    : 4016   250    : 6071  
 Mean   : 0.1978   Mean   : 0.6356   410    : 3614   427    : 5036  
 3rd Qu.: 0.0000   3rd Qu.: 1.0000   486    : 3508   401    : 3736  
 Max.   :76.0000   Max.   :21.0000   427    : 2766   496    : 3305  
                                     (Other):74419   (Other):70204  
     diag_3      number_diagnoses max_glu_serum A1Cresult   
 250    :11555   Min.   : 1.000   >200: 1485    >7  : 3812  
 401    : 8289   1st Qu.: 6.000   >300: 1264    >8  : 8216  
 276    : 5175   Median : 8.000   None:96420    None:84748  
 428    : 4577   Mean   : 7.423   Norm: 2597    Norm: 4990  
 427    : 3955   3rd Qu.: 9.000                             
 414    : 3664   Max.   :16.000                             
 (Other):64551                                              
  metformin     repaglinide     nateglinide     chlorpropamide 
 Down  :  575   Down  :    45   Down  :    11   Down  :     1  
 No    :81778   No    :100227   No    :101063   No    :101680  
 Steady:18346   Steady:  1384   Steady:   668   Steady:    79  
 Up    : 1067   Up    :   110   Up    :    24   Up    :     6  
                                                               
                                                               
                                                               
 glimepiride    acetohexamide    glipizide      glyburide    
 Down  :  194   No    :101765   Down  :  560   Down  :  564  
 No    :96575   Steady:     1   No    :89080   No    :91116  
 Steady: 4670                   Steady:11356   Steady: 9274  
 Up    :  327                   Up    :  770   Up    :  812  
                                                             
                                                             
                                                             
 tolbutamide     pioglitazone   rosiglitazone    acarbose     
 No    :101743   Down  :  118   Down  :   87   Down  :     3  
 Steady:    23   No    :94438   No    :95401   No    :101458  
                 Steady: 6976   Steady: 6100   Steady:   295  
                 Up    :  234   Up    :  178   Up    :    10  
                                                              
                                                              
                                                              
   miglitol      troglitazone     tolazamide     examide     citoglipton
 Down  :     5   No    :101763   No    :101727   No:101766   No:101766  
 No    :101728   Steady:     3   Steady:    38                          
 Steady:    31                   Up    :     1                          
 Up    :     2                                                          
                                                                        
                                                                        
                                                                        
   insulin      glyburide.metformin glipizide.metformin
 Down  :12218   Down  :     6       No    :101753      
 No    :47383   No    :101060       Steady:    13      
 Steady:30849   Steady:   692                          
 Up    :11316   Up    :     8                          
                                                       
                                                       
                                                       
 glimepiride.pioglitazone metformin.rosiglitazone metformin.pioglitazone
 No    :101765            No    :101764           No    :101765         
 Steady:     1            Steady:     2           Steady:     1         
                                                                        
                                                                        
                                                                        
                                                                        
                                                                        
 change     diabetesMed readmitted 
 Ch:47011   No :23403   <30:11357  
 No:54755   Yes:78363   >30:35545  
                        NO :54864  
                                   
                                   
                                   
                                   
  Here,the missing values in the variable 'race' are to be properly replaced by some value, as we have more 'caucasian' classes (nearly 78372 values) we will replace the missing values with the caucasian class.
  After replacing the missing values check if still there are any missing values,here we can see that no missing values available.
  

