Data

The data represents all business cases in the Belknap County during 2015-2016 and business and commercial dispute cases in Concord Superior during 2012-2016.

Explore

# Load package
library(GoodmanKruskal)
library(tidyverse)

# Import data
data <- read.csv("data/NH.csv", skip = 1) # 1st row is the description of variables

# Convert to factors: some are imported as integers
data <-
  data %>%
  mutate_if(is.integer, factor)

# Basic descriptive statistics of data
summary(data)
##      County                   DoNo        CaseType      FileDate  
##  BCDD   : 58   211-2015-CV-00001:  1   2      :113   42492  :  8  
##  Belknap:351   211-2015-CV-00003:  1   37     : 38   42060  :  7  
##                211-2015-CV-00004:  1   38     : 37   42510  :  6  
##                211-2015-CV-00012:  1   4      : 29   42138  :  5  
##                211-2015-CV-00013:  1   35     : 24   42620  :  5  
##                211-2015-CV-00014:  1   47     : 22   42639  :  5  
##                (Other)          :403   (Other):146   (Other):373  
##                                       PNames   
##  Discover Bank                           : 14  
##  Paugus Bay Plaza Condominium Association:  8  
##  Barcklay Bank Delaware                  :  7  
##  American Express Centurion Bank         :  6  
##  Concord Hospital                        :  6  
##  Bank of New Hampshire                   :  5  
##  (Other)                                 :363  
##                               DNames          ProSe    
##  Town of Gilford                 :  6   Both     : 23  
##  Barry K. Meyers; Brenda M. Stowe:  2   Defendant:131  
##  Barry Myers                     :  2   Neither  :216  
##  Brazilian Resources, Inc.       :  2   Plaintiff: 19  
##  City of Laconia                 :  2   Some DF  : 20  
##  LRG Healthcare                  :  2                  
##  (Other)                         :393                  
##                   PLaw                                PFirm    
##  9                  : 42   9                             : 42  
##  Robert L. O'Brien  : 24   Schlee & Stillman, LLC        : 24  
##  Michael J. Fontaine:  9   Welts, White, & Fontaine, P.C.: 16  
##  Benjamin R. Roberge:  8   Zwicker & Associates, P.C.    : 16  
##  Edward D. Philpot  :  8   Donais Law Offices, PLLC      :  8  
##  Harvey J. Garod    :  6   Martin, Lord, & Osman, P.A.   :  8  
##  (Other)            :312   (Other)                       :295  
##      EqReq         MonReq             LoC                        DLaw    
##         :  1   Min.   :      0   0      :332   9                   :156  
##  9      :  2   1st Qu.:      1   15     :  7   Joseph D. Becher    :  5  
##  No     : 55   Median :      1   3      :  6   Daniel J. Orroth    :  4  
##  Unknown:  4   Mean   :  11819   8      :  6   Gary M. Burt        :  4  
##  Yes    :346   3rd Qu.:   1670   10     :  6   Laura Spector-Morgan:  4  
##  NA's   :  1   Max.   :1118000   11     :  6   (Other)             :235  
##                                  (Other): 46   NA's                :  1  
##                                         DFirm    
##  9                                         :156  
##  Getman, Schulthess, Steere, & Poulin, P.A.: 11  
##  Mitchell Municipal Group, P.A.            :  8  
##  Primmer, Piper, Eggleston, & Cramer, P.C. :  8  
##  Wescott Law, P.A.                         :  8  
##  (Other)                                   :217  
##  NA's                                      :  1  
##                             X3d                         X3dLaw   
##  0                            :392   0                     :397  
##  Andrew Howe; Martina Howe    :  4   Ethan G. Wood         :  4  
##  Donald A. Kennedy            :  3   Donald A. Kennedy     :  3  
##  Angela Pearl                 :  2   David W. Johnston     :  1  
##  Belknap County Superior Court:  1   Frank P. Spinella, Jr.:  1  
##  Brenda Stowe                 :  1   Gregg M. Charest      :  1  
##  (Other)                      :  6   (Other)               :  2  
##                             X3dFirm    CtrCl   CrsCl  
##  0                              :397   0:369   0:404  
##  Patrick Wood Law Office, PLLC  :  4   1: 39   1:  4  
##  Law Office of Donald A. Kennedy:  2   2:  1   2:  1  
##  Devine, Millimet & Branch, P.A.:  1                  
##  Frasca & Frasca Law Offices    :  1                  
##  Law Office of Gregg M. Charest :  1                  
##  (Other)                        :  3                  
##                   Rec     
##  Ignatius           :  4  
##  MacLeod; Borenstein:  1  
##  Na                 :  1  
##  O'Neill            :  5  
##  NA's               :398  
##                           
##                           
##                                                                                               Rem     
##  HRC                                                                                            :  1  
##  Made the appeal and then withdrew, so NA (thought you'd like to know<U+0085> the guy sued NH and won!):  1  
##  Removed                                                                                        : 13  
##  Transfer                                                                                       :  4  
##  Transferred                                                                                    :  2  
##  NA's                                                                                           :388  
##                                                                                                       
##                 Judge                                    OthMot   
##  O'Neill           :260   None                              :125  
##  McNamara          : 32   Motion for Entry of Final Judgment: 24  
##  O'Neill; Fauver   :  5   Motion for Voluntary Nonsuit      : 16  
##  Anderson; McNamara:  4   Assented to Motion to Continue    : 10  
##  Colburn; McNamara :  4   Motion to Strike                  :  6  
##  (Other)           : 52   Motion for Entry of Final Decree  :  5  
##  NA's              : 52   (Other)                           :223  
##   MTime       MTA           MTD        DSJ       PSJ         DMIL    
##  0   :284   0   :353   0      :342   0   :378   0  :384   0    :400  
##  1   : 18   1   : 51   1      : 22   1   :  4   1  : 13   1; 10:  1  
##  1; 2:  5   2   :  4   3      : 16   10  : 17   1;3:  1   1; 3 :  1  
##  1;2 :  1   NA's:  1   10     : 11   2   :  1   10 :  4   10   :  4  
##  2   :101              2      :  6   2; 4:  1   3  :  6   2; 4 :  1  
##                        1; 3   :  5   3   :  7   6  :  1   3; 10:  1  
##                        (Other):  7   4   :  1             4    :  1  
##  PMIL     Stp       Arb      TrialType      DISP         JMent    
##  0 :403   0:236   No  : 66   0: 14     3      :184   1      : 93  
##  6 :  1   1:131   Yes : 55   1:  1     8      : 74   2      : 64  
##  10:  5   2: 42   NA's:288   2:  4     7      : 42   9      : 15  
##                              8:  1     1      : 38   0      :  3  
##                              9:389     6      : 37   1; NA  :  1  
##                                        (Other): 33   (Other):  2  
##                                        NA's   :  1   NA's   :231  
##    NOJ          Award             Eq         TermDate   Enforce   
##  0   :260   Min.   :      0   0    : 73   Open   : 19   0   :377  
##  1   : 73   1st Qu.:      0   1    :  3   42093  :  5   1   : 11  
##  1; 0:  1   Median :      1   2    :  2   42263  :  5   1; 2:  3  
##  2   :  3   Mean   :  11170   3    :  6   42619  :  5   1; 3:  1  
##  3   :  8   3rd Qu.:      1   9    :324   42579  :  4   2   :  4  
##  9   : 62   Max.   :1700000   34000:  1   (Other):370   3   : 13  
##  NA's:  2                                 NA's   :  1
# Sturecture of data
str(data)
## 'data.frame':    409 obs. of  40 variables:
##  $ County   : Factor w/ 2 levels "BCDD","Belknap": 2 2 2 2 2 2 2 2 2 2 ...
##  $ DoNo     : Factor w/ 409 levels "211-2015-CV-00001",..: 136 137 138 139 140 141 142 143 144 145 ...
##  $ CaseType : Factor w/ 41 levels "1","10","10; 26",..: 9 13 28 28 22 11 11 11 11 11 ...
##  $ FileDate : Factor w/ 269 levels "2015-07031","41073",..: 133 133 134 134 135 136 136 137 138 138 ...
##  $ PNames   : Factor w/ 344 levels "A.O. Phaneuf & Son Funeral Home and Crematorium, Inc.; Cremation Society of New Hampshire, Inc.; Arthur Phaneuf",..: 21 236 259 259 15 71 72 157 207 12 ...
##  $ DNames   : Factor w/ 398 levels "223 D.W. Highway, LLC",..: 347 374 208 239 123 358 149 285 1 66 ...
##  $ ProSe    : Factor w/ 5 levels "Both","Defendant",..: 3 3 2 2 2 3 2 3 3 3 ...
##  $ PLaw     : Factor w/ 228 levels "9","A. Gerard O'Neil, Jr.",..: 209 118 16 16 84 151 151 62 202 190 ...
##  $ PFirm    : Factor w/ 171 levels "9","Abrahamsen Ratchford, P.C.",..: 156 94 45 45 121 168 168 123 83 136 ...
##  $ EqReq    : Factor w/ 5 levels "","9","No","Unknown",..: 5 5 5 5 5 5 5 5 5 5 ...
##  $ MonReq   : num  1 1 1436 2159 4928 ...
##  $ LoC      : Factor w/ 25 levels "0","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ DLaw     : Factor w/ 212 levels "9","Allison M. Ambrose",..: 107 110 1 1 1 172 1 156 1 1 ...
##  $ DFirm    : Factor w/ 162 levels "9","Azarian Law Office, PLLC",..: 132 99 1 1 1 81 1 148 1 1 ...
##  $ X3d      : Factor w/ 12 levels "0","Andrew Howe; Martina Howe",..: 1 2 1 1 1 1 1 1 1 1 ...
##  $ X3dLaw   : Factor w/ 8 levels "0","David W. Johnston",..: 1 4 1 1 1 1 1 1 1 1 ...
##  $ X3dFirm  : Factor w/ 9 levels "0","Devine, Millimet & Branch, P.A.",..: 1 7 1 1 1 1 1 1 1 1 ...
##  $ CtrCl    : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
##  $ CrsCl    : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Rec      : Factor w/ 4 levels "Ignatius","MacLeod; Borenstein",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ Rem      : Factor w/ 5 levels "HRC","Made the appeal and then withdrew, so NA (thought you'd like to know<U+0085> the guy sued NH and won!)",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ Judge    : Factor w/ 37 levels "Abramson; Brown; McNamara",..: NA 26 NA 26 26 26 36 26 26 NA ...
##  $ OthMot   : Factor w/ 216 levels "Assented Motion to Continue",..: 216 172 216 216 13 44 45 139 216 216 ...
##  $ MTime    : Factor w/ 5 levels "0","1","1; 2",..: 1 1 1 2 1 1 1 5 1 1 ...
##  $ MTA      : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 2 2 1 2 1 ...
##  $ MTD      : Factor w/ 11 levels "0","1","1; 3",..: 1 2 1 1 2 1 1 2 1 1 ...
##  $ DSJ      : Factor w/ 7 levels "0","1","10","2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ PSJ      : Factor w/ 6 levels "0","1","1;3",..: 1 1 1 1 1 2 1 1 1 1 ...
##  $ DMIL     : Factor w/ 7 levels "0","1; 10","1; 3",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ PMIL     : Factor w/ 3 levels "0","6","10": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Stp      : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Arb      : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...
##  $ TrialType: Factor w/ 5 levels "0","1","2","8",..: 5 5 5 5 3 5 5 5 5 5 ...
##  $ DISP     : Factor w/ 12 levels "1","10","2","2; 3",..: 5 1 10 10 1 2 9 1 10 10 ...
##  $ JMent    : Factor w/ 7 levels "0","1","1; NA",..: NA 4 NA NA NA NA 2 4 NA NA ...
##  $ NOJ      : Factor w/ 6 levels "0","1","1; 0",..: 6 6 6 6 6 6 4 6 6 6 ...
##  $ Award    : num  1 0 0 0 0 0 34000 0 0 0 ...
##  $ Eq       : Factor w/ 6 levels "0","1","2","3",..: 5 5 5 5 5 5 6 5 5 5 ...
##  $ TermDate : Factor w/ 296 levels "41186","41402",..: 122 122 103 111 138 296 296 151 130 105 ...
##  $ Enforce  : Factor w/ 6 levels "0","1","1; 2",..: 1 1 1 1 1 1 2 1 1 1 ...

