rm(list=ls(all=T))
options(digits=4, scipen=12)
library(dplyr); library(ggplot2)

Attaching package: 愼㸱愼㸵dplyr愼㸱愼㸶

The following objects are masked from 愼㸱愼㸵package:stats愼㸱愼㸶:

    filter, lag

The following objects are masked from 愼㸱愼㸵package:base愼㸱愼㸶:

    intersect, setdiff, setequal, union

Use suppressPackageStartupMessages() to eliminate package startup messages.

【A】 Definitions

機率、勝率(Odd)、Logit

  • Odd = \(p/(1-p)\)

  • Logit = \(log(odd)\) = \(log(\frac{p}{1=p})\)

  • \(o = p/(1-p)\) ; \(p = o/(1+o)\) ; \(logit = log(o)\)

par(cex=0.8, mfcol=c(1,2))
curve(x/(1-x), 0.02, 0.98, col='cyan',lwd=2, main='odd')
abline(v=seq(0,1,0.1), h=seq(0,50,5), col='lightgray', lty=3)
curve(log(x/(1-x)), 0.005, 0.995, lwd=2, col='purple', main="logit")
abline(v=seq(0,1,0.1), h=seq(-5,5,1), col='lightgray', lty=3)

Logistic Function & Logistic Regression

  • Linear Model: \(y = f(x) = b_0 + b_1x_1 + b_2x_2 + ...\)

  • General Linear Model(GLM): \(y = Link(f(x))\)

  • Logistic Regression: \(logit(y) = log(\frac{p}{1-p}) = f(x) \text{ where } p = prob[y=1]\)

  • Logistic Function: \(Logistic(F_x) = \frac{1}{1+Exp(-F_x)} = \frac{Exp(F_x)}{1+Exp(F_x)}\)

par(cex=0.8)
curve(1/(1+exp(-x)), -5, 5, col='blue', lwd=2,main="Logistic Function",
      xlab="f(x): the logit of y = 1", ylab="the probability of y = 1")
abline(v=-5:5, h=seq(0,1,0.1), col='lightgray', lty=2)
abline(v=0,h=0.5,col='pink')
points(0,0.5,pch=20,cex=1.5,col='red')

Q】What are the definiion of ligit & logistic function? What is the relationship between them?

logit : 機率的一種算法 => log(odd) logistic function : 把logit轉成y=1的機率。



【B】glm(, family=binomial)

glm()的功能:在 \(\{x\}\) 的空間之中,找出區隔 \(y\) 的(類別)界線

Q = read.csv("data/quality.csv")
glm1 = glm(PoorCare~OfficeVisits+Narcotics, Q, family=binomial)
summary(glm1)

Call:
glm(formula = PoorCare ~ OfficeVisits + Narcotics, family = binomial, 
    data = Q)

Deviance Residuals: 
   Min      1Q  Median      3Q     Max  
-2.377  -0.627  -0.510  -0.154   2.119  

Coefficients:
             Estimate Std. Error z value    Pr(>|z|)    
(Intercept)   -2.5402     0.4500   -5.64 0.000000017 ***
OfficeVisits   0.0627     0.0240    2.62     0.00892 ** 
Narcotics      0.1099     0.0326    3.37     0.00076 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 147.88  on 130  degrees of freedom
Residual deviance: 116.45  on 128  degrees of freedom
AIC: 122.4

Number of Fisher Scoring iterations: 5
b = coef(glm1); b   # extract the regression coef
 (Intercept) OfficeVisits    Narcotics 
    -2.54021      0.06273      0.10990 

Given OfficeVisits=3, Narcotics=4, what are the predicted logit, odd and probability?

logit = sum(b * c(1, 3, 4))
odd = exp(logit)
prob = odd/(1+odd)
c(logit=logit, odd=odd, prob=prob)
  logit     odd    prob 
-1.9124  0.1477  0.1287 

Q】What if OfficeVisits=2, Narcotics=3?

