# A randomised clinical trial on the use of intermediate bonding on the retention of fissure sealants in children
# DOI: 10.1111/ipd.12165
# Overall
overall <- matrix(c(179, 154, 16, 41),ncol=2,byrow=TRUE)
colnames(overall) <- c("Bonded","Non-bonded")
rownames(overall) <- c("Sucess","Failure")
overall <- as.table(overall)
overall
        Bonded Non-bonded
Sucess     179        154
Failure     16         41
# Maxillary
maxillary <- matrix(c(93, 73, 4, 22),ncol=2,byrow=TRUE)
colnames(maxillary) <- c("Bonded","Non-bonded")
rownames(maxillary) <- c("Sucess","Failure")
maxillary <- as.table(maxillary)
maxillary
        Bonded Non-bonded
Sucess      93         73
Failure      4         22
# Mandibular
mandibular <- matrix(c(87, 82, 11, 16),ncol=2,byrow=TRUE)
colnames(mandibular) <- c("Bonded","Non-bonded")
rownames(mandibular) <- c("Sucess","Failure")
mandibular <- as.table(mandibular)
mandibular
        Bonded Non-bonded
Sucess      87         82
Failure     11         16

Resultados

con Fisher

# Analysis with Fisher test
FisherOverall <- fisher.test(overall) # p-value = 0.000496
FisherMax <- fisher.test(maxillary) # p-value = 0.0001013
FisherMand <- fisher.test(mandibular) # p-value = 0.4075
# Analysis with chi2
ChiOverall <- chisq.test(overall) # X-squared = 11.835, df = 1, p-value = 0.0005813
ChiMax <- chisq.test(maxillary) # X-squared = 13.271, df = 1, p-value = 0.0002696
ChiMand <- chisq.test(mandibular) # X-squared = 0.68727, df = 1, p-value = 0.4071
FisherOverall 

    Fisher's Exact Test for Count Data

data:  overall
p-value = 0.000496
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 1.55843 5.90686
sample estimates:
odds ratio 
  2.970394 
FisherMax 

    Fisher's Exact Test for Count Data

data:  maxillary
p-value = 0.0001013
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
  2.222426 28.956859
sample estimates:
odds ratio 
  6.943379 
FisherMand 

    Fisher's Exact Test for Count Data

data:  mandibular
p-value = 0.4075
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 0.6283966 3.9041001
sample estimates:
odds ratio 
  1.539824 