Find association between variables

The choice of association measures depends on the type of variables. All variables in our dataset are categorical variables with no natural order, or nominal variables. Goodman and Kruskal recently published a study that introduced the Goodman and Kruskal’s (GK) tau as a new association meausre for categorical variables, along with the GoodmanKruskal R package that is very usueful in exploratory data analysis becuase it computes the GK tau measures in a systematic way (analoguous to correlogram of numerica variables) when dealing with a large number of variables. The authors also have a good general discussion on what association measures to use depending on the type of variables we have, which can be summarized as:

The GK tau measure differs from chi-squared and Cramer’s V, more popular measures for nominal variables, in that it is asymmetric: the forward association between variables x and y is generally not the same as the backward association between y and x. The GK tau not only indicates the strength of the association but also the direction of the association.

The GK tau measures the fraction of variability in the categorical variable y that can be explained by the categorical variable x. The diagonal elements represent the numbers of the levels for each variable, while the off-diagonal elements are GK tau values. The GK tau values represent the association measure tau(x,y) from the variable x indicated in the row name to the variable y indicated in the column name.

Examples using a subset of dataset

Since it’s difficult to visualize the association of all 38 variables in a single screen, subsets of the data set was taken as examples to explain how to interpret GK tau measures.

Example using variables of many levels

The subset includes variables that have more than 100 levels (unique values). There are 11 such variables.

# Compute GK tau values for a reduced number of variables
data_reduced <- 
  data %>%
  select_if(function(col) length(unique(col)) > 100)
str(data_reduced)
## 'data.frame':    409 obs. of  11 variables:
##  $ DoNo    : Factor w/ 409 levels "211-2015-CV-00001",..: 136 137 138 139 140 141 142 143 144 145 ...
##  $ FileDate: Factor w/ 269 levels "2015-07031","41073",..: 133 133 134 134 135 136 136 137 138 138 ...
##  $ PNames  : Factor w/ 344 levels "A.O. Phaneuf & Son Funeral Home and Crematorium, Inc.; Cremation Society of New Hampshire, Inc.; Arthur Phaneuf",..: 21 236 259 259 15 71 72 157 207 12 ...
##  $ DNames  : Factor w/ 398 levels "223 D.W. Highway, LLC",..: 347 374 208 239 123 358 149 285 1 66 ...
##  $ PLaw    : Factor w/ 228 levels "9","A. Gerard O'Neil, Jr.",..: 209 118 16 16 84 151 151 62 202 190 ...
##  $ PFirm   : Factor w/ 171 levels "9","Abrahamsen Ratchford, P.C.",..: 156 94 45 45 121 168 168 123 83 136 ...
##  $ MonReq  : num  1 1 1436 2159 4928 ...
##  $ DLaw    : Factor w/ 212 levels "9","Allison M. Ambrose",..: 107 110 1 1 1 172 1 156 1 1 ...
##  $ DFirm   : Factor w/ 162 levels "9","Azarian Law Office, PLLC",..: 132 99 1 1 1 81 1 148 1 1 ...
##  $ OthMot  : Factor w/ 216 levels "Assented Motion to Continue",..: 216 172 216 216 13 44 45 139 216 216 ...
##  $ TermDate: Factor w/ 296 levels "41186","41402",..: 122 122 103 111 138 296 296 151 130 105 ...

GKmatrix1 <- GKtauDataframe(data_reduced)
GKmatrix1
##             DoNo FileDate  PNames  DNames    PLaw   PFirm  MonReq    DLaw
## DoNo     409.000    1.000   1.000   1.000   1.000   1.000   1.000   1.000
## FileDate   0.657  269.000   0.674   0.660   0.692   0.692   0.667   0.725
## PNames     0.841    0.851 344.000   0.848   0.929   0.958   0.813   0.949
## DNames     0.973    0.976   0.978 398.000   0.978   0.980   0.985   0.980
## PLaw       0.556    0.572   0.621   0.562 228.000   0.956   0.633   0.678
## PFirm      0.417    0.431   0.486   0.423   0.767 171.000   0.518   0.550
## MonReq     0.262    0.262   0.261   0.262   0.278   0.278 108.000   0.200
## DLaw       0.520    0.526   0.528   0.530   0.541   0.545   0.450 213.000
## DFirm      0.397    0.404   0.410   0.408   0.421   0.428   0.386   0.814
## OthMot     0.527    0.533   0.540   0.527   0.559   0.561   0.490   0.646
## TermDate   0.725    0.735   0.733   0.725   0.743   0.740   0.744   0.748
##            DFirm  OthMot TermDate
## DoNo       1.000   1.000    1.000
## FileDate   0.727   0.693    0.667
## PNames     0.961   0.859    0.846
## DNames     0.987   0.973    0.973
## PLaw       0.686   0.634    0.561
## PFirm      0.561   0.484    0.423
## MonReq     0.202   0.258    0.263
## DLaw       0.983   0.556    0.522
## DFirm    163.000   0.427    0.398
## OthMot     0.646 216.000    0.532
## TermDate   0.750   0.738  297.000
## attr(,"class")
## [1] "GKtauMatrix"
plot(GKmatrix1)

Interpretation

  • The GK tau measures in Row of DoNo is all 1. It suggest that all variables are perfectly predictable by the docket number. It makes sense because each case has its unique docket number. However, the same is not true for the backward association with the docket number: the docket number is not perfectly predictable by other variables. Column of DoNo doesn’t exhibit 1, although very high.
  • In fact, tau measures are all very in this case. This makes sense because they all have a large number of levels (unique values). Their tau measures are high for the same reason that the docket number is perfectly predictive of all other variables in the dataset: DoNo has 409 levels out of 409 observations; DNames has 398 levels; PNames 344 levels; and so on.
  • Note that Cramer’s V would return 1, perfect association, for a pair of DoNo and any other variable in the dataset, correctly measuring the strength of the relationship but with no information on its directionality. See below.

Cramer’s V This section takes the docket number (DoNo) and the case type (CaseType) as an example. Cramer’s V returns 1, correctly indicating the strength of the association: the case type is perfectly predictable by the docket number. However, it lacks the association’s directionality. We know from GK tau measures that the case type, or any other variables in the data for that matter, is perfectly predictable by the docket number, while the case type gives us little information about the docket number.

library(vcd)

# assocstats function takes a table as input
assocstats(table(data$DoNo, data$CaseType))
##                      X^2    df P(> X^2)
## Likelihood Ratio  2291.5 16320  1.00000
## Pearson          16360.0 16320  0.41102
## 
## Phi-Coefficient   : NA 
## Contingency Coeff.: 0.988 
## Cramer's V        : 1

Example using variables of a few levels

The display below is another example using a set of variables that have less than five levels (unique values). There are six such variables in the dataset.

# Compute GK tau values for a reduced number of variables
length(unique(data$PNames))
## [1] 344
data_reduced <- 
  data %>%
  select_if(function(col) length(unique(col)) < 5)
str(data_reduced)
## 'data.frame':    409 obs. of  7 variables:
##  $ County: Factor w/ 2 levels "BCDD","Belknap": 2 2 2 2 2 2 2 2 2 2 ...
##  $ CtrCl : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
##  $ CrsCl : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
##  $ MTA   : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 2 2 1 2 1 ...
##  $ PMIL  : Factor w/ 3 levels "0","6","10": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Stp   : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Arb   : Factor w/ 2 levels "No","Yes": NA NA NA NA NA NA NA NA NA NA ...

GKmatrix1 <- GKtauDataframe(data_reduced)
GKmatrix1
##        County CtrCl CrsCl   MTA  PMIL   Stp   Arb
## County  2.000 0.072 0.002 0.005 0.005 0.031 0.392
## CtrCl   0.075 3.000 0.002 0.021 0.001 0.033 0.069
## CrsCl   0.002 0.003 3.000 0.017 0.000 0.004 0.007
## MTA     0.075 0.044 0.003 4.000 0.007 0.012 0.034
## PMIL    0.007 0.002 0.000 0.008 3.000 0.005 0.021
## Stp     0.121 0.058 0.002 0.006 0.003 3.000 0.095
## Arb     0.728 0.092 0.003 0.006 0.026 0.083 3.000
## attr(,"class")
## [1] "GKtauMatrix"
plot(GKmatrix1)

Interpretation

  • In contrast to variables of a large number of levels, none of the variables shows high associations.

Example using variables of a moderate number of levels

The display below is third example using a set of variables that have greater than 5 levels but less than 10 levels. There are 11 such variables in the dataset.