BUILD THE MODEL

library(naivebayes)
model<-naive_bayes(readmitted ~ ., data=diabetic_datadup)
model
===================== Naive Bayes ===================== 
Call: 
naive_bayes.formula(formula = readmitted ~ ., data = diabetic_datadup)

A priori probabilities: 

      <30       >30        NO 
0.1115992 0.3492817 0.5391192 

Tables: 
            
encounter_id       <30       >30        NO
        mean 162734709 160384538 168833191
        sd   101777344  96212488 106632747

           
patient_nbr      <30      >30       NO
       mean 55192188 58146748 51679493
       sd   37804417 36614253 39956952

                 
race                      <30         >30          NO
  AfricanAmerican 0.189750814 0.186636658 0.189942403
  Asian           0.005723342 0.004529470 0.007564159
  Caucasian       0.773091485 0.778224785 0.764253427
  Hispanic        0.018666901 0.018061612 0.021562409
  Other           0.012767456 0.012547475 0.016677603

                 
gender                     <30          >30           NO
  Female          5.416923e-01 5.491068e-01 5.292724e-01
  Male            4.583077e-01 4.508932e-01 4.706729e-01
  Unknown/Invalid 0.000000e+00 0.000000e+00 5.468066e-05

          
age                 <30          >30           NO
  [0-10)   0.0002641543 0.0007314672 0.0024059493
  [10-20)  0.0035220569 0.0063018709 0.0077828813
  [20-30)  0.0207801356 0.0143480096 0.0166046952
  [30-40)  0.0373338029 0.0333942889 0.0394429863
  [40-50)  0.0904288104 0.0922211281 0.0980606591
  [50-60)  0.1468697719 0.1664650443 0.1762722368
  [60-70)  0.2203046579 0.2221690814 0.2202537183
  [70-80)  0.2702298142 0.2665635110 0.2465004374
  [80-90)  0.1829708550 0.1750738500 0.1621463984
  [90-100) 0.0272959408 0.0227317485 0.0305300379

# ... and 41 more tables
Here, out of many classification models only naive bayes model(probabilistic mmodel) was working on this dataset.

PREDICT THE OUTCOME

predicted_values<-predict(model,diabetic_datadup,type="class")
observed_values<-diabetic_datadup$readmitted
final<-data.frame(observed_values,predicted_values)

Confusion matrix

library(caret)
Loading required package: lattice
Loading required package: ggplot2
confusionMatrix(diabetic_datadup$readmitted,predicted_values)
Confusion Matrix and Statistics

          Reference
Prediction   <30   >30    NO
       <30  1455  2202  7700
       >30  2017  7800 25728
       NO   1282  4796 48786

Overall Statistics
                                          
               Accuracy : 0.5703          
                 95% CI : (0.5673, 0.5734)
    No Information Rate : 0.8079          
    P-Value [Acc > NIR] : 1               
                                          
                  Kappa : 0.155           
 Mcnemar's Test P-Value : <2e-16          

Statistics by Class:

                     Class: <30 Class: >30 Class: NO
Sensitivity             0.30606    0.52710    0.5934
Specificity             0.89793    0.68097    0.6891
Pos Pred Value          0.12811    0.21944    0.8892
Neg Pred Value          0.96351    0.89432    0.2873
Prevalence              0.04672    0.14541    0.8079
Detection Rate          0.01430    0.07665    0.4794
Detection Prevalence    0.11160    0.34928    0.5391
Balanced Accuracy       0.60199    0.60404    0.6413
 Here, we get contingency table and we can see that the accuracy is very less(57%) and from the cohens kappa value being very much less than 0.70 we interpret that inter-rater reliability is not satisfactory.
 And the true positive rate and true negative rate is also less.
 

Area under curve

library(pROC)
Type 'citation("pROC")' for a citation.

Attaching package: 'pROC'
The following objects are masked from 'package:stats':

    cov, smooth, var
library(InformationValue)

Attaching package: 'InformationValue'
The following objects are masked from 'package:caret':

    confusionMatrix, precision, sensitivity, specificity
multiclass.roc(as.numeric(diabetic_datadup$readmitted),as.numeric(predicted_values))

Call:
multiclass.roc.default(response = as.numeric(diabetic_datadup$readmitted),     predictor = as.numeric(predicted_values))

Data: as.numeric(predicted_values) with 3 levels of as.numeric(diabetic_datadup$readmitted): 1, 2, 3.
Multi-class area under the curve: 0.5743
area<-multiclass.roc(as.numeric(diabetic_datadup$readmitted),as.numeric(predicted_values),threshold = 0.5)
auc(area)
Multi-class area under the curve: 0.5743
 Here,the area under the curve is 57% which is very less and i think that this model is giving a bad performance. 