Con Chi

ChiOverall 

    Pearson's Chi-squared test with Yates' continuity correction

data:  overall
X-squared = 11.835, df = 1, p-value = 0.0005813
ChiMax 

    Pearson's Chi-squared test with Yates' continuity correction

data:  maxillary
X-squared = 13.271, df = 1, p-value = 0.0002696
ChiMand 

    Pearson's Chi-squared test with Yates' continuity correction

data:  mandibular
X-squared = 0.68727, df = 1, p-value = 0.4071
LS0tDQp0aXRsZTogIkZpc2NoZXIgeSBjaGkiDQphdXRob3I6ICJTZXJnaW8gVXJpYmUiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCg0KYGBge3J9DQojIEEgcmFuZG9taXNlZCBjbGluaWNhbCB0cmlhbCBvbiB0aGUgdXNlIG9mIGludGVybWVkaWF0ZSBib25kaW5nIG9uIHRoZSByZXRlbnRpb24gb2YgZmlzc3VyZSBzZWFsYW50cyBpbiBjaGlsZHJlbg0KIyBET0k6IDEwLjExMTEvaXBkLjEyMTY1DQoNCg0KIyBPdmVyYWxsDQpvdmVyYWxsIDwtIG1hdHJpeChjKDE3OSwgMTU0LCAxNiwgNDEpLG5jb2w9MixieXJvdz1UUlVFKQ0KY29sbmFtZXMob3ZlcmFsbCkgPC0gYygiQm9uZGVkIiwiTm9uLWJvbmRlZCIpDQpyb3duYW1lcyhvdmVyYWxsKSA8LSBjKCJTdWNlc3MiLCJGYWlsdXJlIikNCm92ZXJhbGwgPC0gYXMudGFibGUob3ZlcmFsbCkNCm92ZXJhbGwNCg0KDQpgYGANCg0KYGBge3J9DQoNCiMgTWF4aWxsYXJ5DQptYXhpbGxhcnkgPC0gbWF0cml4KGMoOTMsIDczLCA0LCAyMiksbmNvbD0yLGJ5cm93PVRSVUUpDQpjb2xuYW1lcyhtYXhpbGxhcnkpIDwtIGMoIkJvbmRlZCIsIk5vbi1ib25kZWQiKQ0Kcm93bmFtZXMobWF4aWxsYXJ5KSA8LSBjKCJTdWNlc3MiLCJGYWlsdXJlIikNCm1heGlsbGFyeSA8LSBhcy50YWJsZShtYXhpbGxhcnkpDQptYXhpbGxhcnkNCg0KYGBgDQpgYGB7cn0NCg0KIyBNYW5kaWJ1bGFyDQptYW5kaWJ1bGFyIDwtIG1hdHJpeChjKDg3LCA4MiwgMTEsIDE2KSxuY29sPTIsYnlyb3c9VFJVRSkNCmNvbG5hbWVzKG1hbmRpYnVsYXIpIDwtIGMoIkJvbmRlZCIsIk5vbi1ib25kZWQiKQ0Kcm93bmFtZXMobWFuZGlidWxhcikgPC0gYygiU3VjZXNzIiwiRmFpbHVyZSIpDQptYW5kaWJ1bGFyIDwtIGFzLnRhYmxlKG1hbmRpYnVsYXIpDQptYW5kaWJ1bGFyDQoNCg0KYGBgDQoNCg0KIyBSZXN1bHRhZG9zDQojIyBjb24gRmlzaGVyDQpgYGB7cn0NCiMgQW5hbHlzaXMgd2l0aCBGaXNoZXIgdGVzdA0KDQpGaXNoZXJPdmVyYWxsIDwtIGZpc2hlci50ZXN0KG92ZXJhbGwpICMgcC12YWx1ZSA9IDAuMDAwNDk2DQpGaXNoZXJNYXggPC0gZmlzaGVyLnRlc3QobWF4aWxsYXJ5KSAjIHAtdmFsdWUgPSAwLjAwMDEwMTMNCkZpc2hlck1hbmQgPC0gZmlzaGVyLnRlc3QobWFuZGlidWxhcikgIyBwLXZhbHVlID0gMC40MDc1DQoNCmBgYA0KDQpgYGB7cn0NCg0KIyBBbmFseXNpcyB3aXRoIGNoaTINCkNoaU92ZXJhbGwgPC0gY2hpc3EudGVzdChvdmVyYWxsKSAjIFgtc3F1YXJlZCA9IDExLjgzNSwgZGYgPSAxLCBwLXZhbHVlID0gMC4wMDA1ODEzDQpDaGlNYXggPC0gY2hpc3EudGVzdChtYXhpbGxhcnkpICMgWC1zcXVhcmVkID0gMTMuMjcxLCBkZiA9IDEsIHAtdmFsdWUgPSAwLjAwMDI2OTYNCkNoaU1hbmQgPC0gY2hpc3EudGVzdChtYW5kaWJ1bGFyKSAjIFgtc3F1YXJlZCA9IDAuNjg3MjcsIGRmID0gMSwgcC12YWx1ZSA9IDAuNDA3MQ0KYGBgDQoNCg0KYGBge3J9DQpGaXNoZXJPdmVyYWxsIA0KRmlzaGVyTWF4IA0KRmlzaGVyTWFuZCANCmBgYA0KDQojIyBDb24gQ2hpDQpgYGB7cn0NCkNoaU92ZXJhbGwgDQpDaGlNYXggDQpDaGlNYW5kIA0KYGBgDQoNCg0KDQo=