# Compute GK tau values for a reduced number of variables
length(unique(data$PNames))
## [1] 344
data_reduced <- 
  data %>%
  select_if(function(col) length(unique(col)) > 5 & length(unique(col)) < 10)
str(data_reduced)
## 'data.frame':    409 obs. of  11 variables:
##  $ EqReq  : Factor w/ 5 levels "","9","No","Unknown",..: 5 5 5 5 5 5 5 5 5 5 ...
##  $ X3dLaw : Factor w/ 8 levels "0","David W. Johnston",..: 1 4 1 1 1 1 1 1 1 1 ...
##  $ X3dFirm: Factor w/ 9 levels "0","Devine, Millimet & Branch, P.A.",..: 1 7 1 1 1 1 1 1 1 1 ...
##  $ Rem    : Factor w/ 5 levels "HRC","Made the appeal and then withdrew, so NA (thought you'd like to know<U+0085> the guy sued NH and won!)",..: NA NA NA NA NA NA NA NA NA NA ...
##  $ DSJ    : Factor w/ 7 levels "0","1","10","2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ PSJ    : Factor w/ 6 levels "0","1","1;3",..: 1 1 1 1 1 2 1 1 1 1 ...
##  $ DMIL   : Factor w/ 7 levels "0","1; 10","1; 3",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ JMent  : Factor w/ 7 levels "0","1","1; NA",..: NA 4 NA NA NA NA 2 4 NA NA ...
##  $ NOJ    : Factor w/ 6 levels "0","1","1; 0",..: 6 6 6 6 6 6 4 6 6 6 ...
##  $ Eq     : Factor w/ 6 levels "0","1","2","3",..: 5 5 5 5 5 5 6 5 5 5 ...
##  $ Enforce: Factor w/ 6 levels "0","1","1; 2",..: 1 1 1 1 1 1 2 1 1 1 ...

GKmatrix1 <- GKtauDataframe(data_reduced)
GKmatrix1
##         EqReq X3dLaw X3dFirm   Rem   DSJ   PSJ  DMIL JMent   NOJ    Eq
## EqReq   6.000  0.001   0.002 0.079 0.097 0.005 0.003 0.017 0.032 0.035
## X3dLaw  0.005  8.000   0.943 0.001 0.002 0.001 0.000 0.023 0.031 0.027
## X3dFirm 0.009  1.000   9.000 0.001 0.002 0.001 0.000 0.027 0.031 0.027
## Rem     0.045  0.001   0.001 6.000 0.054 0.009 0.001 0.020 0.042 0.036
## DSJ     0.017  0.001   0.001 0.065 7.000 0.126 0.159 0.024 0.014 0.064
## PSJ     0.008  0.001   0.001 0.027 0.147 6.000 0.080 0.024 0.039 0.015
## DMIL    0.004  0.000   0.000 0.001 0.099 0.048 7.000 0.013 0.007 0.021
## JMent   0.040  0.012   0.012 0.031 0.041 0.065 0.028 8.000 0.440 0.074
## NOJ     0.063  0.019   0.019 0.140 0.022 0.063 0.006 0.375 7.000 0.136
## Eq      0.007  0.014   0.014 0.021 0.044 0.018 0.004 0.056 0.089 6.000
## Enforce 0.017  0.002   0.001 0.003 0.009 0.021 0.001 0.074 0.097 0.017
##         Enforce
## EqReq     0.004
## X3dLaw    0.002
## X3dFirm   0.002
## Rem       0.003
## DSJ       0.003
## PSJ       0.018
## DMIL      0.001
## JMent     0.117
## NOJ       0.129
## Eq        0.034
## Enforce   6.000
## attr(,"class")
## [1] "GKtauMatrix"
plot(GKmatrix1)

Interpretation

  • It displays a pair of variables with a strong connection - X3dLaw and X3dFirm. Both the forward and backward association between the two variables are strong: the GK tau measure from X3d to X3dFirm is 0.94, while the GK tau measure from X3dFirm to X3d is 1. However, the strong connection between the third party lawyer and the third party law firm is a rather obvious one.
  • There is another pair of variables that show significant connection - JMent and NOJ. Both the forward and backward association between the two variables are noticible: the GK tau measure from JMent to NOJ is 0.44, while the GK tau measure from NOJ to JMent is 0.38. Although not as strong, this association may be more useful and interesting than the previous one.

JMent versus NOJ

The variables are defined as:

# JMent versus NOJ
table(data$JMent, data$NOJ)
##        
##          0  1 1; 0  2  3  9
##   0      3  0    0  0  0  0
##   1     13 71    0  2  6  1
##   1; NA  0  0    1  0  0  0
##   2     56  0    0  0  1  7
##   3      1  0    0  0  0  0
##   9      0  0    0  0  0 15
##   NA; 1  0  1    0  0  0  0

Interpretation

GK tau measures of all variables

The display below shows GK tau measures of all variables.

One of the easiest and intuitive variables for laymen is JUDGE. It was interesting to see how much we would know about a case by knowing the judge assigned to the case. For example, JUDGE explains 46.1% of the variation in LoC; 50.2% in Rec; 42.9% in Arb; 61.1% in Eq.

