rm(list=ls(all=T))
options(digits=4, scipen=12)
library(dplyr); library(ggplot2)

【A】 Definitions

機率、勝率(Odd)、Logit

  • Odd = \(p/(1-p)\)

  • Logit = \(log(odd)\) = \(log(\frac{p}{1=p})\)

  • \(o = p/(1-p)\) ; \(p = o/(1+o)\) ; \(logit = log(o)\)

par(cex=0.8, mfcol=c(1,2))
curve(x/(1-x), 0.02, 0.98, col='cyan',lwd=2, main='odd')
abline(v=seq(0,1,0.1), h=seq(0,50,5), col='lightgray', lty=3)
curve(log(x/(1-x)), 0.005, 0.995, lwd=2, col='purple', main="logit")
abline(v=seq(0,1,0.1), h=seq(-5,5,1), col='lightgray', lty=3)

Logistic Function & Logistic Regression

  • Linear Model: \(y = f(x) = b_0 + b_1x_1 + b_2x_2 + ...\)

  • General Linear Model(GLM): \(y = Link(f(x))\)

  • Logistic Regression: \(logit(y) = log(\frac{p}{1-p}) = f(x) \text{ where } p = prob[y=1]\)

  • Logistic Function: \(Logistic(F_x) = \frac{1}{1+Exp(-F_x)} = \frac{Exp(F_x)}{1+Exp(F_x)}\)

par(cex=0.8)
curve(1/(1+exp(-x)), -5, 5, col='blue', lwd=2,main="Logistic Function",
      xlab="f(x): the logit of y = 1", ylab="the probability of y = 1")
abline(v=-5:5, h=seq(0,1,0.1), col='lightgray', lty=2)
abline(v=0,h=0.5,col='pink')
points(0,0.5,pch=20,cex=1.5,col='red')

Q】What are the definiion of ligit & logistic function? What is the relationship between them?

【Ans】logistic function 是把ligit轉換成機率的公式



【B】glm(, family=binomial)

glm()的功能:在 \(\{x\}\) 的空間之中,找出區隔 \(y\) 的(類別)界線

Q = read.csv("data/quality.csv")  # Read in dataset
glm1 = glm(PoorCare~OfficeVisits+Narcotics, Q, family=binomial)
summary(glm1)

Call:
glm(formula = PoorCare ~ OfficeVisits + Narcotics, family = binomial, 
    data = Q)

Deviance Residuals: 
   Min      1Q  Median      3Q     Max  
-2.377  -0.627  -0.510  -0.154   2.119  

Coefficients:
             Estimate Std. Error z value    Pr(>|z|)    
(Intercept)   -2.5402     0.4500   -5.64 0.000000017 ***
OfficeVisits   0.0627     0.0240    2.62     0.00892 ** 
Narcotics      0.1099     0.0326    3.37     0.00076 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 147.88  on 130  degrees of freedom
Residual deviance: 116.45  on 128  degrees of freedom
AIC: 122.4

Number of Fisher Scoring iterations: 5
b = coef(glm1); b   # extract the regression coef
 (Intercept) OfficeVisits    Narcotics 
    -2.54021      0.06273      0.10990 

Given OfficeVisits=3, Narcotics=4, what are the predicted logit, odd and probability? #代表x(變數)值

logit = sum(b * c(1, 3, 4)) #係數b*x(變數)的值c  
Warning message:
In strsplit(code, "\n", fixed = TRUE) :
  input string 1 is invalid in this locale
odd = exp(logit) #ln(odd)=logit
prob = odd/(1+odd)
c(logit=logit, odd=odd, prob=prob)
  logit     odd    prob 
-1.9124  0.1477  0.1287 

Q】What if OfficeVisits=2, Narcotics=3?

【Ans】-2.08, 0.12 0.11

#-2.08, 0.12 0.11
logit = sum(b * c(1, 2, 3))
odd = exp(logit)
prob = odd/(1+odd)
c(logit=logit, odd=odd, prob=prob)
  logit     odd    prob 
-2.0851  0.1243  0.1106 

We can plot the line of logit = 0 or prob = 0.5 on the plane of \(X\)

In strsplit(code, "\n", fixed = TRUE) :
  input string 1 is invalid in this locale
plot(Q$OfficeVisits, Q$Narcotics, col=1+Q$PoorCare,pch=20) #R的顏色從1開始算,但PoorCare是factor(o,1)而0無法辨識,所以給他加1 #pch是點的形狀
abline(-b[1]/b[3], -b[2]/b[3])

Furthermore, we can translate probability, logit and coefficents to intercept & slope …

\[f(x) = b_1 + b_2 x_2 + b_3 x_3 = g \Rightarrow x_3 = \frac{g - b_1}{b_3} - \frac{b_2}{b_3}x_2\]

p = seq(0.1,0.9,0.1) #連續做,從0.1到0.9再到0.1
Warning message:
In strsplit(code, "\n", fixed = TRUE) :
  input string 1 is invalid in this locale
logit = log(p/(1-p))
data.frame(prob = p, logit)
  prob   logit
1  0.1 -2.1972
2  0.2 -1.3863
3  0.3 -0.8473
4  0.4 -0.4055
5  0.5  0.0000
6  0.6  0.4055
7  0.7  0.8473
8  0.8  1.3863
9  0.9  2.1972

then mark the contours of proabilities into the scatter plot

par(cex=0.7)
plot(Q$OfficeVisits, Q$Narcotics, col=1+Q$PoorCare,
     pch=20, cex=1.3, xlab='X2', ylab='X3')
for(g in logit) {
  abline((g-b[1])/b[3], -b[2]/b[3], col=ifelse(g==0,'blue','cyan')) }

Q】What do the blue/cyan lines means?

【Ans】Threshold機率=0.1,0.2,0.3,…,0.9

Q】Given any point in the figure above, how can you tell its (predicted) probability approximately?

【Ans】0.7



【C】The Confusion Matrix

Figure 1 - Confusion Matrix

Figure 1 - Confusion Matrix



【D】The Distribution of Predicted Probability (DPP)

Confusion matrix is not fixed. It changes by Threshold

Figure 2 - Dist. Prediected Prob.