logit_q = sum(b * c(1, 2, 3))
odd_q = exp(logit_q)
prob_q = odd_q / (1+odd_q) # => (p / 1-p) / (1/(1-p)) = p*(1-p) / 1(1-p) = p
prob_q2 = 1 / (1+exp(-1*logit_q)) #Another way to calculate probabilitys from logit.
c(logit=logit_q, odd=odd_q, prob=prob_q)
  logit     odd    prob 
-2.0851  0.1243  0.1106 
#

We can plot the line of logit = 0 or prob = 0.5 on the plane of \(X\)

par(cex=0.8)
plot(Q$OfficeVisits, Q$Narcotics, col=1+Q$PoorCare,pch=20)
abline(-b[1]/b[3], -b[2]/b[3])

Furthermore, we can translate probability, logit and coefficents to intercept & slope …

\[f(x) = b_1 + b_2 x_2 + b_3 x_3 = g \Rightarrow x_3 = \frac{g - b_1}{b_3} - \frac{b_2}{b_3}x_2\]

p = seq(0.1,0.9,0.1)
logit = log(p/(1-p))
data.frame(prob = p, logit)

then mark the contours of proabilities into the scatter plot

par(cex=0.7)
plot(Q$OfficeVisits, Q$Narcotics, col=1+Q$PoorCare,
     pch=20, cex=1.3, xlab='X2', ylab='X3')
for(g in logit) {
  abline((g-b[1])/b[3], -b[2]/b[3], col=ifelse(g==0,'blue','cyan')) }

Q】What do the blue/cyan lines means? 機率從0.1~0.9的線 【Q】Given any point in the figure above, how can you tell its (predicted) probability approximately? 因為接近0.7的線,所以該點機率大約為0.7


【C】The Confusion Matrix

Figure 1 - Confusion Matrix

Figure 1 - Confusion Matrix



【D】The Distribution of Predicted Probability (DPP)

Confusion matrix is not fixed. It changes by Threshold

Figure 2 - Dist. Prediected Prob.

Figure 2 - Dist. Prediected Prob.

library(caTools)
DPP2 = function(pred,class,tvalue,breaks=0.01) {
  mx = table(class == tvalue, pred > 0.5) 
  tn = sum(class != tvalue & pred <= 0.5)
  fn = sum(class == tvalue & pred <= 0.5)
  fp = sum(class != tvalue & pred > 0.5)
  tp = sum(class == tvalue & pred > 0.5)
  acc = (tn + tp)/length(pred)
  sens = tp/(fn+tp)
  spec = tn/(tn+fp)
  auc = colAUC(pred,class)
  data.frame(pred,class) %>% 
    ggplot(aes(x=pred, fill=class)) +
    geom_histogram(col='gray',alpha=0.5,breaks=seq(0,1,breaks)) +
    xlim(0,1) + theme_bw() + xlab("predicted probability") + 
    ggtitle(
      sprintf("Distribution of Prob[class = \'%s\']", tvalue),
      sprintf("AUC=%.3f, Acc=%.3f, Sens=%.3f, Spec=%.3f",
              auc, acc, sens, spec) ) 
  }
N1 = 300; N2 = 100
DPP2(pred = c(rnorm(N1,0.125,0.03), rnorm(N2,0.375,0.03)),
     class = c(rep('B',N1), rep('A',N2)), 
     tvalue = 'A')

Q】Is it possible to have AUC = ACC = SENS = SPEC = 1? Can you modify the code to make it happen?

N1 = 300; N2 = 100
DPP2(pred = c(rnorm(N1,0.125,0.03), rnorm(N2,0.625,0.03)),
     class = c(rep('B',N1), rep('A',N2)), 
     tvalue = 'A')

Q】Is it possible to have AUC = ACC = SENS = SPEC = 0? Can you modify the code to make that happen?