# Compute GK tau values for all variables
GKmatrix1 <- GKtauDataframe(data)
GKmatrix1
##           County    DoNo CaseType FileDate  PNames  DNames ProSe    PLaw
## County     2.000   0.002    0.010    0.003   0.003   0.003 0.064   0.006
## DoNo       1.000 409.000    1.000    1.000   1.000   1.000 1.000   1.000
## CaseType   0.479   0.098   41.000    0.105   0.117   0.102 0.296   0.169
## FileDate   0.930   0.657    0.714  269.000   0.674   0.660 0.726   0.692
## PNames     1.000   0.841    0.974    0.851 344.000   0.848 0.953   0.929
## DNames     1.000   0.973    0.980    0.976   0.978 398.000 0.985   0.978
## ProSe      0.106   0.010    0.098    0.012   0.014   0.010 5.000   0.106
## PLaw       0.976   0.556    0.731    0.572   0.621   0.562 0.770 228.000
## PFirm      0.925   0.417    0.631    0.431   0.486   0.423 0.694   0.767
## EqReq      0.038   0.012    0.061    0.015   0.013   0.012 0.051   0.036
## MonReq     0.098   0.262    0.254    0.262   0.261   0.262 0.356   0.278
## LoC        0.866   0.059    0.071    0.060   0.059   0.059 0.083   0.063
## DLaw       0.970   0.520    0.608    0.526   0.528   0.530 0.787   0.541
## DFirm      0.864   0.397    0.505    0.404   0.410   0.408 0.743   0.421
## X3d        0.021   0.027    0.037    0.027   0.034   0.034 0.040   0.033
## X3dLaw     0.019   0.017    0.024    0.017   0.025   0.024 0.024   0.022
## X3dFirm    0.019   0.020    0.025    0.020   0.027   0.027 0.024   0.024
## CtrCl      0.075   0.005    0.007    0.005   0.005   0.005 0.044   0.006
## CrsCl      0.002   0.005    0.003    0.005   0.005   0.005 0.008   0.005
## Rec        0.019   0.010    0.020    0.010   0.010   0.010 0.014   0.012
## Rem        0.049   0.012    0.021    0.012   0.012   0.012 0.017   0.013
## Judge      1.000   0.091    0.110    0.093   0.093   0.091 0.135   0.098
## OthMot     0.885   0.527    0.598    0.533   0.540   0.527 0.597   0.559
## MTime      0.084   0.010    0.022    0.011   0.010   0.010 0.112   0.015
## MTA        0.075   0.007    0.023    0.007   0.009   0.007 0.008   0.012
## MTD        0.158   0.025    0.030    0.025   0.025   0.025 0.061   0.025
## DSJ        0.051   0.015    0.019    0.015   0.015   0.015 0.038   0.016
## PSJ        0.024   0.012    0.013    0.013   0.013   0.012 0.013   0.014
## DMIL       0.017   0.015    0.016    0.015   0.015   0.015 0.016   0.015
## PMIL       0.007   0.005    0.006    0.005   0.005   0.005 0.008   0.005
## Stp        0.121   0.005    0.024    0.006   0.006   0.005 0.174   0.011
## Arb        0.728   0.005    0.013    0.006   0.006   0.005 0.096   0.009
## TrialType  0.036   0.010    0.015    0.010   0.010   0.010 0.014   0.011
## DISP       0.100   0.029    0.075    0.032   0.034   0.029 0.292   0.054
## JMent      0.072   0.017    0.053    0.018   0.019   0.017 0.250   0.026
## NOJ        0.063   0.015    0.068    0.016   0.017   0.015 0.178   0.020
## Award      0.126   0.169    0.152    0.169   0.168   0.169 0.247   0.179
## Eq         0.694   0.012    0.021    0.013   0.013   0.012 0.069   0.015
## TermDate   0.922   0.725    0.752    0.735   0.733   0.725 0.796   0.743
## Enforce    0.014   0.012    0.021    0.014   0.013   0.012 0.068   0.014
##             PFirm EqReq  MonReq    LoC    DLaw   DFirm    X3d X3dLaw
## County      0.010 0.005   0.010  0.343   0.029   0.030  0.002  0.002
## DoNo        1.000 1.000   1.000  1.000   1.000   1.000  1.000  1.000
## CaseType    0.178 0.568   0.313  0.295   0.189   0.203  0.246  0.308
## FileDate    0.692 0.736   0.667  0.911   0.725   0.727  0.702  0.666
## PNames      0.958 0.972   0.813  0.960   0.949   0.961  0.910  0.915
## DNames      0.980 0.982   0.985  0.986   0.980   0.987  0.890  0.844
## ProSe       0.110 0.261   0.138  0.049   0.273   0.276  0.011  0.007
## PLaw        0.956 0.714   0.633  0.803   0.678   0.686  0.655  0.720
## PFirm     171.000 0.618   0.518  0.652   0.550   0.561  0.551  0.574
## EqReq       0.037 6.000   0.250  0.033   0.016   0.016  0.002  0.001
## MonReq      0.278 0.614 108.000  0.095   0.200   0.202  0.012  0.012
## LoC         0.067 0.080   0.061 25.000   0.095   0.096  0.033  0.044
## DLaw        0.545 0.503   0.450  0.872 213.000   0.983  0.557  0.458
## DFirm       0.428 0.392   0.386  0.694   0.814 163.000  0.442  0.352
## X3d         0.039 0.007   0.026  0.016   0.034   0.040 12.000  1.000
## X3dLaw      0.027 0.005   0.021  0.015   0.023   0.028  0.701  8.000
## X3dFirm     0.028 0.009   0.021  0.015   0.023   0.028  0.701  1.000
## CtrCl       0.006 0.014   0.010  0.037   0.022   0.022  0.002  0.003
## CrsCl       0.005 0.004   0.002  0.013   0.006   0.006  0.013  0.000
## Rec         0.012 0.019   0.014  0.015   0.014   0.015  0.056  0.000
## Rem         0.013 0.045   0.023  0.037   0.023   0.021  0.003  0.001
## Judge       0.102 0.147   0.098  0.461   0.126   0.127  0.239  0.108
## OthMot      0.561 0.543   0.490  0.830   0.646   0.646  0.955  1.000
## MTime       0.016 0.007   0.019  0.039   0.051   0.052  0.015  0.004
## MTA         0.015 0.014   0.013  0.043   0.010   0.010  0.004  0.003
## MTD         0.026 0.012   0.016  0.091   0.052   0.054  0.030  0.033
## DSJ         0.016 0.017   0.010  0.063   0.031   0.031  0.002  0.001
## PSJ         0.014 0.008   0.016  0.018   0.020   0.020  0.002  0.001
## DMIL        0.015 0.004   0.011  0.026   0.021   0.021  0.001  0.000
## PMIL        0.005 0.003   0.002  0.010   0.008   0.008  0.000  0.000
## Stp         0.012 0.027   0.061  0.050   0.081   0.082  0.007  0.005
## Arb         0.012 0.015   0.029  0.412   0.047   0.049  0.004  0.004
## TrialType   0.011 0.004   0.006  0.029   0.016   0.015  0.003  0.001
## DISP        0.056 0.112   0.112  0.082   0.125   0.126  0.025  0.020
## JMent       0.028 0.040   0.068  0.058   0.108   0.109  0.011  0.012
## NOJ         0.023 0.063   0.049  0.043   0.075   0.075  0.019  0.019
## Award       0.179 0.177   0.341  0.120   0.138   0.140  0.125  0.010
## Eq          0.019 0.007   0.032  0.463   0.034   0.034  0.011  0.014
## TermDate    0.740 0.778   0.744  0.868   0.748   0.750  0.548  0.604
## Enforce     0.014 0.017   0.019  0.016   0.029   0.029  0.013  0.002
##           X3dFirm CtrCl CrsCl   Rec   Rem  Judge  OthMot MTime   MTA
## County      0.001 0.072 0.002 0.002 0.007  0.190   0.012 0.059 0.005
## DoNo        1.000 1.000 1.000 1.000 1.000  1.000   1.000 1.000 1.000
## CaseType    0.304 0.177 0.022 0.219 0.174  0.218   0.147 0.208 0.165
## FileDate    0.666 0.804 0.798 0.769 0.757  0.770   0.693 0.767 0.697
## PNames      0.915 0.945 1.000 0.884 0.975  0.904   0.859 0.907 0.965
## DNames      0.845 0.986 1.000 1.000 0.975  0.983   0.973 0.970 0.990
## ProSe       0.006 0.068 0.033 0.011 0.056  0.039   0.042 0.140 0.008
## PLaw        0.720 0.713 0.491 0.757 0.532  0.696   0.634 0.743 0.739
## PFirm       0.546 0.595 0.550 0.599 0.384  0.603   0.484 0.584 0.643
## EqReq       0.002 0.004 0.048 0.087 0.079  0.026   0.017 0.018 0.015
## MonReq      0.010 0.102 0.201 0.100 0.039  0.197   0.258 0.185 0.456
## LoC         0.043 0.232 0.033 0.017 0.111  0.239   0.076 0.141 0.090
## DLaw        0.457 0.874 0.648 0.777 0.864  0.672   0.556 0.766 0.561
## DFirm       0.351 0.750 0.521 0.514 0.575  0.537   0.427 0.639 0.442
## X3d         0.943 0.049 0.198 0.180 0.047  0.038   0.035 0.041 0.006
## X3dLaw      0.943 0.048 0.000 0.001 0.001  0.013   0.022 0.023 0.004
## X3dFirm     9.000 0.048 0.000 0.001 0.001  0.019   0.025 0.023 0.004
## CtrCl       0.003 3.000 0.002 0.004 0.002  0.016   0.014 0.114 0.021
## CrsCl       0.000 0.003 3.000 0.020 0.010  0.002   0.005 0.001 0.017
## Rec         0.000 0.014 0.037 5.000 0.080  0.035   0.011 0.023 0.004
## Rem         0.001 0.029 0.047 0.092 6.000  0.039   0.012 0.017 0.025
## Judge       0.109 0.263 0.050 0.502 0.347 38.000   0.140 0.225 0.201
## OthMot      1.000 0.872 0.665 0.613 0.546  0.588 216.000 0.767 0.567
## MTime       0.004 0.142 0.001 0.019 0.009  0.023   0.033 5.000 0.013
## MTA         0.003 0.044 0.003 0.003 0.053  0.021   0.008 0.017 4.000
## MTD         0.032 0.051 0.016 0.007 0.071  0.050   0.038 0.124 0.012
## DSJ         0.001 0.050 0.001 0.043 0.065  0.019   0.022 0.053 0.012
## PSJ         0.001 0.036 0.001 0.014 0.027  0.007   0.016 0.019 0.028
## DMIL        0.000 0.049 0.000 0.090 0.001  0.016   0.019 0.029 0.013
## PMIL        0.000 0.002 0.000 0.090 0.001  0.008   0.007 0.034 0.008
## Stp         0.005 0.058 0.002 0.006 0.011  0.021   0.017 0.089 0.006
## Arb         0.003 0.092 0.003 0.005 0.018  0.152   0.021 0.081 0.006
## TrialType   0.001 0.031 0.001 0.076 0.058  0.017   0.015 0.063 0.004
## DISP        0.018 0.098 0.209 0.084 0.182  0.071   0.057 0.137 0.082
## JMent       0.012 0.075 0.201 0.072 0.031  0.056   0.037 0.101 0.036
## NOJ         0.019 0.020 0.102 0.193 0.140  0.043   0.036 0.049 0.042
## Award       0.009 0.131 0.400 0.187 0.089  0.121   0.190 0.125 0.229
## Eq          0.014 0.078 0.002 0.003 0.021  0.143   0.027 0.075 0.023
## TermDate    0.604 0.706 0.226 0.443 0.867  0.798   0.738 0.767 0.776
## Enforce     0.001 0.014 0.080 0.002 0.003  0.013   0.021 0.016 0.016
##              MTD   DSJ   PSJ  DMIL  PMIL   Stp   Arb TrialType   DISP
## County     0.020 0.020 0.012 0.002 0.005 0.031 0.392     0.003  0.017
## DoNo       1.000 1.000 1.000 1.000 1.000 1.000 1.000     1.000  1.000
## CaseType   0.162 0.157 0.119 0.060 0.067 0.239 0.264     0.150  0.218
## FileDate   0.732 0.802 0.757 0.793 0.916 0.754 0.832     0.779  0.661
## PNames     0.937 0.966 0.863 1.000 1.000 0.922 0.962     1.000  0.856
## DNames     0.945 0.983 0.979 1.000 0.916 0.984 0.989     1.000  0.976
## ProSe      0.052 0.038 0.014 0.013 0.011 0.206 0.108     0.019  0.156
## PLaw       0.694 0.775 0.693 0.831 1.000 0.705 0.763     0.693  0.625
## PFirm      0.527 0.588 0.513 0.553 0.687 0.571 0.643     0.492  0.482
## EqReq      0.030 0.097 0.005 0.003 0.040 0.031 0.032     0.011  0.033
## MonReq     0.137 0.023 0.244 0.009 0.005 0.257 0.163     0.063  0.364
## LoC        0.123 0.182 0.137 0.088 0.212 0.108 0.523     0.036  0.055
## DLaw       0.809 0.892 0.702 0.887 0.873 0.811 0.843     0.806  0.523
## DFirm      0.631 0.593 0.561 0.672 0.402 0.691 0.725     0.552  0.423
## X3d        0.063 0.002 0.002 0.001 0.001 0.037 0.030     0.023  0.033
## X3dLaw     0.048 0.002 0.001 0.000 0.000 0.024 0.020     0.001  0.022
## X3dFirm    0.048 0.002 0.001 0.000 0.000 0.024 0.020     0.001  0.023
## CtrCl      0.006 0.014 0.017 0.018 0.001 0.033 0.069     0.023  0.022
## CrsCl      0.007 0.001 0.001 0.000 0.000 0.004 0.007     0.000  0.007
## Rec        0.017 0.071 0.040 0.111 0.167 0.015 0.015     0.113  0.023
## Rem        0.024 0.054 0.009 0.001 0.001 0.020 0.029     0.074  0.060
## Judge      0.183 0.156 0.163 0.172 0.373 0.120 0.429     0.272  0.134
## OthMot     0.845 0.899 0.828 0.906 1.000 0.675 0.759     0.828  0.612
## MTime      0.086 0.045 0.017 0.015 0.039 0.063 0.071     0.057  0.035
## MTA        0.017 0.039 0.017 0.004 0.007 0.012 0.034     0.050  0.012
## MTD       11.000 0.134 0.141 0.189 0.070 0.052 0.092     0.020  0.047
## DSJ        0.072 7.000 0.126 0.159 0.061 0.045 0.045     0.110  0.021
## PSJ        0.023 0.147 6.000 0.080 0.009 0.025 0.024     0.029  0.032
## DMIL       0.067 0.099 0.048 7.000 0.205 0.022 0.041     0.094  0.015
## PMIL       0.026 0.036 0.005 0.130 3.000 0.005 0.021     0.025  0.008
## Stp        0.033 0.039 0.021 0.015 0.003 3.000 0.095     0.025  0.097
## Arb        0.022 0.033 0.012 0.029 0.026 0.083 3.000     0.039  0.050
## TrialType  0.022 0.069 0.008 0.137 0.047 0.030 0.036     5.000  0.065
## DISP       0.093 0.053 0.296 0.030 0.354 0.235 0.141     0.704 13.000
## JMent      0.058 0.041 0.065 0.028 0.180 0.153 0.103     0.644  0.425
## NOJ        0.047 0.022 0.063 0.006 0.167 0.062 0.049     0.141  0.185
## Award      0.080 0.072 0.315 0.004 0.007 0.215 0.158     0.091  0.428
## Eq         0.024 0.044 0.018 0.004 0.012 0.031 0.472     0.005  0.035
## TermDate   0.767 0.739 0.661 0.686 0.840 0.766 0.781     0.809  0.801
## Enforce    0.007 0.009 0.021 0.001 0.001 0.022 0.016     0.003  0.036
##           JMent   NOJ  Award    Eq TermDate Enforce
## County    0.031 0.025  0.008 0.580    0.003   0.004
## DoNo      1.000 1.000  1.000 1.000    1.000   1.000
## CaseType  0.242 0.215  0.252 0.316    0.103   0.112
## FileDate  0.640 0.709  0.645 0.915    0.667   0.652
## PNames    0.869 0.855  0.819 0.975    0.846   0.727
## DNames    0.969 0.977  0.982 1.000    0.973   0.984
## ProSe     0.209 0.129  0.110 0.077    0.011   0.059
## PLaw      0.611 0.622  0.647 0.833    0.561   0.575
## PFirm     0.466 0.499  0.521 0.727    0.423   0.449
## EqReq     0.017 0.032  0.105 0.035    0.014   0.004
## MonReq    0.359 0.381  0.473 0.147    0.263   0.523
## LoC       0.071 0.057  0.057 0.830    0.059   0.023
## DLaw      0.531 0.501  0.520 0.796    0.522   0.296
## DFirm     0.443 0.402  0.426 0.656    0.398   0.247
## X3d       0.034 0.048  0.036 0.029    0.027   0.061
## X3dLaw    0.023 0.031  0.024 0.027    0.017   0.002
## X3dFirm   0.027 0.031  0.024 0.027    0.020   0.002
## CtrCl     0.019 0.009  0.019 0.064    0.006   0.002
## CrsCl     0.006 0.007  0.007 0.012    0.005   0.036
## Rec       0.016 0.026  0.012 0.015    0.014   0.001
## Rem       0.020 0.042  0.043 0.036    0.014   0.003
## Judge     0.168 0.142  0.110 0.611    0.095   0.091
## OthMot    0.659 0.676  0.558 0.817    0.532   0.794
## MTime     0.027 0.019  0.024 0.072    0.012   0.008
## MTA       0.005 0.019  0.011 0.049    0.008   0.007
## MTD       0.050 0.026  0.026 0.102    0.025   0.009
## DSJ       0.024 0.014  0.016 0.064    0.016   0.003
## PSJ       0.024 0.039  0.020 0.015    0.013   0.018
## DMIL      0.013 0.007  0.010 0.021    0.016   0.001
## PMIL      0.007 0.003  0.006 0.013    0.005   0.001
## Stp       0.084 0.045  0.065 0.080    0.006   0.009
## Arb       0.063 0.036  0.029 0.694    0.007   0.005
## TrialType 0.080 0.078  0.035 0.027    0.040   0.003
## DISP      0.721 0.429  0.424 0.083    0.066   0.134
## JMent     8.000 0.440  0.300 0.074    0.050   0.117
## NOJ       0.375 7.000  0.123 0.136    0.025   0.129
## Award     0.432 0.371 70.000 0.136    0.171   0.711
## Eq        0.056 0.089  0.033 6.000    0.013   0.034
## TermDate  0.785 0.790  0.746 0.847  297.000   0.741
## Enforce   0.074 0.097  0.039 0.017    0.013   6.000
## attr(,"class")
## [1] "GKtauMatrix"