Figure 2 - Dist. Prediected Prob.

library(caTools)
DPP2 = function(pred,class,tvalue,breaks=0.01) {
  mx = table(class == tvalue, pred > 0.5) 
  tn = sum(class != tvalue & pred <= 0.5)
  fn = sum(class == tvalue & pred <= 0.5)
  fp = sum(class != tvalue & pred > 0.5)
  tp = sum(class == tvalue & pred > 0.5)
  acc = (tn + tp)/length(pred)
  sens = tp/(fn+tp)
  spec = tn/(tn+fp)
  auc = colAUC(pred,class)
  data.frame(pred,class) %>% 
    ggplot(aes(x=pred, fill=class)) +
    geom_histogram(col='gray',alpha=0.5,breaks=seq(0,1,breaks)) +
    xlim(0,1) + theme_bw() + xlab("predicted probability") + 
    ggtitle(
      sprintf("Distribution of Prob[class = \'%s\']", tvalue),
      sprintf("AUC=%.3f, Acc=%.3f, Sens=%.3f, Spec=%.3f",
              auc, acc, sens, spec) ) 
  }
N1 = 300; N2 = 100 #sample size
DPP2(pred = c(rnorm(N1,0.125,0.03), rnorm(N2,0.375,0.03)), #變數名,平均值,標準差
     class = c(rep('B',N1), rep('A',N2)), 
     tvalue = 'A')

Q】Is it possible to have AUC = ACC = SENS = SPEC = 1? Can you modify the code to make it happen?

【Ans】

# 0.25, 0.75
N1 = 300; N2 = 100
DPP2(pred = c(rnorm(N1,0.25,0.03), rnorm(N2,0.75,0.03)),
     class = c(rep('B',N1), rep('A',N2)), 
     tvalue = 'A')

Q】Is it possible to have AUC = ACC = SENS = SPEC = 0? Can you modify the code to make that happen?

【Ans】

# 
N1 = 300; N2 = 100
DPP2(pred = c(rnorm(N1,0.9,0.03), rnorm(N2,0.1,0.03)),
     class = c(rep('B',N1), rep('A',N2)), 
     tvalue = 'A')



【E】Modeling Expert

E1: Random Split

set.seed(88)
split = sample.split(Q$PoorCare, SplitRatio = 0.75)
table(split) %>% prop.table()
split
 FALSE   TRUE 
0.2443 0.7557 
table(y = Q$PoorCare, split) %>% prop.table(2)
   split
y    FALSE   TRUE
  0 0.7500 0.7475
  1 0.2500 0.2525
TR = subset(Q, split == TRUE)
TS = subset(Q, split == FALSE)

E2: Build Model

glm1 = glm(PoorCare ~ OfficeVisits + Narcotics, TR, family=binomial)
summary(glm1)

Call:
glm(formula = PoorCare ~ OfficeVisits + Narcotics, family = binomial, 
    data = TR)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-2.0630  -0.6316  -0.5050  -0.0969   2.1669  

Coefficients:
             Estimate Std. Error z value   Pr(>|z|)    
(Intercept)   -2.6461     0.5236   -5.05 0.00000043 ***
OfficeVisits   0.0821     0.0305    2.69     0.0072 ** 
Narcotics      0.0763     0.0321    2.38     0.0173 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 111.888  on 98  degrees of freedom
Residual deviance:  89.127  on 96  degrees of freedom
AIC: 95.13

Number of Fisher Scoring iterations: 4

E3: Prediction & Evaluation

pred = predict(glm1, type='response')
mx = table(TR$PoorCare, pred > 0.5); mx
   
    FALSE TRUE
  0    70    4
  1    15   10
c(accuracy = sum(diag(mx))/sum(mx),
  sensitivity = mx[2,2]/sum(mx[2,]),
  specificity = mx[1,1]/sum(mx[1,]))
   accuracy sensitivity specificity 
     0.8081      0.4000      0.9459 

E4: ROC & AUC

library(ROCR)
ROCRpred = prediction(pred, TR$PoorCare)
ROCRperf = performance(ROCRpred, "tpr", "fpr")
par(cex=0.8)
plot(ROCRperf, colorize=TRUE, print.cutoffs.at=seq(0,1,0.1))

as.numeric(performance(ROCRpred, "auc")@y.values)
[1] 0.7746
caTools::colAUC(pred, TR$PoorCare)
          [,1]
0 vs. 1 0.7746



【F】Framingham Heart Study

source("DPP.R")

F1: Reading & Splitting

F = read.csv("data/framingham.csv")
set.seed(1000)
split = sample.split(F$TenYearCHD, SplitRatio = 0.65)
TR = subset(F, split==TRUE)
TS = subset(F, split==FALSE)

F2: Logistic Regression Model

glm2 = glm(TenYearCHD ~ ., TR, family=binomial)
summary(glm2)

Call:
glm(formula = TenYearCHD ~ ., family = binomial, data = TR)

Deviance Residuals: 
   Min      1Q  Median      3Q     Max  
-1.849  -0.601  -0.426  -0.284   2.837  

Coefficients:
                Estimate Std. Error z value        Pr(>|z|)    
(Intercept)     -7.88657    0.89073   -8.85         < 2e-16 ***
male             0.52846    0.13544    3.90 0.0000955212349 ***
age              0.06206    0.00834    7.44 0.0000000000001 ***
education       -0.05892    0.06243   -0.94          0.3453    
currentSmoker    0.09324    0.19401    0.48          0.6308    
cigsPerDay       0.01501    0.00783    1.92          0.0551 .  
BPMeds           0.31122    0.28741    1.08          0.2789    
prevalentStroke  1.16579    0.57121    2.04          0.0413 *  
prevalentHyp     0.31582    0.17176    1.84          0.0660 .  
diabetes        -0.42149    0.40799   -1.03          0.3016    
totChol          0.00384    0.00138    2.79          0.0053 ** 
sysBP            0.01134    0.00457    2.48          0.0130 *  
diaBP           -0.00474    0.00800   -0.59          0.5535    
BMI              0.01072    0.01616    0.66          0.5069    
heartRate       -0.00810    0.00531   -1.52          0.1274    
glucose          0.00893    0.00284    3.15          0.0016 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 2020.7  on 2384  degrees of freedom
Residual deviance: 1792.3  on 2369  degrees of freedom
  (371 observations deleted due to missingness)
AIC: 1824

