Repeat the same functions with different values of alpha, beta, and gamma of your choosing on…
*AirPassengers
*EuStockMarkets
When using the EuStockMarkets, choose one column
Nile
## Time Series:
## Start = 1871
## End = 1970
## Frequency = 1
## [1] 1120 1160 963 1210 1160 1160 813 1230 1370 1140 995 935 1110 994
## [15] 1020 960 1180 799 958 1140 1100 1210 1150 1250 1260 1220 1030 1100
## [29] 774 840 874 694 940 833 701 916 692 1020 1050 969 831 726
## [43] 456 824 702 1120 1100 832 764 821 768 845 864 862 698 845
## [57] 744 796 1040 759 781 865 845 944 984 897 822 1010 771 676
## [71] 649 846 812 742 801 1040 860 874 848 890 744 749 838 1050
## [85] 918 986 797 923 975 815 1020 906 901 1170 912 746 919 718
## [99] 714 740
plot(Nile)
frequency(Nile)
## [1] 1
Nile_ts <- ts(Nile, start=1, frequency=2)
summary(Nile_ts)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 456.0 798.5 893.5 919.4 1032.5 1370.0
plot(decompose(Nile_ts))
Nile_hw <- HoltWinters(Nile_ts, gamma=F, seasonal = "additive")
Nile_hw
## Holt-Winters exponential smoothing with trend and without seasonal component.
##
## Call:
## HoltWinters(x = Nile_ts, gamma = F, seasonal = "additive")
##
## Smoothing parameters:
## alpha: 0.4190643
## beta : 0.05987705
## gamma: FALSE
##
## Coefficients:
## [,1]
## a 756.913740
## b -7.424597
plot(Nile_ts)
plot(Nile_hw)
Nile_pt <- predict(Nile_hw, n.ahead=10)
ts.plot(Nile_ts, Nile_pt)
AirPassengers
## Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
## 1949 112 118 132 129 121 135 148 148 136 119 104 118
## 1950 115 126 141 135 125 149 170 170 158 133 114 140
## 1951 145 150 178 163 172 178 199 199 184 162 146 166
## 1952 171 180 193 181 183 218 230 242 209 191 172 194
## 1953 196 196 236 235 229 243 264 272 237 211 180 201
## 1954 204 188 235 227 234 264 302 293 259 229 203 229
## 1955 242 233 267 269 270 315 364 347 312 274 237 278
## 1956 284 277 317 313 318 374 413 405 355 306 271 306
## 1957 315 301 356 348 355 422 465 467 404 347 305 336
## 1958 340 318 362 348 363 435 491 505 404 359 310 337
## 1959 360 342 406 396 420 472 548 559 463 407 362 405
## 1960 417 391 419 461 472 535 622 606 508 461 390 432
plot(AirPassengers)
frequency(AirPassengers)
## [1] 12
AirPassengers_ts <- ts(AirPassengers, start=1, frequency=2)
summary(AirPassengers_ts)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 104.0 180.0 265.5 280.3 360.5 622.0
plot(decompose(AirPassengers_ts))
AirPassengers_hw <- HoltWinters(AirPassengers_ts, gamma=F, seasonal = "additive")
AirPassengers_hw
## Holt-Winters exponential smoothing with trend and without seasonal component.
##
## Call:
## HoltWinters(x = AirPassengers_ts, gamma = F, seasonal = "additive")
##
## Smoothing parameters:
## alpha: 1
## beta : 0.003218516
## gamma: FALSE
##
## Coefficients:
## [,1]
## a 432.000000
## b 4.597605
plot(AirPassengers_ts)
plot(AirPassengers_hw)
AirPassengers_pt <- predict(AirPassengers_hw, n.ahead=10)
ts.plot(AirPassengers_ts, AirPassengers_pt)