Belknap County Court

# Import data
data_belknap <- read.csv("data/belknap.csv", skip = 1) # 1st row is the description of variables

GKmatrix_belknap <- GKtauDataframe(data_belknap)
GKmatrix_belknap
##           County    DoNo CaseType FileDate  PNames  DNames ProSe    PLaw
## County         1   0.000    0.000    0.000   0.000   0.000 0.000   0.000
## DoNo        -Inf 351.000    1.000    1.000   1.000   1.000 1.000   1.000
## CaseType     NaN   0.077   28.000    0.084   0.102   0.082 0.312   0.160
## FileDate    -Inf   0.623    0.683  219.000   0.642   0.627 0.703   0.663
## PNames      -Inf   0.826    0.982    0.838 290.000   0.834 0.952   0.922
## DNames      -Inf   0.971    0.976    0.975   0.977 341.000 0.984   0.977
## ProSe        NaN   0.011    0.116    0.013   0.016   0.012 5.000   0.122
## PLaw         NaN   0.520    0.717    0.537   0.591   0.527 0.754 183.000
## PFirm        NaN   0.397    0.644    0.414   0.472   0.404 0.684   0.792
## EqReq        NaN   0.011    0.068    0.012   0.012   0.011 0.058   0.041
## MonReq       NaN   0.297    0.300    0.297   0.295   0.297 0.359   0.320
## LoC          NaN   0.023    0.028    0.024   0.023   0.023 0.017   0.024
## DLaw         NaN   0.454    0.549    0.461   0.463   0.464 0.764   0.476
## DFirm        NaN   0.351    0.471    0.360   0.360   0.362 0.718   0.374
## X3d          NaN   0.029    0.040    0.029   0.037   0.037 0.043   0.036
## X3dLaw       NaN   0.017    0.025    0.017   0.026   0.025 0.025   0.022
## X3dFirm      NaN   0.020    0.026    0.020   0.029   0.028 0.025   0.025
## CtrCl        NaN   0.006    0.012    0.006   0.006   0.006 0.034   0.007
## CrsCl        NaN   0.006    0.004    0.006   0.006   0.006 0.008   0.005
## Rec          NaN   0.009    0.020    0.009   0.009   0.009 0.013   0.011
## Rem          NaN   0.009    0.020    0.009   0.009   0.009 0.015   0.010
## Judge        NaN   0.057    0.070    0.058   0.058   0.057 0.070   0.061
## OthMot       NaN   0.469    0.549    0.475   0.483   0.468 0.561   0.505
## MTime        NaN   0.011    0.027    0.012   0.012   0.011 0.093   0.016
## MTA          NaN   0.003    0.024    0.003   0.005   0.003 0.002   0.007
## MTD          NaN   0.023    0.025    0.023   0.024   0.023 0.061   0.023
## DSJ          NaN   0.011    0.017    0.011   0.012   0.011 0.034   0.012
## PSJ          NaN   0.014    0.015    0.016   0.015   0.014 0.016   0.017
## DMIL         NaN   0.014    0.015    0.014   0.014   0.014 0.017   0.015
## PMIL         NaN   0.006    0.007    0.006   0.006   0.006 0.008   0.006
## Stp          NaN   0.006    0.031    0.007   0.007   0.006 0.180   0.013
## Arb          NaN   0.006    0.008    0.008   0.006   0.006 0.052   0.007
## TrialType    NaN   0.006    0.013    0.006   0.006   0.006 0.018   0.007
## DISP         NaN   0.026    0.078    0.029   0.031   0.026 0.281   0.055
## JMent        NaN   0.017    0.054    0.018   0.020   0.017 0.244   0.027
## NOJ          NaN   0.014    0.072    0.016   0.017   0.014 0.186   0.021
## Award        NaN   0.180    0.168    0.180   0.179   0.180 0.234   0.193
## Eq           NaN   0.014    0.018    0.015   0.015   0.015 0.021   0.015
## TermDate    -Inf   0.711    0.745    0.722   0.718   0.711 0.788   0.728
## Enforce      NaN   0.014    0.023    0.016   0.015   0.014 0.064   0.016
##             PFirm EqReq  MonReq   LoC    DLaw   DFirm    X3d X3dLaw
## County      0.000 0.000   0.000 0.000   0.000   0.000  0.000  0.000
## DoNo        1.000 1.000   1.000 1.000   1.000   1.000  1.000  1.000
## CaseType    0.171 0.590   0.321 0.072   0.178   0.195  0.198  0.244
## FileDate    0.662 0.704   0.637 0.909   0.688   0.690  0.683  0.635
## PNames      0.957 0.979   0.793 0.959   0.951   0.958  0.936  0.954
## DNames      0.979 0.979   0.988 0.973   0.975   0.983  0.882  0.830
## ProSe       0.127 0.289   0.142 0.010   0.307   0.310  0.012  0.008
## PLaw        0.967 0.683   0.607 0.634   0.648   0.654  0.684  0.768
## PFirm     140.000 0.607   0.494 0.390   0.540   0.545  0.554  0.581
## EqReq       0.042 5.000   0.244 0.054   0.015   0.015  0.003  0.002
## MonReq      0.319 0.673 105.000 0.116   0.219   0.221  0.016  0.015
## LoC         0.024 0.042   0.023 9.000   0.030   0.030  0.002  0.001
## DLaw        0.481 0.444   0.399 0.680 160.000   0.979  0.529  0.408
## DFirm       0.379 0.349   0.344 0.443   0.822 124.000  0.406  0.292
## X3d         0.042 0.008   0.029 0.002   0.038   0.045 11.000  1.000
## X3dLaw      0.029 0.006   0.023 0.001   0.024   0.031  0.682  7.000
## X3dFirm     0.030 0.009   0.023 0.001   0.024   0.031  0.682  1.000
## CtrCl       0.007 0.015   0.006 0.007   0.021   0.021  0.002  0.002
## CrsCl       0.006 0.004   0.002 0.051   0.007   0.007  0.013  0.000
## Rec         0.011 0.020   0.012 0.001   0.014   0.016  0.059  0.001
## Rem         0.010 0.051   0.020 0.011   0.021   0.019  0.005  0.001
## Judge       0.062 0.125   0.062 0.016   0.064   0.063  0.189  0.025
## OthMot      0.506 0.493   0.450 0.694   0.591   0.591  0.952  1.000
## MTime       0.019 0.004   0.013 0.016   0.052   0.053  0.017  0.005
## MTA         0.012 0.013   0.008 0.002   0.002   0.002  0.004  0.003
## MTD         0.024 0.028   0.018 0.055   0.054   0.055  0.034  0.039
## DSJ         0.012 0.016   0.009 0.084   0.029   0.028  0.002  0.001
## PSJ         0.016 0.007   0.012 0.012   0.023   0.023  0.001  0.001
## DMIL        0.015 0.003   0.011 0.052   0.023   0.023  0.001  0.000
## PMIL        0.006 0.005   0.002 0.015   0.010   0.010  0.000  0.000
## Stp         0.014 0.024   0.060 0.006   0.098   0.100  0.008  0.006
## Arb         0.008 0.015   0.023 0.384   0.031   0.032  0.003  0.003
## TrialType   0.008 0.005   0.007 0.002   0.013   0.013  0.003  0.001
## DISP        0.057 0.132   0.116 0.064   0.130   0.132  0.028  0.024
## JMent       0.029 0.046   0.069 0.061   0.113   0.115  0.012  0.014
## NOJ         0.023 0.074   0.050 0.011   0.081   0.082  0.022  0.025
## Award       0.193 0.211   0.366 0.113   0.137   0.139  0.134  0.013
## Eq          0.015 0.006   0.025 0.544   0.012   0.012  0.010  0.014
## TermDate    0.725 0.785   0.745 0.823   0.728   0.731  0.582  0.660
## Enforce     0.016 0.025   0.020 0.027   0.030   0.030  0.014  0.002
##           X3dFirm CtrCl CrsCl   Rec   Rem  Judge  OthMot MTime   MTA   MTD
## County      0.000 0.000 0.000 0.000 0.000  0.000   0.000 0.000 0.000 0.000
## DoNo        1.000 1.000 1.000 1.000 1.000  1.000   1.000 1.000 1.000 1.000
## CaseType    0.240 0.187 0.023 0.197 0.121  0.104   0.128 0.185 0.166 0.108
## FileDate    0.635 0.780 0.798 0.796 0.730  0.695   0.658 0.716 0.647 0.663
## PNames      0.954 0.954 1.000 0.872 0.966  0.871   0.844 0.900 0.969 0.926
## DNames      0.830 1.000 1.000 1.000 0.966  0.980   0.971 0.968 1.000 0.937
## ProSe       0.008 0.056 0.037 0.016 0.070  0.017   0.046 0.118 0.012 0.057
## PLaw        0.768 0.613 0.490 0.732 0.394  0.587   0.602 0.710 0.717 0.626
## PFirm       0.550 0.484 0.549 0.694 0.285  0.496   0.468 0.586 0.610 0.491
## EqReq       0.002 0.008 0.047 0.096 0.086  0.019   0.016 0.003 0.015 0.004
## MonReq      0.013 0.105 0.201 0.110 0.038  0.253   0.298 0.201 0.498 0.161
## LoC         0.001 0.060 0.038 0.001 0.050  