Number of Fisher Scoring iterations: 5

F3: Prediction & Evaluation

pred = predict(glm2, TS, type="response")
y = TS$TenYearCHD[!is.na(pred)]             # remove NA
pred = pred[!is.na(pred)]
mx = table(y, pred > 0.5); mx
   
y   FALSE TRUE
  0  1069    6
  1   187   11
c(accuracy = sum(diag(mx))/sum(mx),
  sensitivity = mx[2,2]/sum(mx[2,]),
  specificity = mx[1,1]/sum(mx[1,]))
   accuracy sensitivity specificity 
    0.84839     0.05556     0.99442 

F4: AUC & DPP

par(cex=0.7)
auc = DPP(pred, y, 1, b=seq(0,1,0.02))  # 0.74211

F5: Expected Result & Optimization

Figure 3 - Startegic Optimization

Figure 3 - Startegic Optimization

range(pred)
[1] 0.01641 0.72958
payoff = matrix(c(0,-100,-10,-60),2,2) 
cutoff = seq(0.02, 0.64, 0.01)
result = sapply(cutoff, function(p) sum(table(y,pred>p)*payoff) )
i = which.max(result)
par(cex=0.7)
plot(cutoff, result, type='l', col='cyan', lwd=2, main=sprintf(
  "Optomal Expected Result: $%d @ %.2f",result[i],cutoff[i]))
abline(v=seq(0,1,0.05),h=seq(-23000,-17000,500),col='lightgray',lty=3)
abline(v=cutoff[i],col='red')

Q】如果什麼都不做,期望報酬是多少?

【Ans】-$19800

TN=1069
TP=11
FN=187
FP=6
risk=-100
havepill=-60
cost=0
TN*0 + TP*risk + FN*risk + FP*cost
[1] -19800

Q】如果每位病人都做呢?

【Ans】-$32090

TN=1069
TP=11
FN=187
FP=6
Total=1069+11+187+6
risk=-100
havepill=-60
cost=-10
TN*0 + TP*havepill + FN*risk + Total*cost
[1] -32090

Q】以上哪一種做法期望報酬比較高?

【Ans】每個人都不吃

Q】在所有的商務情境都是這種狀況嗎?

【Ans】不是,根據不同商務情況會有不同報酬矩陣

Q】你可以模擬出「全做」比「全不做」還要好的狀況、並舉出一個會發生這種狀況的商務情境嗎?

【Ans】比起全部單一化政策,讓有病的人吃藥,沒病的人不吃藥是最好的;將藥的成本調降(控制在低於$0.3)或是研發出功效更強的藥。

TN=1069
TP=11
FN=187
FP=6
Total=1069+11+187+6
risk=-100
havepill=-60
cost=-0.3
TN*0 + TP*havepill + FN*risk + Total*cost
[1] -19742


F6: Simulation

library(manipulate)
p0 = par(mfrow=c(2,1),cex=0.8)
manipulate({
  Y0 = -22000; Y1 = -12000
  mx = matrix(c(true_neg, false_neg, false_pos, true_pos),2,2) 
  cx = seq(0.02, 0.64, 0.01)
  rx = sapply(cx, function(p) sum(table(y, pred>p)*mx) )
  i = which.max(rx)
  plot(cx, rx, type='l',col='cyan',lwd=2,main=sprintf(
    "Optomal Expected Result: $%d @ %.2f, T:%d",rx[i],cx[i],sum(pred>cx[i])),
    ylim=c(Y0,Y1))
  abline(v=cx[i],col='red')
  abline(v=seq(0,1,0.1),h=seq(Y0,Y1,2000),col='lightgray',lty=3)
  DPP(pred, y, 1, b=seq(0,1,0.02))
  abline(v=cx[i],col='red')
  },
  true_neg  = slider(-100,100,0,step=5),
  false_neg = slider(-100,100,-100,step=5),
  false_pos = slider(-100,100,-10,step=5),
  true_pos  = slider(-100,100,-60,step=5)
  ) 
par(p0)

Q】有五種成本分別為 $5, $10, $15, $20, $30 的藥,它們分別可以將風險成本從 $100 降低到 $70, $60, $50, $40, $25,哪一種藥的期望效益是最大的呢?

【Ans】$20的藥

#1 (-5,-70) Expected Result:-17415
#2 (10,-60) Expected Result:-17500
#3 (15,-50) Expected Result:-17450
#4 (20,-40) Expected Result:-17400
#5 (30,-25) Expected Result:-17655