N1 = 300; N2 = 100
DPP2(pred = c(rnorm(N1,0.875,0.03), rnorm(N2,0.125,0.03)),
     class = c(rep('B',N1), rep('A',N2)), 
     tvalue = 'A')



【E】Modeling Expert

E1: Random Split

set.seed(88)
split = sample.split(Q$PoorCare, SplitRatio = 0.75)
table(split) %>% prop.table()
split
 FALSE   TRUE 
0.2443 0.7557 
table(y = Q$PoorCare, split) %>% prop.table(2)
   split
y    FALSE   TRUE
  0 0.7500 0.7475
  1 0.2500 0.2525
TR = subset(Q, split == TRUE)
TS = subset(Q, split == FALSE)

E2: Build Model

glm1 = glm(PoorCare ~ OfficeVisits + Narcotics, TR, family=binomial)
summary(glm1)

Call:
glm(formula = PoorCare ~ OfficeVisits + Narcotics, family = binomial, 
    data = TR)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-2.0630  -0.6316  -0.5050  -0.0969   2.1669  

Coefficients:
             Estimate Std. Error z value   Pr(>|z|)    
(Intercept)   -2.6461     0.5236   -5.05 0.00000043 ***
OfficeVisits   0.0821     0.0305    2.69     0.0072 ** 
Narcotics      0.0763     0.0321    2.38     0.0173 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 111.888  on 98  degrees of freedom
Residual deviance:  89.127  on 96  degrees of freedom
AIC: 95.13

Number of Fisher Scoring iterations: 4

E3: Prediction & Evaluation

pred = predict(glm1, type='response')
mx = table(TR$PoorCare, pred > 0.5); mx
   
    FALSE TRUE
  0    70    4
  1    15   10
c(accuracy = sum(diag(mx))/sum(mx),
  sensitivity = mx[2,2]/sum(mx[2,]),
  specificity = mx[1,1]/sum(mx[1,]))
   accuracy sensitivity specificity 
     0.8081      0.4000      0.9459 

E4: ROC & AUC

library(ROCR)
ROCRpred = prediction(pred, TR$PoorCare)
ROCRperf = performance(ROCRpred, "tpr", "fpr")
par(cex=0.8)
plot(ROCRperf, colorize=TRUE, print.cutoffs.at=seq(0,1,0.1))

as.numeric(performance(ROCRpred, "auc")@y.values)
[1] 0.7746
caTools::colAUC(pred, TR$PoorCare)
          [,1]
0 vs. 1 0.7746



【F】Framingham Heart Study

source("DPP.R")

F1: Reading & Splitting

F = read.csv("data/framingham.csv")
set.seed(1000)
split = sample.split(F$TenYearCHD, SplitRatio = 0.65)
TR = subset(F, split==TRUE)
TS = subset(F, split==FALSE)

F2: Logistic Regression Model

glm2 = glm(TenYearCHD ~ ., TR, family=binomial)
summary(glm2)

Call:
glm(formula = TenYearCHD ~ ., family = binomial, data = TR)

Deviance Residuals: 
   Min      1Q  Median      3Q     Max  
-1.849  -0.601  -0.426  -0.284   2.837  

Coefficients:
                Estimate Std. Error z value        Pr(>|z|)    
(Intercept)     -7.88657    0.89073   -8.85         < 2e-16 ***
male             0.52846    0.13544    3.90 0.0000955212349 ***
age              0.06206    0.00834    7.44 0.0000000000001 ***
education       -0.05892    0.06243   -0.94          0.3453    
currentSmoker    0.09324    0.19401    0.48          0.6308    
cigsPerDay       0.01501    0.00783    1.92          0.0551 .  
BPMeds           0.31122    0.28741    1.08          0.2789    
prevalentStroke  1.16579    0.57121    2.04          0.0413 *  
prevalentHyp     0.31582    0.17176    1.84          0.0660 .  
diabetes        -0.42149    0.40799   -1.03          0.3016    
totChol          0.00384    0.00138    2.79          0.0053 ** 
sysBP            0.01134    0.00457    2.48          0.0130 *  
diaBP           -0.00474    0.00800   -0.59          0.5535    
BMI              0.01072    0.01616    0.66          0.5069    
heartRate       -0.00810    0.00531   -1.52          0.1274    
glucose          0.00893    0.00284    3.15          0.0016 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 2020.7  on 2384  degrees of freedom
Residual deviance: 1792.3  on 2369  degrees of freedom
  (371 observations deleted due to missingness)
AIC: 1824