0.023   0.027 0.032 0.007 0.008
## DLaw        0.407 0.819 0.647 0.754 0.811  0.522   0.484 0.720 0.470 0.768
## DFirm       0.291 0.737 0.521 0.478 0.581  0.398   0.375 0.590 0.390 0.630
## X3d         0.938 0.043 0.198 0.198 0.066  0.050   0.039 0.047 0.007 0.086
## X3dLaw      0.938 0.043 0.000 0.001 0.001  0.008   0.024 0.023 0.005 0.066
## X3dFirm     8.000 0.043 0.000 0.001 0.001  0.016   0.027 0.023 0.005 0.066
## CtrCl       0.002 3.000 0.005 0.012 0.002  0.004   0.012 0.098 0.026 0.011
## CrsCl       0.000 0.007 3.000 0.022 0.014  0.003   0.006 0.001 0.021 0.010
## Rec         0.001 0.027 0.036 4.000 0.049  0.054   0.011 0.032 0.004 0.022
## Rem         0.001 0.009 0.046 0.095 4.000  0.041   0.010 0.014 0.007 0.002
## Judge       0.026 0.114 0.049 0.550 0.208 21.000   0.100 0.115 0.107 0.069
## OthMot      1.000 0.808 0.664 0.573 0.433  0.417 165.000 0.719 0.482 0.791
## MTime       0.004 0.121 0.001 0.026 0.005  0.032   0.032 5.000 0.010 0.092
## MTA         0.003 0.009 0.003 0.003 0.005  0.004   0.002 0.006 2.000 0.001
## MTD         0.039 0.041 0.016 0.008 0.004  0.021   0.036 0.097 0.024 9.000
## DSJ         0.001 0.028 0.001 0.039 0.005  0.009   0.017 0.037 0.009 0.037
## PSJ         0.001 0.037 0.001 0.001 0.002  0.011   0.017 0.023 0.027 0.033
## DMIL        0.000 0.052 0.000 0.100 0.001  0.015   0.019 0.044 0.024 0.080
## PMIL        0.000 0.001 0.000 0.099 0.000  0.012   0.008 0.034 0.002 0.023
## Stp         0.006 0.041 0.006 0.010 0.015  0.006   0.017 0.051 0.000 0.043
## Arb         0.002 0.051 0.015 0.004 0.019  0.017   0.014 0.039 0.004 0.015
## TrialType   0.001 0.058 0.001 0.082 0.002  0.010   0.014 0.082 0.001 0.006
## DISP        0.022 0.115 0.209 0.088 0.120  0.066   0.063 0.141 0.071 0.096
## JMent       0.014 0.114 0.200 0.079 0.047  0.046   0.044 0.116 0.028 0.045
## NOJ         0.024 0.043 0.102 0.213 0.200  0.045   0.044 0.067 0.034 0.043
## Award       0.012 0.020 0.400 0.204 0.041  0.111   0.208 0.108 0.245 0.084
## Eq          0.014 0.011 0.009 0.002 0.008  0.018   0.020 0.024 0.026 0.012
## TermDate    0.660 0.578 0.252 0.440 0.851  0.753   0.722 0.747 0.750 0.722
## Enforce     0.002 0.015 0.113 0.002 0.003  0.011   0.026 0.014 0.012 0.007
##             DSJ   PSJ  DMIL  PMIL   Stp   Arb TrialType   DISP JMent   NOJ
## County    0.000 0.000 0.000 0.000 0.000 0.000     0.000  0.000 0.000 0.000
## DoNo      1.000 1.000 1.000 1.000 1.000 1.000     1.000  1.000 1.000 1.000
## CaseType  0.107 0.112 0.057 0.080 0.243 0.096     0.160  0.216 0.226 0.216
## FileDate  0.766 0.716 0.735 1.000 0.732 0.770     0.801  0.639 0.625 0.703
## PNames    0.974 0.800 1.000 1.000 0.919 0.934     1.000  0.836 0.855 0.840
## DNames    0.974 1.000 1.000 0.874 0.985 0.981     1.000  0.976 0.970 0.975
## ProSe     0.037 0.012 0.017 0.011 0.254 0.071     0.028  0.154 0.200 0.130
## PLaw      0.734 0.598 0.855 1.000 0.672 0.615     0.709  0.604 0.592 0.610
## PFirm     0.581 0.483 0.623 0.531 0.571 0.458     0.550  0.477 0.461 0.492
## EqReq     0.060 0.004 0.002 0.060 0.033 0.028     0.013  0.037 0.018 0.036
## MonReq    0.021 0.295 0.009 0.004 0.302 0.184     0.075  0.398 0.374 0.398
## LoC       0.086 0.013 0.046 0.046 0.031 0.221     0.002  0.019 0.021 0.015
## DLaw      0.835 0.606 0.855 0.811 0.783 0.749     0.771  0.467 0.489 0.459
## DFirm     0.560 0.489 0.711 0.474 0.694 0.611     0.620  0.388 0.419 0.386
## X3d       0.002 0.002 0.001 0.000 0.039 0.033     0.027  0.034 0.034 0.049
## X3dLaw    0.001 0.001 0.000 0.000 0.023 0.018     0.001  0.022 0.023 0.032
## X3dFirm   0.001 0.001 0.000 0.000 0.023 0.018     0.001  0.024 0.027 0.032
## CtrCl     0.008 0.010 0.020 0.001 0.035 0.052     0.048  0.018 0.022 0.013
## CrsCl     0.001 0.000 0.000 0.000 0.006 0.016     0.001  0.007 0.006 0.007
## Rec       0.064 0.001 0.142 0.250 0.017 0.012     0.132  0.022 0.016 0.025
## Rem       0.010 0.002 0.001 0.000 0.016 0.007     0.002  0.048 0.021 0.044
## Judge     0.069 0.012 0.213 0.252 0.054 0.039     0.200  0.084 0.111 0.091
## OthMot    0.846 0.750 0.879 1.000 0.619 0.668     0.859  0.571 0.628 0.655
## MTime     0.039 0.007 0.026 0.038 0.056 0.045     0.089  0.031 0.025 0.028
## MTA       0.006 0.009 0.007 0.001 0.000 0.002     0.000  0.008 0.002 0.016
## MTD       0.092 0.126 0.233 0.041 0.051 0.059     0.016  0.045 0.043 0.021
## DSJ       5.000 0.139 0.082 0.128 0.043 0.040     0.078  0.017 0.027 0.009
## PSJ       0.180 6.000 0.070 0.000 0.032 0.032     0.053  0.032 0.022 0.035
## DMIL      0.098 0.058 6.000 0.330 0.024 0.068     0.072  0.016 0.015 0.010
## PMIL      0.063 0.000 0.187 3.000 0.005 0.040     0.053  0.008 0.010 0.002
## Stp       0.031 0.016 0.021 0.002 3.000 0.092     0.043  0.108 0.097 0.048
## Arb       0.031 0.010 0.040 0.036 0.082 3.000     0.050  0.042 0.038 0.017
## TrialType 0.053 0.012 0.035 0.095 0.036 0.047     3.000  0.066 0.085 0.080
## DISP      0.086 0.310 0.037 0.289 0.288 0.155     0.772 10.000 0.722 0.411
## JMent     0.062 0.032 0.035 0.026 0.190 0.102     0.761  0.438 7.000 0.428
## NOJ       0.030 0.023 0.007 0.003 0.074 0.035     0.170  0.182 0.370 6.000
## Award     0.060 0.348 0.004 0.008 0.248 0.167     0.053  0.434 0.434 0.358
## Eq        0.031 0.003 0.006 0.010 0.010 0.194     0.004  0.021 0.031 0.049
## TermDate  0.629 0.505 0.596 0.761 0.744 0.686     0.774  0.798 0.783 0.786
## Enforce   0.004 0.017 0.001 0.001 0.031 0.013     0.004  0.037 0.075 0.096
##            Award    Eq TermDate Enforce
## County     0.000 0.000    0.000   0.000
## DoNo       1.000 1.000    1.000   1.000
## CaseType   0.263 0.081    0.083   0.091
## FileDate   0.625 0.889    0.635   0.627
## PNames     0.801 0.934    0.829   0.707
## DNames     0.984 1.000    0.971   0.982
## ProSe      0.112 0.011    0.013   0.061
## PLaw       0.627 0.658    0.524   0.588
## PFirm      0.509 0.472    0.402   0.468
## EqReq      0.116 0.035    0.013   0.005
## MonReq     0.541 0.197    0.298   0.525
## LoC        0.026 0.635    0.023   0.012
## DLaw       0.459 0.513    0.456   0.245
## DFirm      0.388 0.354    0.352   0.192
## X3d        0.038 0.037    0.028   0.065
## X3dLaw     0.024 0.036    0.017   0.002
## X3dFirm    0.024 0.036    0.020   0.002
## CtrCl      0.008 0.005    0.008   0.002
## CrsCl      0.007 0.034    0.005   0.038
## Rec        0.011 0.002    0.013   0.002
## Rem        0.034 0.008    0.010   0.003
## Judge      0.068 0.044    0.061   0.059
## OthMot     0.510 0.725    0.473   0.779
## MTime      0.013 0.024    0.015   0.010
## MTA        0.007 0.003    0.003   0.001
## MTD        0.026 0.043    0.023   0.007
## DSJ        0.013 0.052    0.013   0.004
## PSJ        0.016 0.008    0.016   0.018
## DMIL       0.010 0.034    0.016   0.001
## PMIL       0.009 0.008    0.005   0.001
## Stp        0.075 0.003    0.008   0.009
## Arb        0.025 0.406    0.007   0.006
## TrialType  0.033 0.003    0.041   0.003
## DISP       0.432 0.049    0.068   0.140
## JMent      0.314 0.048    0.056   0.120
## NOJ        0.120 0.181    0.027   0.133
## Award     64.000 0.150    0.182   0.725
## Eq         0.021 6.000    0.014   0.034
## TermDate   0.732 0.744  250.000   0.722
## Enforce    0.046 0.018    0.016   6.000
## attr(,"class")
## [1] "GKtauMatrix"