【G】分析流程:資料、模型、預測、決策

Figure 4 - 資料、模型、預測、決策

Figure 4 - 資料、模型、預測、決策






LS0tDQp0aXRsZTogIkFTMy0wIEdyb3VwLTUiDQphdXRob3I6ICLnrKzkupTntYQiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7ciBlY2hvPVQsIG1lc3NhZ2U9RiwgY2FjaGU9Riwgd2FybmluZz1GfQ0Kcm0obGlzdD1scyhhbGw9VCkpDQpvcHRpb25zKGRpZ2l0cz00LCBzY2lwZW49MTIpDQpsaWJyYXJ5KGRwbHlyKTsgbGlicmFyeShnZ3Bsb3QyKQ0KYGBgDQoNCg0KLSAtIC0NCg0KIyMjIOOAkEHjgJEgRGVmaW5pdGlvbnMNCg0KIyMjIyDmqZ/njofjgIHli53njocoT2RkKeOAgUxvZ2l0DQoNCisgT2RkID0gICRwLygxLXApJA0KDQorIExvZ2l0ID0gJGxvZyhvZGQpJCA9ICRsb2coXGZyYWN7cH17MT1wfSkkDQoNCisgJG8gPSBwLygxLXApJCA7ICRwID0gby8oMStvKSQgOyAgJGxvZ2l0ID0gbG9nKG8pJA0KDQpgYGB7ciBmaWcuaGVpZ2h0PTMuNiwgZmlnLndpZHRoPTd9DQpwYXIoY2V4PTAuOCwgbWZjb2w9YygxLDIpKQ0KY3VydmUoeC8oMS14KSwgMC4wMiwgMC45OCwgY29sPSdjeWFuJyxsd2Q9MiwgbWFpbj0nb2RkJykNCmFibGluZSh2PXNlcSgwLDEsMC4xKSwgaD1zZXEoMCw1MCw1KSwgY29sPSdsaWdodGdyYXknLCBsdHk9MykNCmN1cnZlKGxvZyh4LygxLXgpKSwgMC4wMDUsIDAuOTk1LCBsd2Q9MiwgY29sPSdwdXJwbGUnLCBtYWluPSJsb2dpdCIpDQphYmxpbmUodj1zZXEoMCwxLDAuMSksIGg9c2VxKC01LDUsMSksIGNvbD0nbGlnaHRncmF5JywgbHR5PTMpDQoNCmBgYA0KDQojIyMjIExvZ2lzdGljIEZ1bmN0aW9uICYgTG9naXN0aWMgUmVncmVzc2lvbg0KDQorIExpbmVhciBNb2RlbDogJHkgPSBmKHgpID0gYl8wICsgYl8xeF8xICsgYl8yeF8yICsgLi4uJA0KDQorIEdlbmVyYWwgTGluZWFyIE1vZGVsKEdMTSk6ICR5ID0gTGluayhmKHgpKSQgDQoNCisgTG9naXN0aWMgUmVncmVzc2lvbjogJGxvZ2l0KHkpID0gbG9nKFxmcmFje3B9ezEtcH0pID0gZih4KSBcdGV4dHsgd2hlcmUgfSBwID0gcHJvYlt5PTFdJCANCg0KKyBMb2dpc3RpYyBGdW5jdGlvbjogJExvZ2lzdGljKEZfeCkgPSBcZnJhY3sxfXsxK0V4cCgtRl94KX0gPSBcZnJhY3tFeHAoRl94KX17MStFeHAoRl94KX0kDQoNCmBgYHtyICBmaWcud2lkdGg9NCwgZmlnLmhlaWdodD00fQ0KcGFyKGNleD0wLjgpDQpjdXJ2ZSgxLygxK2V4cCgteCkpLCAtNSwgNSwgY29sPSdibHVlJywgbHdkPTIsbWFpbj0iTG9naXN0aWMgRnVuY3Rpb24iLA0KICAgICAgeGxhYj0iZih4KTogdGhlIGxvZ2l0IG9mIHkgPSAxIiwgeWxhYj0idGhlIHByb2JhYmlsaXR5IG9mIHkgPSAxIikNCmFibGluZSh2PS01OjUsIGg9c2VxKDAsMSwwLjEpLCBjb2w9J2xpZ2h0Z3JheScsIGx0eT0yKQ0KYWJsaW5lKHY9MCxoPTAuNSxjb2w9J3BpbmsnKQ0KcG9pbnRzKDAsMC41LHBjaD0yMCxjZXg9MS41LGNvbD0ncmVkJykNCmBgYA0KDQrjgJAqKlEqKuOAkVdoYXQgYXJlIHRoZSBkZWZpbmlpb24gb2YgYGxpZ2l0YCAmIGBsb2dpc3RpYyBmdW5jdGlvbmA/IFdoYXQgaXMgdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHRoZW0/DQoNCuOAkEFuc+OAkWxvZ2lzdGljIGZ1bmN0aW9uIOaYr+aKimxpZ2l06L2J5o+b5oiQ5qmf546H55qE5YWs5byPDQoNCjxicj4NCg0KLSAtIC0NCg0KIyMjIOOAkELjgJFgZ2xtKCwgZmFtaWx5PWJpbm9taWFsKWANCg0KYGdsbSgpYOeahOWKn+iDve+8muWcqCAkXHt4XH0kIOeahOepuumWk+S5i+S4re+8jOaJvuWHuuWNgOmalCAkeSQg55qEKOmhnuWIpSnnlYznt5oNCg0KYGBge3J9DQpRID0gcmVhZC5jc3YoImRhdGEvcXVhbGl0eS5jc3YiKSAgIyBSZWFkIGluIGRhdGFzZXQNCmdsbTEgPSBnbG0oUG9vckNhcmV+T2ZmaWNlVmlzaXRzK05hcmNvdGljcywgUSwgZmFtaWx5PWJpbm9taWFsKQ0Kc3VtbWFyeShnbG0xKQ0KYGBgDQoNCmBgYHtyfQ0KYiA9IGNvZWYoZ2xtMSk7IGIgICAjIGV4dHJhY3QgdGhlIHJlZ3Jlc3Npb24gY29lZg0KYGBgDQoNCkdpdmVuIGBPZmZpY2VWaXNpdHM9MywgTmFyY290aWNzPTRgLCB3aGF0IGFyZSB0aGUgcHJlZGljdGVkIGxvZ2l0LCBvZGQgYW5kIHByb2JhYmlsaXR5PyAj5Luj6KGoeCjorormlbgp5YC8DQpgYGB7cn0NCmxvZ2l