FINAL DATASET

encounter_id patient_nbr race gender age admission_type_id discharge_disposition_id admission_source_id time_in_hospital num_lab_procedures num_procedures num_medications number_outpatient number_emergency number_inpatient diag_1 diag_2 diag_3 number_diagnoses max_glu_serum A1Cresult metformin repaglinide nateglinide chlorpropamide glimepiride acetohexamide glipizide glyburide tolbutamide pioglitazone rosiglitazone acarbose miglitol troglitazone tolazamide examide citoglipton insulin glyburide.metformin glipizide.metformin glimepiride.pioglitazone metformin.rosiglitazone metformin.pioglitazone change diabetesMed readmitted expected_readmitted
2278392 8222157 Caucasian Female [0-10) 6 25 1 1 41 0 1 0 0 0 250.83 ? ? 1 None None No No No No No No No No No No No No No No No No No No No No No No No No No NO NO
149190 55629189 Caucasian Female [10-20) 1 1 7 3 59 0 18 0 0 0 276 250.01 255 9 None None No No No No No No No No No No No No No No No No No Up No No No No No Ch Yes >30 NO
64410 86047875 AfricanAmerican Female [20-30) 1 1 7 2 11 5 13 2 0 1 648 250 V27 6 None None No No No No No No Steady No No No No No No No No No No No No No No No No No Yes NO NO
500364 82442376 Caucasian Male [30-40) 1 1 7 2 44 1 16 0 0 0 8 250.43 403 7 None None No No No No No No No No No No No No No No No No No Up No No No No No Ch Yes NO NO
16680 42519267 Caucasian Male [40-50) 1 1 7 1 51 0 8 0 0 0 197 157 250 5 None None No No No No No No Steady No No No No No No No No No No Steady No No No No No Ch Yes NO NO
35754 82637451 Caucasian Male [50-60) 2 1 2 3 31 6 16 0 0 0 414 411 250 9 None None No No No No No No No No No No No No No No No No No Steady No No No No No No Yes >30 NO
55842 84259809 Caucasian Male [60-70) 3 1 2 4 70 1 21 0 0 0 414 411 V45 7 None None Steady No No No Steady No No No No No No No No No No No No Steady No No No No No Ch Yes NO NO
63768 114882984 Caucasian Male [70-80) 1 1 7 5 73 0 12 0 0 0 428 492 250 8 None None No No No No No No No Steady No No No No No No No No No No No No No No No No Yes >30 NO
12522 48330783 Caucasian Female [80-90) 2 1 4 13 68 2 28 0 0 0 398 427 38 8 None None No No No No No No Steady No No No No No No No No No No Steady No No No No No Ch Yes NO NO
15738 63555939 Caucasian Female [90-100) 3 3 4 12 33 3 18 0 0 0 434 198 486 8 None None No No No No No No No No No No Steady No No No No No No Steady No No No No No Ch Yes NO NO
28236 89869032 AfricanAmerican Female [40-50) 1 1 7 9 47 2 17 0 0 0 250.7 403 996 9 None None No No No No No No No No No No No No No No No No No Steady No No No No No No Yes >30 NO
36900 77391171 AfricanAmerican Male [60-70) 2 1 4 7 62 0 11 0 0 0 157 288 197 7 None None No No No No No No No Up No No No No No No No No No Steady No No No No No Ch Yes <30 NO
40926 85504905 Caucasian Female [40-50) 1 3 7 7 60 0 15 0 1 0 428 250.43 250.6 8 None None Steady Up No No No No No No No No No No No No No No No Down No No No No No Ch Yes <30 >30
42570 77586282 Caucasian Male [80-90) 1 6 7 10 55 1 31 0 0 0 428 411 427 8 None None No No No No No No No No No No No No No No No No No Steady No No No No No No Yes NO NO
