library(knitr)
opts_chunk$set(echo = T, message = F, warning = F,
error = F, cache = F, tidy = F)
library(tidyverse)
library(feather)
library(langcog)
library(modelr)
library(broom)
library(corrplot)
theme_set(theme_classic(base_size = 10))MODEL: lm(log_mtld_t2 ~ know_word_at_t1 + log_mtld_t1 + age_t1 + age_diff + log(n_transcripts_t1) + log(n_transcripts_t2), complete_df)
word_coeffs_min5_t2 <- read_csv("word_coeffs_log_mtld_t2.csv")
ggplot(word_coeffs_min5_t2, aes(t)) +
geom_histogram() +
ggtitle("t-distribution ") +
geom_vline(aes(xintercept = 2), color = "red") +
geom_vline(aes(xintercept = -2), color = "red") +
theme_classic() word_coeffs_min5_t2 %>%
arrange(-t) %>%
DT::datatable()freq <- read_tsv("/Users/mollylewis/Documents/research/Projects/1_in_progress/VOCAB_SEEDS/analyses/1_mtld_measure/data/control_variables/SUBTLEXus_corpus.txt") %>%
rename(word = Word,
log_freq = Lg10WF)
#https://github.com/billdthompson/semantic-density-norms/tree/master/results
density_norms <-read_csv(RCurl::getURL("https://raw.githubusercontent.com/billdthompson/semantic-density-norms/master/results/en-semantic-densities-N100000.csv?token=AF32iQ1bVCk5vJYPFGzapTG5b0JoZELhks5bWJNGwA%3D%3D")) %>%
rename(centrality = `global-centrality`) %>%
select(word,centrality)
word_coeffs_min5_t2_with_vars <- word_coeffs_min5_t2 %>%
left_join(density_norms) %>%
left_join(freq)
lm(t ~ centrality + log_freq, word_coeffs_min5_t2_with_vars) %>%
summary()##
## Call:
## lm(formula = t ~ centrality + log_freq, data = word_coeffs_min5_t2_with_vars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.98367 -0.42708 0.04979 0.41267 1.83862
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.06692 0.16852 0.397 0.691
## centrality -0.59248 1.14546 -0.517 0.605
## log_freq 0.14598 0.01789 8.158 7.93e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5929 on 1311 degrees of freedom
## (897 observations deleted due to missingness)
## Multiple R-squared: 0.05215, Adjusted R-squared: 0.0507
## F-statistic: 36.06 on 2 and 1311 DF, p-value: 5.661e-16
MODEL: lm(mtld_diff ~ know_word_at_t1 + age_t1 + age_diff + log(n_transcripts_t1) + log(n_transcripts_t2), complete_df)
word_coeffs_min5 <- read_csv("word_coeffs_log_mtld_diff.csv")
ggplot(word_coeffs_min5, aes(t)) +
geom_histogram() +
ggtitle("t-distribution ") +
geom_vline(aes(xintercept = 2), color = "red") +
geom_vline(aes(xintercept = -2), color = "red") +
theme_classic() word_coeffs_min5 %>%
arrange(-t) %>%
DT::datatable()word_counts <- read_csv("../1_mtld_measure/data/target_types_for_MTLD_kids_600_900.csv") %>%
filter(tbin == "t1") %>%
select(target_child_id, gloss, count) %>%
filter(count > 5)
t1_word_counts_with_ts <- word_counts %>%
left_join(word_coeffs_min5_t2 %>% select(word, t),
by = c("gloss" = "word")) %>%
mutate(weighted_t = t*count,
weighted_log_t = t * log(count)) %>%
select(-gloss, -count) %>%
group_by(target_child_id) %>%
summarize_all(sum)
mtld <- read_csv("../3_kid_vocabs/semantic_density_df.csv") %>%
select(target_child_id, log_mtld_t2)
t1_word_counts_with_ts_mtld <- t1_word_counts_with_ts %>%
left_join(mtld) %>%
select(-target_child_id)
corr_mat <- cor(t1_word_counts_with_ts_mtld,
use = "pairwise.complete.obs")
library(corrplot)
p.mat <- cor.mtest(t1_word_counts_with_ts_mtld,
conf.level = .95,
use = "pairwise.complete.obs")$p
cols <- rev(colorRampPalette(c("red", "white", "blue"))(100))
corrplot(corr_mat, method = "color", col = cols,
type = "full", order = "hclust", number.cex = .7,
addCoef.col = "black", insig = "blank",
p.mat = p.mat, sig.level = .05,
tl.col = "black", tl.srt = 90,
diag = FALSE)t1_word_counts_with_ts_mtld %>%
ggplot( aes(x = t , y = log_mtld_t2)) +
geom_point() +
geom_smooth(method = "lm") +
theme_classic()t1_word_counts_with_ts_mtld_sub <- t1_word_counts_with_ts %>%
left_join(mtld) %>%
select(-target_child_id) %>%
filter(t < 65)
corr_mat <- cor(t1_word_counts_with_ts_mtld_sub,
use = "pairwise.complete.obs")
p.mat <- cor.mtest(t1_word_counts_with_ts_mtld_sub,
conf.level = .95,
use = "pairwise.complete.obs")$p
cols <- rev(colorRampPalette(c("red", "white", "blue"))(100))
corrplot(corr_mat, method = "color", col = cols,
type = "full", order = "hclust", number.cex = .7,
addCoef.col = "black", insig = "blank",
p.mat = p.mat, sig.level = .05,
tl.col = "black", tl.srt = 90,
diag = FALSE)ggplot(t1_word_counts_with_ts_mtld_sub, aes(x = t , y = log_mtld_t2)) +
geom_point() +
geom_smooth(method = "lm") +
theme_classic()