0ID0gc3VtKGIgKiBjKDEsIDMsIDQpKSAj5L+C5pW4Yip4KOiuiuaVuCnnmoTlgLxjICANCm9kZCA9IGV4cChsb2dpdCkgI2xuKG9kZCk9bG9naXQNCnByb2IgPSBvZGQvKDErb2RkKQ0KYyhsb2dpdD1sb2dpdCwgb2RkPW9kZCwgcHJvYj1wcm9iKQ0KYGBgDQoNCuOAkCoqUSoq44CRV2hhdCBpZiBgT2ZmaWNlVmlzaXRzPTIsIE5hcmNvdGljcz0zYD8NCg0K44CQQW5z44CRLTIuMDgsIDAuMTIgMC4xMQ0KYGBge3J9DQojLTIuMDgsIDAuMTIgMC4xMQ0KbG9naXQgPSBzdW0oYiAqIGMoMSwgMiwgMykpDQpvZGQgPSBleHAobG9naXQpDQpwcm9iID0gb2RkLygxK29kZCkNCmMobG9naXQ9bG9naXQsIG9kZD1vZGQsIHByb2I9cHJvYikNCmBgYA0KDQpXZSBjYW4gcGxvdCB0aGUgbGluZSBvZiBgbG9naXQgPSAwYCBvciBgcHJvYiA9IDAuNWAgb24gdGhlIHBsYW5lIG9mICRYJA0KYGBge3IgZmlnLndpZHRoPTMuNiwgZmlnLmhlaWdodD0zLjZ9DQpwYXIoY2V4PTAuOCkgI2NleOaYr+m7nueahOWkp+Wwjw0KcGxvdChRJE9mZmljZVZpc2l0cywgUSROYXJjb3RpY3MsIGNvbD0xK1EkUG9vckNhcmUscGNoPTIwKSAjUueahOmhj+iJsuW+njHplovlp4vnrpcs5L2GUG9vckNhcmXmmK9mYWN0b3IobywxKeiAjDDnhKHms5XovqjorZgs5omA5Lul57Wm5LuW5YqgMSAjcGNo5piv6bue55qE5b2i54uADQphYmxpbmUoLWJbMV0vYlszXSwgLWJbMl0vYlszXSkNCmBgYA0KDQpGdXJ0aGVybW9yZSwgd2UgY2FuIHRyYW5zbGF0ZSBwcm9iYWJpbGl0eSwgbG9naXQgYW5kIGNvZWZmaWNlbnRzIHRvIGludGVyY2VwdCAmIHNsb3BlIC4uLg0KDQokJGYoeCkgPSBiXzEgKyBiXzIgeF8yICsgYl8zIHhfMyA9IGcgXFJpZ2h0YXJyb3cgIHhfMyA9IFxmcmFje2cgLSBiXzF9e2JfM30gLSBcZnJhY3tiXzJ9e2JfM314XzIkJA0KDQoNCmBgYHtyICBmaWcud2lkdGg9My42LCBmaWcuaGVpZ2h0PTMuNn0NCnAgPSBzZXEoMC4xLDAuOSwwLjEpICPpgKPnuozlgZos5b6eMC4x5YiwMC455YaN5YiwMC4xDQpsb2dpdCA9IGxvZyhwLygxLXApKQ0KZGF0YS5mcmFtZShwcm9iID0gcCwgbG9naXQpDQpgYGANCg0KdGhlbiBtYXJrIHRoZSBjb250b3VycyBvZiBwcm9hYmlsaXRpZXMgaW50byB0aGUgc2NhdHRlciBwbG90IA0KYGBge3IgIGZpZy53aWR0aD0zLjYsIGZpZy5oZWlnaHQ9My42fQ0KcGFyKGNleD0wLjcpDQpwbG90KFEkT2ZmaWNlVmlzaXRzLCBRJE5hcmNvdGljcywgY29sPTErUSRQb29yQ2FyZSwNCiAgICAgcGNoPTIwLCBjZXg9MS4zLCB4bGFiPSdYMicsIHlsYWI9J1gzJykNCmZvcihnIGluIGxvZ2l0KSB7DQogIGFibGluZSgoZy1iWzFdKS9iWzNdLCAtYlsyXS9iWzNdLCBjb2w9aWZlbHNlKGc9PTAsJ2JsdWUnLCdjeWFuJykpIH0NCmBgYA0KDQrjgJAqKlEqKuOAkVdoYXQgZG8gdGhlIGJsdWUvY3lhbiBsaW5lcyBtZWFucz8gDQoNCuOAkEFuc+OAkVRocmVzaG9sZOapn+eOhz0wLjEsMC4yLDAuMywuLi4sMC45DQoNCg0K44CQKipRKirjgJFHaXZlbiBhbnkgcG9pbnQgaW4gdGhlIGZpZ3VyZSBhYm92ZSwgaG93IGNhbiB5b3UgdGVsbCBpdHMgKHByZWRpY3RlZCkgcHJvYmFiaWxpdHkgYXBwcm94aW1hdGVseT8gDQoNCuOAkEFuc+OAkTAuNw0KDQo8YnI+DQoNCi0gLSAtDQoNCiMjIyDjgJBD44CRVGhlIENvbmZ1c2lvbiBNYXRyaXgNCg0KDQohW0ZpZ3VyZSAxIC0gQ29uZnVzaW9uIE1hdHJpeF0ocmVzL2NvbmZ1c2lvbl9tYXRyaXguanBnKQ0KDQoNCjxicj4NCg0KLSAtIC0NCiMjIyDjgJBE44CRVGhlIERpc3RyaWJ1dGlvbiBvZiBQcmVkaWN0ZWQgUHJvYmFiaWxpdHkgKERQUCkNCg0KQ29uZnVzaW9uIG1hdHJpeCBpcyBub3QgZml4ZWQuIEl0IGNoYW5nZXMgYnkgYFRocmVzaG9sZGAgLi4uDQoNCiFbRmlndXJlIDIgLSBEaXN0LiBQcmVkaWVjdGVkIFByb2IuXShyZXMvZHBwLmpwZykNCg0KDQoNCmBgYHtyfQ0KbGlicmFyeShjYVRvb2xzKQ0KRFBQMiA9IGZ1bmN0aW9uKHByZWQsY2xhc3MsdHZhbHVlLGJyZWFrcz0wLjAxKSB7DQogIG14ID0gdGFibGUoY2xhc3MgPT0gdHZhbHVlLCBwcmVkID4gMC41KSANCiAgdG4gPSBzdW0oY2xhc3MgIT0gdHZhbHVlICYgcHJlZCA8PSAwLjUpDQogIGZuID0gc3VtKGNsYXNzID09IHR2YWx1ZSAmIHByZWQgPD0gMC41KQ0KICBmcCA9IHN1bShjbGFzcyAhPSB0dmFsdWUgJiBwcmVkID4gMC41KQ0KICB0cCA9IHN1bShjbGFzcyA9PSB0dmFsdWUgJiBwcmVkID4gMC41KQ0KICBhY2MgPSAodG4gKyB0cCkvbGVuZ3RoKHByZWQpDQogIHNlbnMgPSB0cC8oZm4rdHApDQogIHNwZWMgPSB0bi8odG4rZnApDQogIGF1YyA9IGNvbEFVQyhwcmVkLGNsYXNzKQ0KICBkYXRhLmZyYW1lKHByZWQsY2xhc3MpICU+JSANCiAgICBnZ3Bsb3QoYWVzKHg9cHJlZCwgZmlsbD1jbGFzcykpICsNCiAgICBnZW9tX2hpc3RvZ3JhbShjb2w9J2dyYXknLGFscGhhPTAuNSxicmVha3M9c2VxKDAsMSxicmVha3MpKSArDQogICAgeGxpbSgwLDEpICsgdGhlbWVfYncoKSArIHhsYWIoInByZWRpY3RlZCBwcm9iYWJpbGl0eSIpICsgDQogICAgZ2d0aXRsZSgNCiAgICAgIHNwcmludGYoIkRpc3RyaWJ1dGlvbiBvZiBQcm9iW2NsYXNzID0gXCclc1wnXSIsIHR2YWx1ZSksDQogICAgICBzcHJpbnRmKCJBVUM9JS4zZiwgQWNjPSUuM2YsIFNlbnM9JS4zZiwgU3BlYz0lLjNmIiwNCiAgICAgICAgICAgICAgYXVjLCBhY2MsIHNlbnMsIHNwZWMpICkgDQogIH0NCg0KYGBgDQoNCmBgYHtyIGZpZy53aWR0aD04LCBmaWcuaGVpZ2h0PTIuNX0NCk4xID0gMzAwOyBOMiA9IDEwMCAjc2FtcGxlIHNpemUNCkRQUDIocHJlZCA9IGMocm5vcm0oTjEsMC4xMjUsMC4wMyksIHJub3JtKE4yLDAuMzc1LDAuMDMpKSwgI+iuiuaVuOWQjSzlubPlnYflgLws5qiZ5rqW5beuDQogICAgIGNsYXNzID0gYyhyZXAoJ0InLE4xKSwgcmVwKCdBJyxOMikpLCANCiAgICAgdHZhbHVlID0gJ0EnKQ0KYGBgDQoNCuOAkCoqUSoq44CRSXMgaXQgcG9zc2libGUgdG8gaGF2ZSBgQVVDID0gQUNDID0gU0VOUyA9IFNQRUMgPSAxYD8gQ2FuIHlvdSBtb2RpZnkgdGhlIGNvZGUgdG8gbWFrZSBpdCBoYXBwZW4/DQoNCuOAkEFuc+OAkQ0KDQpgYGB7ciBmaWcud2lkdGg9OCwgZmlnLmhlaWdodD0yLjV9DQojIDAuMjUsIDAuNzUNCk4xID0gMzAwOyBOMiA9IDEwMA0KRFBQMihwcmVkID0gYyhybm9ybShOMSwwLjI1LDAuMDMpLCBybm9ybShOMiwwLjc1LDAuMDMpKSwNCiAgICAgY2xhc3MgPSBjKHJlcCgnQicsTjEpLCByZXAoJ0EnLE4yKSksIA0KICAgICB0dmFsdWUgPSAnQScpDQpgYGANCg0KDQrjgJAqKlEqKuOAkUlzIGl0IHBvc3NpYmxlIHRvIGhhdmUgYEFVQyA9IEFDQyA9IFNFTlMgPSBTUEVDID0gMGA/IENhbiB5b3UgbW9kaWZ5IHRoZSBjb2RlIHRvIG1ha2UgdGhhdCBoYXBwZW4/DQoNCuOAkEFuc+OAkQ0KYGBge3IgZmlnLndpZHRoPTgsIGZpZy5oZWlnaHQ9Mi41fQ0KTjEgPSAzMDA7IE4yID0gMTAwDQpEUFAyKHByZWQgPSBjKHJub3JtKE4xLDAuOSwwLjAzKSwgcm5vcm0oTjIsMC4xLDAuMDMpKSwNCiAgICAgY2xhc3MgPSBjKHJlcCgnQicsTjEpLCByZXAoJ0EnLE4yKSksIA0KICAgICB0dmFsdWUgPSAnQScpDQpgYGANCjxicj4NCg0KLSAtIC0NCiMjIyDjgJBF44CRTW9kZWxpbmcgRXhwZXJ0DQoNCiMjIyMgRTE6IFJhbmRvbSBTcGxpdA0KYGBge3J9DQpzZXQuc2VlZCg4OCkNCnNwbGl0ID0gc2FtcGxlLnNwbGl0KFEkUG9vckNhcmUsIFNwbGl0UmF0aW8gPSAwLjc1KQ0KdGFibGUoc3BsaXQpICU+JSBwcm9wLnRhYmxlKCkNCnRhYmxlKHkgPSBRJFBvb3JDYXJlLCBzcGxpdCkgJT4lIHByb3AudGFibGUoMikNCmBgYA0KDQpgYGB7cn0NClRSID0gc3Vic2V0KFEsIHNwbGl0ID09IFRSVUUpDQpUUyA9IHN1YnNldChRLCBzcGxpdCA9PSBGQUxTRSkNCmBgYA0KDQojIyMjIEUyOiBCdWlsZCBNb2RlbA0KYGBge3J9DQpnbG0xID0gZ2xtKFBvb3JDYXJlIH4gT2ZmaWNlVmlzaXRzICsgTmFyY290aWNzLCBUUiwgZmFtaWx5PWJpbm9taWFsKQ0Kc3VtbWFyeShnbG0xKQ0KYGBgDQoNCiMjIyMgRTM6IFByZWRpY3Rpb24gJiBFdmFsdWF0aW9uDQpgYGB7cn0NCnByZWQgPSBwcmVkaWN0KGdsbTEsIHR5cGU9J3Jlc3BvbnNlJykNCm14ID0gdGFibGUoVFIkUG9vckNhcmUsIHByZWQgPiAwLjUpOyBteA0KYyhhY2N1cmFjeSA9IHN1bShkaWFnKG14KSkvc3VtKG14KSwNCiAgc2Vuc2l0aXZpdHkgPSBteFsyLDJdL3N1bShteFsyLF0pLA0KICBzcGVjaWZpY2l0eSA9IG14WzEsMV0vc3VtKG14WzEsXSkpDQpgYGANCg0KIyMjIyBFNDogUk9DICYgQVVDDQpgYGB7ciBmaWcud2lkdGg9NSwgZmlnLmhlaWdodD01fQ0KbGlicmFyeShST0NSKQ0KUk9DUnByZWQgPSBwcmVkaWN0aW9uKHByZWQsIFRSJFBvb3JDYXJlKQ0KUk9DUnBlcmYgPSBwZXJmb3JtYW5jZShST0NScHJlZCwgInRwciIsICJmcHIiKQ0KcGFyKGNleD0wLjgpDQpwbG90KFJPQ1JwZXJmLCBjb2xvcml6ZT1UUlVFLCBwcmludC5jdXRvZmZzLmF0PXNlcSgwLDEsMC4xKSkNCmBgYA0KDQpgYGB7cn0NCmFzLm51bWVyaWMocGVyZm9ybWFuY2UoUk9DUnByZWQsICJhdWMiKUB5LnZhbHVlcykNCmNhVG9vbHM6OmNvbEFVQyhwcmVkLCBUUiRQb29yQ2FyZSkNCmBgYA0KDQo8YnI+DQoNCi0gLSAtDQojIyMg44CQRuOAkUZyYW1pbmdoYW0gSGVhcnQgU3R1ZHkNCg0KYGBge3J9DQpzb3VyY2UoIkRQUC5SIikNCmBgYA0KDQojIyMjIEYxOiBSZWFkaW5nICYgU3BsaXR0aW5nDQpgYGB7cn0NCkYgPSByZWFkLmNzdigiZGF0YS9mcmFtaW5naGFtLmNzdiIpDQpzZXQuc2VlZCgxMDAwKQ0Kc3BsaXQgPSBzYW1wbGUuc3BsaXQoRiRUZW5ZZWFyQ0hELCBTcGxpdFJhdGlvID0gMC42NSkNClRSID0gc3Vic2V0KEYsIHNwbGl0PT1UUlVFKQ0KVFMgPSBzdWJzZXQoRiwgc3BsaXQ9PUZBTFNFKQ0KYGBgDQoNCiMjIyMgRjI6IExvZ2lzdGljIFJlZ3Jlc3Npb24gTW9kZWwNCmBgYHtyfQ0KZ2xtMiA9IGdsbShUZW5ZZWFyQ0hEIH4gLiwgVFIsIGZhbWlseT1iaW5vbWlhbCkNCnN1bW1hcnkoZ2xtMikNCmBgYA0KDQojIyMjIEYzOiBQcmVkaWN0aW9uICYgRXZhbHVhdGlvbg0KYGBge3J9DQpwcmVkID0gcHJlZGljdChnbG0yLCBUUywgdHlwZT0icmVzcG9uc2UiKQ0KeSA9IFRTJFRlblllYXJDSERbIWlzLm5hKHByZWQpXSAgICAgICAgICAgICAjIHJlbW92ZSBOQQ0KcHJlZCA9IHByZWRbIWlzLm5hKHByZWQpXQ0KDQpteCA9IHRhYmxlKHksIHByZWQgPiAwLjUpOyBteA0KYyhhY2N1cmFjeSA9IHN1bShkaWFnKG14KSkvc3VtKG14KSwNCiAgc2Vuc2l0aXZpdHkgPSBteFsyLDJdL3N1bShteFsyLF0pLA0KICBzcGVjaWZpY2l0eSA9IG14WzEsMV0vc3VtKG14WzEsXSkpDQoNCmBgYA0KDQojIyMjIEY0OiBBVUMgJiBEUFANCmBgYHtyIGZpZy53aWR0aD03LCBmaWcuaGVpZ2h0PTIuNH0NCnBhcihjZXg9MC43KQ0KYXVjID0gRFBQKHByZWQsIHksIDEsIGI9c2VxKDAsMSwwLjAyKSkgICMgMC43NDIxMQ0KYGBgDQoNCiMjIyMgRjU6IEV4cGVjdGVkIFJlc3VsdCAmIE9wdGltaXphdGlvbg0KDQoNCiFbRmlndXJlIDMgLSBTdGFydGVnaWMgT3B0aW1pemF0aW9uXShyZXMvb3B0aW1pemF0aW9uLmpwZykNCg0KYGBge3J9DQpyYW5nZShwcmVkKQ0KYGBgDQoNCmBgYHtyIGZpZy53aWR0aD01LCBmaWcuaGVpZ2h0PTR9DQpwYXlvZmYgPSBtYXRyaXgoYygwLC0xMDAsLTEwLC02MCksMiwyKSANCmN1dG9mZiA9IHNlcSgwLjAyLCAwLjY0LCAwLjAxKQ0KcmVzdWx0ID0gc2FwcGx5KGN1dG9mZiwgZnVuY3Rpb24ocCkgc3VtKHRhYmxlKHkscHJlZD5wKSpwYXlvZmYpICkNCmkgPSB3aGljaC5tYXgocmVzdWx0KQ0KcGFyKGNleD0wLjcpDQpwbG90KGN1dG9mZiwgcmVzdWx0LCB0eXBlPSdsJywgY29sPSdjeWFuJywgbHdkPTIsIG1haW49c3ByaW50ZigNCiAgIk9wdG9tYWwgRXhwZWN0ZWQgUmVzdWx0OiAkJWQgQCAlLjJmIixyZXN1bHRbaV0sY3V0b2ZmW2ldKSkNCmFibGluZSh2PXNlcSgwLDEsMC4wNSksaD1zZXEoLTIzMDAwLC0xNzAwMCw1MDApLGNvbD0nbGlnaHRncmF5JyxsdHk9MykNCmFibGluZSh2PWN1dG9mZltpXSxjb2w9J3JlZCcpDQpgYGANCg0K44CQKipRKirjgJHlpoLmnpzku4Dpurzpg73kuI3lgZrvvIzmnJ/mnJvloLHphazmmK/lpJrlsJHvvJ8NCg0K44CQQW5z44CRLSQxOTgwMA0KYGBge3J9DQpUTj0xMDY5DQpUUD0xMQ0KRk49MTg3DQpGUD02DQpyaXNrPS0xMDANCmhhdmVwaWxsPS02MA0KY29zdD0wDQoNClROKjAgKyBUUCpyaXNrICsgRk4qcmlzayArIEZQKmNvc3QNCmBgYA0KDQoNCuOAkCoqUSoq44CR5aaC5p6c5q+P5L2N55eF5Lq66YO95YGa5ZGi77yfDQoNCuOAkEFuc+OAkS0kMzIwOTANCmBgYHtyfQ0KVE49MTA2OQ0KVFA9MTENCkZOPTE4Nw0KRlA9Ng0KVG90YWw9MTA2OSsxMSsxODcrNg0Kcmlzaz0tMTAwDQpoYXZlcGlsbD0tNjANCmNvc3Q9LTEwDQoNClROKjAgKyBUUCpoYXZlcGlsbCArIEZOKnJpc2sgKyBUb3RhbCpjb3N0DQpgYGANCg0K44CQKipRKirjgJHku6XkuIrlk6rkuIDnqK7lgZrms5XmnJ/mnJvloLHphazmr5TovIPpq5jvvJ8NCg0K44CQQW5z44CR5q+P5YCL5Lq66YO95LiN5ZCDDQoNCuOAkCoqUSoq44CR5Zyo5omA5pyJ55qE5ZWG5YuZ5oOF5aKD6YO95piv6YCZ56iu54uA5rOB5ZeO77yfDQoNCuOAkEFuc+OAkeS4jeaYr++8jOagueaTmuS4jeWQjOWVhuWLmeaDheazgeacg+acieS4jeWQjOWgsemFrOefqemZow0KDQrjgJAqKlEqKuOAkeS9oOWPr+S7peaooeaTrOWHuuOAjOWFqOWBmuOAjeavlOOAjOWFqOS4jeWBmuOAjemChOimgeWlveeahOeLgOazgeOAgeS4puiIieWHuuS4gOWAi+acg+eZvOeUn+mAmeeorueLgOazgeeahOWVhuWLmeaDheWig+WXju+8nw0KDQrjgJBBbnPjgJHmr5Totbflhajpg6jllq7kuIDljJbmlL/nrZYs6K6T5pyJ55eF55qE5Lq65ZCD6JelLOaykueXheeahOS6uuS4jeWQg+iXpeaYr+acgOWlveeahDvlsIfol6XnmoTmiJDmnKzoqr/pmY0o5o6n5Yi25Zyo5L2O5pa8JDAuMynmiJbmmK/noJTnmbzlh7rlip/mlYjmm7TlvLfnmoTol6XjgIINCg0KYGBge3J9DQpUTj0xMDY5DQpUUD0xMQ0KRk49MTg3DQpGUD02DQpUb3RhbD0xMDY5KzExKzE4Nys2DQpyaXNrPS0xMDANCmhhdmVwaWxsPS02MA0KY29zdD0tMC4zDQoNClROKjAgKyBUUCpoYXZlcGlsbCArIEZOKnJpc2sgKyBUb3RhbCpjb3N0DQpgYGANCg0KPGJyPg0KDQojIyMjIEY2OiBTaW11bGF0aW9uDQpgYGB7ciBmaWcud2lkdGg9NiwgZmlnLmhlaWdodD02fQ0KbGlicmFyeShtYW5pcHVsYXRlKQ0KcDAgPSBwYXIobWZyb3c9YygyLDEpLGNleD0wLjgpDQptYW5pcHVsYXRlKHsNCiAgWTAgPSAtMjIwMDA7IFkxID0gLTEyMDAwDQogIG14ID0gbWF0cml4KGModHJ1ZV9uZWcsIGZhbHNlX25lZywgZmFsc2VfcG9zLCB0cnVlX3BvcyksMiwyKSANCiAgY3ggPSBzZXEoMC4wMiwgMC42NCwgMC4wMSkNCiAgcnggPSBzYXBwbHkoY3gsIGZ1bmN0aW9uKHApIHN1bSh0YWJsZSh5LCBwcmVkPnApKm14KSApDQogIGkgPSB3aGljaC5tYXgocngpDQogIHBsb3QoY3gsIHJ4LCB0eXBlPSdsJyxjb2w9J2N5YW4nLGx3ZD0yLG1haW49c3ByaW50ZigNCiAgICAiT3B0b21hbCBFeHBlY3RlZCBSZXN1bHQ6ICQlZCBAICUuMmYsIFQ6JWQiLHJ4W2ldLGN4W2ldLHN1bShwcmVkPmN4W2ldKSksDQogICAgeWxpbT1jKFkwLFkxKSkNCiAgYWJsaW5lKHY9Y3hbaV0sY29sPSdyZWQnKQ0KICBhYmxpbmUodj1zZXEoMCwxLDAuMSksaD1zZXEoWTAsWTEsMjAwMCksY29sPSdsaWdodGdyYXknLGx0eT0zKQ0KICBEUFAocHJlZCwgeSwgMSwgYj1zZXEoMCwxLDAuMDIpKQ0KICBhYmxpbmUodj1jeFtpXSxjb2w9J3JlZCcpDQogIH0sDQogIHRydWVfbmVnICA9IHNsaWRlcigtMTAwLDEwMCwwLHN0ZXA9NSksDQogIGZhbHNlX25lZyA9IHNsaWRlcigtMTAwLDEwMCwtMTAwLHN0ZXA9NSksDQogIGZhbHNlX3BvcyA9IHNsaWRlcigtMTAwLDEwMCwtMTAsc3RlcD01KSwNCiAgdHJ1ZV9wb3MgID0gc2xpZGVyKC0xMDAsMTAwLC02MCxzdGVwPTUpDQogICkgDQpwYXIocDApDQpgYGANCg0KDQrjgJAqKlEqKuOAkeacieS6lOeoruaIkOacrOWIhuWIpeeCuiBgJDUsICQxMCwgJDE1LCAkMjAsICQzMGAg55qE6Jel77yM5a6D5YCR5YiG5Yil5Y+v5Lul5bCH6aKo6Zqq5oiQ5pys5b6eIGAkMTAwYCDpmY3kvY7liLAgYCQ3MCwgJDYwLCAkNTAsICQ0MCwgJDI1YO+8jOWTquS4gOeoruiXpeeahOacn+acm+aViOebiuaYr+acgOWkp+eahOWRou+8nw0KDQrjgJBBbnPjgJEkMjDnmoTol6UNCmBgYHtyfQ0KIzEgKC01LC03MCkgRXhwZWN0ZWQgUmVzdWx0Oi0xNzQxNQ0KIzIgKDEwLC02MCkgRXhwZWN0ZWQgUmVzdWx0Oi0xNzUwMA0KIzMgKDE1LC01MCkgRXhwZWN0ZWQgUmVzdWx0Oi0xNzQ1MA0KIzQgKDIwLC00MCkgRXhwZWN0ZWQgUmVzdWx0Oi0xNzQwMA0KIzUgKDMwLC0yNSkgRXhwZWN0ZWQgUmVzdWx0Oi0xNzY1NQ0KYGBgDQoNCiFbXShyZXMvcDEuanBnKQ0KDQoNCjxicj4NCg0KLSAtIC0NCiMjIyDjgJBH44CR5YiG5p6Q5rWB56iL77ya6LOH5paZ44CB5qih5Z6L44CB6aCQ5ris44CB5rG6562WDQoNCiFbRmlndXJlIDQgLSDos4fmlpnjgIHmqKHlnovjgIHpoJDmuKzjgIHmsbrnrZZdKHJlcy9mbG93LmpwZykNCg0KDQoNCjxicj48YnI+PGJyPjxicj48YnI+DQoNCg0KDQoNCg0KDQoNCg0KDQo=