62256 49726791 AfricanAmerican Female [60-70) 3 1 2 1 49 5 2 0 0 0 518 998 627 8 None None No No No No No No No No No No No No No No No No No Steady No No No No No No Yes >30 NO
73578 86328819 AfricanAmerican Male [60-70) 1 3 7 12 75 5 13 0 0 0 999 507 996 9 None None No No No No No No No No No No No No No No No No No Up No No No No No Ch Yes NO NO
77076 92519352 AfricanAmerican Male [50-60) 1 1 7 4 45 4 17 0 0 0 410 411 414 8 None None No No No No No No Steady No No No No No No No No No No Steady No No No No No Ch Yes <30 NO
84222 108662661 Caucasian Female [50-60) 1 1 7 3 29 0 11 0 0 0 682 174 250 3 None None No No No No No No No Steady No No No No No No No No No No No No No No No No Yes NO NO
89682 107389323 AfricanAmerican Male [70-80) 1 1 7 5 35 5 23 0 0 0 402 425 416 9 None None No No No No No No No No No No No No No No No No No Steady No No No No No No Yes >30 NO
148530 69422211 Caucasian Male [70-80) 3 6 2 6 42 2 23 0 0 0 737 427 714 8 None None No No No No No No No Down No No No No No No No No No Steady No No No No No Ch Yes NO NO
150006 22864131 Caucasian Female [50-60) 2 1 4 2 66 1 19 0 0 0 410 427 428 7 None None No No No No No No No No No No No No No No No No No Down No No No No No Ch Yes NO NO
150048 21239181 Caucasian Male [60-70) 2 1 4 2 36 2 11 0 0 0 572 456 427 6 None None Steady No No No Steady No No No No No No No No No No No No Steady No No No No No Ch Yes NO NO
182796 63000108 AfricanAmerican Female [70-80) 2 1 4 2 47 0 12 0 0 0 410 401 582 8 None None No No No No No No No No No No No No No No No No No No No No No No No No No NO NO
183930 107400762 Caucasian Female [80-90) 2 6 1 11 42 2 19 0 0 0 V57 715 V43 8 None None No No No No No No No No No No No No No No No No No No No No No No No No No >30 NO
216156 62718876 AfricanAmerican Female [70-80) 3 1 2 3 19 4 18 0 0 0 189 496 427 6 None None No No No No No No Steady No No No No No No No No No No Steady No No No No No Ch Yes NO NO
221634 21861756 Other Female [50-60) 1 1 7 1 33 0 7 0 0 0 786 401 250 3 None None Steady No No No No No No No No No No No No No No No No No No No No No No No Yes NO NO
236316 40523301 Caucasian Male [80-90) 1 3 7 6 64 3 18 0 0 0 427 428 414 7 None >7 Steady No No No No No No Steady No No No No No No No No No No No No No No No Ch Yes NO NO
248916 115196778 Caucasian Female [50-60) 1 1 1 2 25 2 11 0 0 0 996 585 250.01 3 None None No No No No No No No No No No No No No No No No No Steady No No No No No No Yes >30 NO
250872 41606064 Caucasian Male [20-30) 2 1 2 10 53 0 20 0 0 0 277 250.02 263 6 None None No No No No No No No No No No No No No No No No No Down No No No No No Ch Yes >30 NO
252822 18196434 Caucasian Female [80-90) 1 2 7 5 52 0 14 0 0 0 428 410 414 8 None None Steady No No No No No No Steady No No No No No No No No No No No No No No No Ch Yes >30 NO
253380 56480238 AfricanAmerican Female [60-70) 1 1 7 6 87 0 18 0 0 0 584 496 250.42 9 None None No No No No No No No Up No No No Steady No No No No No Steady No No No No No Ch Yes NO NO
253722 96664626 AfricanAmerican Male [70-80) 1 5 7 1 53 0 10 0 0 0 462 250.01 276 8 None None No No No No No No No No No No No No No No No No No Down No No No No No Ch Yes >30 NO