BCDD Court

# Import data
data_BCDD <- read.csv("data/BCDD.csv", skip = 1) # 1st row is the description of variables

GKmatrix_BCDD <- GKtauDataframe(data_BCDD)
GKmatrix_BCDD
##           County   DoNo CaseType FileDate PNames DNames ProSe   PLaw
## County         1  0.000    0.000    0.000  0.000  0.000 0.000  0.000
## DoNo         NaN 58.000    1.000    1.000  1.000  1.000 1.000  1.000
## CaseType     NaN  0.351   21.000    0.368  0.349  0.354 0.342  0.358
## FileDate     NaN  0.965    0.981   56.000  0.965  0.965 1.000  0.965
## PNames       NaN  0.930    0.924    0.930 54.000  0.930 0.893  0.965
## DNames       NaN  0.982    1.000    0.982  0.982 57.000 1.000  0.982
## ProSe        NaN  0.035    0.031    0.035  0.035  0.035 3.000  0.034
## PLaw         NaN  0.789    0.813    0.789  0.824  0.789 0.786 46.000
## PFirm        NaN  0.632    0.639    0.631  0.666  0.631 0.543  0.715
## EqReq        NaN  0.035    0.064    0.052  0.035  0.035 0.037  0.037
## MonReq       NaN  0.070    0.071    0.073  0.073  0.070 0.018  0.070
## LoC          NaN  0.386    0.394    0.385  0.384  0.386 0.308  0.380
## DLaw         NaN  0.947    0.956    0.947  0.947  0.959 1.000  0.947
## DFirm        NaN  0.789    0.816    0.789  0.824  0.801 1.000  0.805
## X3d          NaN  0.018    0.021    0.018  0.017  0.018 0.001  0.017
## X3dLaw       NaN  0.018    0.021    0.018  0.017  0.018 0.001  0.017
## X3dFirm      NaN  0.018    0.021    0.018  0.017  0.018 0.001  0.017
## CtrCl        NaN  0.018    0.034    0.017  0.017  0.017 0.005  0.018
## CrsCl        NaN  0.000    0.000    0.000  0.000  0.000 0.000  0.000
## Rec          NaN  0.018    0.020    0.018  0.018  0.018 0.189  0.018
## Rem          NaN  0.053    0.052    0.052  0.053  0.053 0.051  0.053
## Judge        NaN  0.281    0.291    0.289  0.288  0.280 0.224  0.281
## OthMot       NaN  0.912    0.928    0.912  0.912  0.912 1.000  0.918
## MTime        NaN  0.053    0.065    0.053  0.051  0.052 0.106  0.055
## MTA          NaN  0.053    0.062    0.053  0.053  0.052 0.020  0.064
## MTD          NaN  0.105    0.129    0.109  0.106  0.105 0.065  0.107
## DSJ          NaN  0.088    0.102    0.093  0.088  0.088 0.199  0.089
## PSJ          NaN  0.053    0.047    0.053  0.053  0.052 0.088  0.053
## DMIL         NaN  0.035    0.034    0.035  0.035  0.035 0.003  0.035
## PMIL         NaN  0.018    0.015    0.018  0.018  0.018 0.003  0.018
## Stp          NaN  0.035    0.024    0.034  0.034  0.035 0.047  0.038
## Arb          NaN  0.018    0.025    0.018  0.018  0.018 0.005  0.018
## TrialType    NaN  0.053    0.049    0.053  0.053  0.053 0.004  0.052
## DISP         NaN  0.140    0.130    0.141  0.147  0.140 0.310  0.136
## JMent        Inf  0.053    0.097    0.053  0.053  0.052 0.040  0.049
## NOJ          NaN  0.070    0.106    0.070  0.071  0.070 0.039  0.066
## Award        NaN  0.123    0.103    0.123  0.123  0.122 0.233  0.120
## Eq           NaN  0.035    0.032    0.035  0.035  0.035 0.004  0.033
## TermDate     NaN  0.912    0.905    0.912  0.930  0.912 0.893  0.929
## Enforce      NaN  0.035    0.034    0.035  0.035  0.035 0.003  0.033
##            PFirm EqReq MonReq    LoC   DLaw  DFirm   X3d X3dLaw X3dFirm
## County     0.000 0.000  0.000  0.000  0.000  0.000 0.000  0.000   0.000
## DoNo       1.000 1.000  1.000  1.000  1.000  1.000 1.000  1.000   1.000
## CaseType   0.364 0.789  0.473  0.358  0.353  0.360 1.000  1.000   1.000
## FileDate   0.964 1.000  1.000  0.963  0.965  0.965 1.000  1.000   1.000
## PNames     0.964 0.909  1.000  0.926  0.930  0.965 0.491  0.491   0.491
## DNames     0.982 1.000  0.958  0.982  1.000  1.000 1.000  1.000   1.000
## ProSe      0.033 0.068  0.016  0.033  0.035  0.036 0.002  0.002   0.002
## PLaw       0.924 1.000  0.873  0.779  0.789  0.805 0.491  0.491   0.491
## PFirm     37.000 0.849  0.830  0.635  0.631  0.651 0.491  0.491   0.491
## EqReq      0.037 3.000  0.335  0.034  0.035  0.036 0.002  0.002   0.002
## MonReq     0.080 0.335  5.000  0.076  0.070  0.072 0.006  0.006   0.006
## LoC        0.393 0.483  0.458 23.000  0.384  0.387 0.491  0.491   0.491
## DLaw       0.946 1.000  0.943  0.945 55.000  1.000 1.000  1.000   1.000
## DFirm      0.819 0.909  0.845  0.797  0.842 46.000 1.000  1.000   1.000
## X3d        0.018 0.002  0.005  0.019  0.018  0.018 2.000  1.000   1.000
## X3dLaw     0.018 0.002  0.005  0.019  0.018  0.018 1.000  2.000   1.000
## X3dFirm    0.018 0.002  0.005  0.019  0.018  0.018 1.000  1.000   2.000
## CtrCl      0.019 0.007  0.045  0.020  0.018  0.016 0.042  0.042   0.042
## CrsCl      0.000 0.000  0.000  0.000  0.000  0.000 0.000  0.000   0.000
## Rec        0.019 0.002  0.051  0.018  0.018  0.018 0.000  0.000   0.000
## Rem        0.053 0.076  0.069  0.052  0.053  0.051 0.002  0.002   0.002
## Judge      0.290 0.298  0.372  0.291  0.280  0.287 1.000  1.000   1.000
## OthMot     0.917 1.000  0.932  0.908  0.912  0.912 1.000  1.000   1.000
## MTime      0.047 0.021  0.061  0.058  0.051  0.055 0.015  0.015   0.015
## MTA        0.061 0.020  0.115  0.061  0.057  0.055 0.004  0.004   0.004
## MTD        0.104 0.089  0.084  0.100  0.104  0.101 0.008  0.008   0.008
## DSJ        0.084 0.095  0.124  0.088  0.088  0.087 0.004  0.004   0.004
## PSJ        0.052 0.014  0.127  0.054  0.052  0.051 0.003  0.003   0.003
## DMIL       0.033 0.003  0.010  0.036  0.035  0.036 0.001  0.001   0.001
## PMIL       0.019 0.003  0.010  0.016  0.018  0.016 0.001  0.001   0.001
## Stp        0.029 0.033  0.074  0.046  0.034  0.039 0.031  0.031   0.031
## Arb        0.017 0.006  0.020  0.017  0.018  0.018 0.001  0.001   0.001
## TrialType  0.051 0.005  0.015  0.053  0.053  0.052 0.001  0.001   0.001
## DISP       0.138 0.031  0.099  0.133  0.140  0.137 0.009  0.009   0.009
## JMent      0.053 0.016  0.043  0.050  0.052  0.050 0.003  0.003   0.003
## NOJ        0.084 0.014  0.039  0.068  0.071  0.069 0.003  0.003   0.003
## Award      0.130 0.017  0.114  0.122  0.123  0.121 0.012  0.012   0.012
## Eq         0.050 0.005  0.017  0.034  0.035  0.034 0.001  0.001   0.001
## TermDate   0.928 0.819  0.830  0.908  0.912  0.912 0.491  0.491   0.491
## Enforce    0.030 0.003  0.072  0.033  0.035  0.036 0.001  0.001   0.001
##           CtrCl CrsCl   Rec   Rem  Judge OthMot MTime   MTA   MTD   DSJ
## County    0.000   NaN 0.000 0.000  0.000  0.000 0.000 0.000 0.000 0.000
## DoNo      1.000   NaN 1.000 1.000  1.000  1.000 1.000 1.000 1.000 1.000
## CaseType  0.426   NaN 0.491 0.384  0.411  0.364 0.455 0.270 0.463 0.352
## FileDate  0.958   NaN 1.000 0.910  0.975  0.965 0.968 1.000 0.966 1.000
## PNames    0.917   NaN 1.000 1.000  0.924  0.929 0.905 0.947 0.966 0.948
## DNames    0.958   NaN 1.000 1.000  0.975  0.982 0.968 0.947 0.966 1.000
## ProSe     0.015   NaN 0.322 0.040  0.023  0.036 0.056 0.018 0.020 0.027
## PLaw      0.854   NaN 1.000 0.880  0.818  0.800 0.825 0.825 0.879 0.844
## PFirm     0.751   NaN 1.000 0.731  0.729  0.634 0.556 0.775 0.720 0.645
## EqReq     0.016   NaN 0.002 0.075  0.084  0.044 0.050 0.018 0.105 0.165
## MonReq    0.111   NaN 0.067 0.052  0.095  0.072 0.093 0.283 0.070 0.033
## LoC       0.465   NaN 0.322 0.333  0.437  0.382 0.401 0.453 0.435 0.438
## DLaw      0.945   NaN 1.000 1.000  0.941  0.947 0.926 0.930 0.920 1.000
## DFirm     0.764   NaN 1.000 0.701  0.788  0.788 0.851 0.719 0.713 0.826
## X3d       0.042   NaN 0.000 0.001  0.033  0.018 0.013 0.003 0.004 0.003
## X3dLaw    0.042   NaN 0.000 0.001  0.033  0.018 0.013 0.003 0.004 0.003
## X3dFirm   0.042   NaN 0.000 0.001  0.033  0.018 0.013 0.003 0.004 0.003
## CtrCl     2.000   NaN 0.007 0.016  0.027  0.020 0.066 0.010 0.021 0.013
## CrsCl     0.000     1 0.000 0.000  0.000  0.000 0.000 0.000 0.000 0.000
## Rec       0.007   NaN 2.000 0.156  0.006  0.018 0.020 0.003 0.004 0.087
## Rem       0.078   NaN 0.322 4.000  0.095  0.051 0.027 0.101 0.122 0.190
## Judge     0.372   NaN 0.014 0.691 17.000  0.288 0.453 0.571 0.464 0.278
## OthMot    0.958   NaN 1.000 0.856  0.929 53.000 0.917 1.000 1.000 1.000
## MTime     0.094   NaN 0.025 0.070  0.145  0.055 4.000 0.072 0.125 0.053
## MTA       0.065   NaN 0.004 0.175  0.107  0.055 0.075 4.000 0.073 0.112
## MTD       0.131   NaN 0.008 0.366  0.154  0.109 0.195 0.112 7.000 0.237
## DSJ       0.106   NaN 1.000 0.413  0.074  0.090 0.109 0.065 0.246 6.000
## PSJ       0.116   NaN 0.491 0.321  0.054  0.054 0.084 0.068 0.049 0.159
## DMIL      0.049   NaN 0.001 0.003  0.012  0.036 0.032 0.006 0.048 0.165
## PMIL      0.015   NaN 0.001 0.003  0.039  0.018 0.026 0.160 0.058 0.005
## Stp       0.028   NaN 0.025 0.014  0.061  0.033 0.130 0.107 0.018 0.060
## Arb       0.075   NaN 0.001 0.006  0.025  0.016 0.010 0.012 0.018 0.006
## TrialType 0.056   NaN 0.001 0.324  0.072  0.051 0.045 0.093 0.096 0.175
## DISP      0.135   NaN 0.237 0.690  0.176  0.141 0.178 0.234 0.211 0.145
## JMent     0.105   Inf 0.003 0.056  0.076  0.054 0.040 0.165 0.175 0.032
## NOJ       0.099   NaN 0.003 0.100  0.080  0.069 0.075 0.129 0.080 0.056
## Award     0.332   NaN 0.039 0.237  0.157  0.123 0.163 0.204 0.083 0.131
## Eq        0.023   NaN 0.001 0.068  0.019  0.033 0.055 0.009 0.024 0.039
## TermDate  0.875   NaN 1.000 1.000  0.898  0.912 0.905 0.895 0.966 1.000
## Enforce   0.049   NaN 0.001 0.003  0.039  0.036 0.026 0.085 0.009 0.080
##             PSJ  DMIL  PMIL   Stp   Arb TrialType  DISP JMent   NOJ Award
## County    0.000 0.000 0.000 0.000 0.000     0.000 0.000 0.000 0.000 0.000
## DoNo      1.000 1.000 1.000 1.000 1.000     1.000 1.000 1.000 1.000 1.000
## CaseType  0.272 0.132 0.125 0.317 0.203     0.160 0.298 0.365 0.226 0.285
## FileDate  1.000 1.000 1.000 0.947 1.000     1.000 1.000 1.000 1.000 0.969
## PNames    1.000 1.000 1.000 0.920 1.000     1.000 1.000 1.000 1.000 0.938
## DNames    0.931 1.000 1.000 0.973 1.000     1.000 0.967 0.938 1.000 0.969
## ProSe     0.032 0.003 0.003 0.040 0.007     0.003 0.085 0.046 0.050 0.060
## PLaw      0.896 0.743 1.000 0.836 0.866     0.597 0.760 0.699 0.644 0.774
## PFirm     0.724 0.303 1.000 0.616 0.770     0.474 0.634 0.565 0.637 0.696
## EqReq     0.012 0.003 0.004 0.032 0.009     0.004 0.014 0.014 0.012 0.022
## MonReq    0.140 0.009 0.012 0.108 0.026     0.012 0.104 0.210 0.124 0.106
## LoC       0.498 0.316 0.556 0.447 0.591     0.263 0.321 0.457 0.401 0.372
## DLaw      0.908 1.000 1.000 0.938 1.000     1.000 0.956 0.917 1.000 0.959
## DFirm     0.747 1.000 0.396 0.849 1.000     0.655 0.728 0.647 0.702 0.763
## X3d       0.002 0.000 0.001 0.017 0.001     0.001 0.004 0.002 0.002 0.008
## X3dLaw    0.002 0.000 0.001 0.017 0.001     0.001 0.004 0.002 0.002 0.008
## X3dFirm   0.002 0.000 0.001 0.017 0.001     0.001 0.004 0.002 0.002 0.008
## CtrCl     0.033 0.016 0.015 0.017 0.075     0.010 0.032 0.026 0.025 0.101
## CrsCl     0.000 0.000 0.000 0.000 0.000     0.000 0.000 0.000 0.000 0.000
## Rec       0.118 0.000 0.001 0.014 0.001     0.001 0.044 0.002 0.002 0.026
## Rem       0.154 0.003 0.004 0.038 0.009     0.489 0.208 0.125 0.145 0.129
## Judge     0.474 0.022 0.612 0.279 0.359     0.666 0.425 0.570 0.521 0.348
## OthMot    1.000 1.000 1.000 0.899 0.785     0.724 0.948 1.000 0.890 0.926
## MTime     0.075 0.011 0.031 0.140 0.015     0.012 0.076 0.049 0.059 0.129
## MTA       0.049 0.006 0.310 0.137 0.017     0.332 0.113 0.190 0.143 0.084
## MTD       0.196 0.060 0.168 0.075 0.033     0.109 0.187 0.321 0.132 0.117
## DSJ       0.256 0.572 0.008 0.111 0.022     0.489 0.137 0.155 0.175 0.133
## PSJ       4.000 0.240 0.104 0.070 0.041     0.006 0.162 0.205 0.238 0.095
## DMIL      0.120 3.000 0.001 0.031 0.003     0.328 0.009 0.004 0.004 0.017
## PMIL      0.046 0.001 2.000 0.015 0.003     0.001 0.058 0.047 0.053 0.003
## Stp       0.077 0.019 0.029 3.000 0.131     0.024 0.025 0.024 0.021 0.031
## Arb       0.014 0.002 0.003 0.072 2.000     0.003 0.009 0.013 0.014 0.028
## TrialType 0.006 0.496 0.002 0.045 0.004     4.000 0.096 0.104 0.116 0.078
## DISP      0.380 0.013 0.568 0.104 0.077     0.405 9.000 0.761 0.602 0.406
## JMent     0.237 0.005 0.493 0.032 0.042     0.072 0.277 4.000 0.630 0.205
## NOJ       0.271 0.004 0.492 0.054 0.041     0.071 0.225 0.586 5.000 0.195
## Award     0.251 0.019 0.008 0.111 0.495     0.339 0.374 0.491 0.621 8.000
## Eq        0.052 0.001 0.002 0.028 0.004     0.002 0.064 0.042 0.364 0.097
## TermDate  1.000 1.000 1.000 0.920 1.000     1.000 1.000 1.000 1.000 1.000
## Enforce   0.115 0.001 0.001 0.031 0.003     0.001 0.050 0.102 0.114 0.053
##              Eq TermDate Enforce
## County    0.000    0.000   0.000
## DoNo      1.000    1.000   1.000
## CaseType  0.181    0.349   0.533
## FileDate  1.000    0.965   1.000
## PNames    1.000    0.947   1.000
## DNames    1.000    0.982   1.000
## ProSe     0.004    0.035   0.003
## PLaw      0.508    0.806   0.358
## PFirm     0.537    0.648   0.132
## EqReq     0.005    0.034   0.003
## MonReq    0.011    0.068   0.499
## LoC       0.276    0.384   0.162
## DLaw      1.000    0.947   1.000
## DFirm     0.595    0.789   1.000
## X3d       0.001    0.017   0.000
## X3dLaw    0.001    0.017   0.000
## X3dFirm   0.001    0.017   0.000
## CtrCl     0.017    0.016   0.016
## CrsCl     0.000    0.000   0.000
## Rec       0.001    0.018   0.000
## Rem       0.094    0.053   0.003
## Judge     0.338    0.287   0.503
## OthMot    0.722    0.912   1.000
## MTime     0.175    0.052   0.023
## MTA       0.010    0.052   0.113
## MTD       0.158    0.106   0.012
## DSJ       0.328    0.089   0.070
## PSJ       0.153    0.053   0.112
## DMIL      0.001    0.035   0.001
## PMIL      0.001    0.018   0.001
## Stp       0.016    0.036   0.019
## Arb       0.003    0.018   0.002
## TrialType 0.002    0.053   0.001
## DISP      0.401    0.147   0.158
## JMent     0.066    0.053   0.112
## NOJ       1.000    0.071   0.112
## Award     0.383    0.127   0.502
## Eq        3.000    0.035   0.001
## TermDate  1.000   53.000   1.000
## Enforce   0.001    0.035   3.000
## attr(,"class")
## [1] "GKtauMatrix"

Comparing Judge between the courts

It compares how much of the variation in other variables Judge explains per County (county of record).

Judge_Belknap <- GKmatrix_belknap["Judge", ]
Judge_BCDD <- GKmatrix_BCDD["Judge", ]

Judge_Counties <- data.frame(Judge_Belknap, Judge_BCDD)
Judge_Counties
##           Judge_Belknap Judge_BCDD
## County              NaN        NaN
## DoNo              0.057      0.281
## CaseType          0.070      0.291
## FileDate          0.058      0.289
## PNames            0.058      0.288
## DNames            0.057      0.280
## ProSe             0.070      0.224
## PLaw              0.061      0.281
## PFirm             0.062      0.290
## EqReq             0.125      0.298
## MonReq            0.062      0.372
## LoC               0.016      0.291
## DLaw              0.064      0.280
## DFirm             0.063      0.287
## X3d               0.189      1.000
## X3dLaw            0.025      1.000
## X3dFirm           0.026      1.000
## CtrCl             0.114      0.372
## CrsCl             0.049        NaN
## Rec               0.550      0.014
## Rem               0.208      0.691
## Judge            21.000     17.000
## OthMot            0.100      0.288
## MTime             0.115      0.453
## MTA               0.107      0.571
## MTD               0.069      0.464
## DSJ               0.069      0.278
## PSJ               0.012      0.474
## DMIL              0.213      0.022
## PMIL              0.252      0.612
## Stp               0.054      0.279
## Arb               0.039      0.359
## TrialType         0.200      0.666
## DISP              0.084      0.425
## JMent             0.111      0.570
## NOJ               0.091      0.521
## Award             0.068      0.348
## Eq                0.044      0.338
## TermDate          0.061      0.287
## Enforce           0.059      0.503