260166 80845353 Caucasian Female [70-80) 1 1 7 6 27 0 16 0 0 0 996 999 250.01 8 None None No No No No No No No No No No No No No No No No No Steady No No No No No No Yes >30 NO
293058 114715242 Caucasian Male [60-70) 2 6 2 5 37 0 18 0 0 0 473 996 482 8 None None No No No No No No No No No No No No No No No No No Steady No No No No No No Yes >30 NO
293118 3327282 Caucasian Female [70-80) 2 11 2 5 46 2 20 0 0 0 428 585 414 9 None None No No No No No No No No No No No No No No No No No Down No No No No No Ch Yes NO NO
325848 63023292 Caucasian Female [60-70) 1 1 7 2 41 0 11 0 0 0 411 250.01 401 6 None None No No No No No No No No No No Steady No No No No No No Down No No No No No Ch Yes >30 NO
325866 98427861 Caucasian Female [70-80) 3 1 2 3 33 1 8 0 0 0 174 135 250 5 None None No No No No No No No No No No No No No No No No No Steady No No No No No No Yes NO NO
326028 112002975 Caucasian Female [60-70) 1 1 7 4 33 0 12 0 0 0 486 244 250 3 None None Steady No No No No No Steady No No No No No No No No No No Steady No No No No No Ch Yes >30 NO
358776 101002446 Caucasian Male [70-80) 1 6 7 7 47 2 22 0 0 0 998 41 414 8 None None No No No No No No Steady No No No No No No No No No No Steady No No No No No Ch Yes NO NO
377268 104672268 Caucasian Male [50-60) 2 1 2 1 44 1 15 0 0 0 996 403 250.41 9 None None No No No No No No No No No No No No No No No No No Steady No No No No No No Yes >30 NO
383430 80588529 Caucasian Female [70-80) 1 2 7 1 28 0 15 0 0 0 414 411 250.01 4 None None Steady No No No No No No No No No No No No No No No No Down No No No No No Ch Yes >30 NO
419304 99715041 Caucasian Male [40-50) 2 1 2 7 36 2 9 0 0 0 511 571 585 5 None None No No No No No No No No No No No No No No No No No Steady No No No No No No Yes >30 NO
421194 96435585 Caucasian Female [70-80) 2 1 1 13 48 2 18 0 0 1 V57 276 781 8 None None Steady No No No No No No Steady No No No No No No No No No Steady No No No No No Ch Yes >30 NO
449142 66274866 Caucasian Male [50-60) 1 1 7 3 59 0 11 0 0 0 428 496 278 6 None None Steady No No No No No Steady No No No No No No No No No No Steady No No No No No Ch Yes >30 NO
450210 80177094 Caucasian Female [80-90) 1 11 7 7 72 1 27 0 0 0 432 997 427 9 None None No No No No No No No No No No No No No No No No No Steady No No No No No No Yes NO NO
464994 106936875 Caucasian Female [40-50) 3 1 2 2 10 3 8 0 0 0 626 250.01 998 5 None None No No No No No No No No No No No No No No No No No Steady No No No No No No Yes NO NO
486156 86240259 Caucasian Female [70-80) 3 5 4 9 25 3 16 0 0 2 428 427 250.01 7 None None No No No No No No No Steady No No No No No No No No No Down No No No No No Ch Yes <30 >30
498030 51838164 Caucasian Male [70-80) 3 3 4 9 2 0 12 0 0 1 295 599 250 3 None None Up No No No No No No No No No No No No No No No No Steady No No No No No Ch Yes NO NO
537834 90097839 Caucasian Male [50-60) 3 1 2 6 65 5 19 0 0 0 414 424 428 9 None None No No No No No No No No No No No No No No No No No Up No No No No No Ch Yes NO NO
544194 34997814 Caucasian Male [60-70) 2 6 4 11 67 2 25 0 0 0 428 491 427 9 None None No No No No No No Steady No No No No No No No No No No Steady No No No No No Ch Yes NO NO