Number of Fisher Scoring iterations: 5

F3: Prediction & Evaluation

pred = predict(glm2, TS, type="response")
y = TS$TenYearCHD[!is.na(pred)]             # remove NA
pred = pred[!is.na(pred)]
mx = table(y, pred > 0.5); mx
   
y   FALSE TRUE
  0  1069    6
  1   187   11
c(accuracy = sum(diag(mx))/sum(mx),
  sensitivity = mx[2,2]/sum(mx[2,]),
  specificity = mx[1,1]/sum(mx[1,]))
   accuracy sensitivity specificity 
    0.84839     0.05556     0.99442 

F4: AUC & DPP

par(cex=0.7)
auc = DPP(pred, y, 1, b=seq(0,1,0.02))  # 0.74211

F5: Expected Result & Optimization

Figure 3 - Startegic Optimization

Figure 3 - Startegic Optimization

payoff = matrix(c(0,-100,-10,-60),2,2) 
cutoff = seq(0.02, 0.7, 0.01)
result = sapply(cutoff, function(p) sum(table(y,pred>p)*payoff) )
i = which.max(result)
par(cex=0.7)
plot(cutoff, result, type='l', col='cyan', lwd=2, main=sprintf(
  "Optomal Expected Result: $%d @ %.2f",result[i],cutoff[i]))
abline(v=seq(0,1,0.05),h=seq(-23000,-17000,500),col='lightgray',lty=3)
abline(v=cutoff[i],col='red')

Q】如果什麼都不做,期望報酬是多少? 趨近於-20500元
Q】如果每位病人都做呢? -22580元
Q】以上哪一種做法期望報酬比較高? 什麼都不做
Q】在所有的商務情境都是這種狀況嗎? 當誤判的成本極高時,常會出現這樣的狀況。
Q】你可以模擬出「全做」比「全不做」還要好的狀況、並舉出一個會發生這種狀況的商務情境嗎? 如果做錯了不會有任何損失,但做對了會有很棒的利潤,則可以去做。
當你不做卻發生意外(False Negative)的時候產生的成本遠高於做時候,就可以去做。(飛安定期檢查)

payoff = matrix(c(100,0,0,100),2,2) 
cutoff = seq(0.02, 0.7, 0.01)
result = sapply(cutoff, function(p) sum(table(y,pred>p)*payoff) )
i = which.max(result)
par(cex=0.7)
plot(cutoff, result, type='l', col='cyan', lwd=2, main=sprintf(
  "Optomal Expected Result: $%d @ %.2f",result[i],cutoff[i]))
abline(v=seq(0,1,0.05),h=seq(-23000,-17000,500),col='lightgray',lty=3)
abline(v=cutoff[i],col='red')


F6: Simulation

library(manipulate)
p0 = par(mfrow=c(2,1),cex=0.8)
manipulate({
  Y0 = -22000; Y1 = -12000
  mx = matrix(c(true_neg, false_neg, false_pos, true_pos),2,2) 
  cx = seq(0.02, 0.64, 0.01)
  rx = sapply(cx, function(p) sum(table(y, pred>p)*mx) )
  i = which.max(rx)
  plot(cx, rx, type='l',col='cyan',lwd=2,main=sprintf(
    "Optomal Expected Result: $%d @ %.2f, T:%d",rx[i],cx[i],sum(pred>cx[i])),
    ylim=c(Y0,Y1))
  abline(v=cx[i],col='red')
  abline(v=seq(0,1,0.1),h=seq(Y0,Y1,2000),col='lightgray',lty=3)
  DPP(pred, y, 1, b=seq(0,1,0.02))
  abline(v=cx[i],col='red')
  },
  true_neg  = slider(-100,100,0,step=5),
  false_neg = slider(-100,100,-100,step=5),
  false_pos = slider(-100,100,-10,step=5),
  true_pos  = slider(-100,100,-60,step=5)
  ) 
par(p0)

Q】有五種成本分別為 $5, $10, $15, $20, $30 的藥,它們分別可以將風險成本從 $100 降低到 $70, $60, $50, $40, $25,哪一種藥的期望效益是最大的呢?

#1 $5$70  Expected Result:-17415
#2 $10$60 Expected Result:-17500
#3 $15$50 Expected Result:-17450
#4 $20$40 Expected Result:-17400
#5 $30$25 Expected Result:-17655
#ans: -17400
#哪一種藥的期望效益是最大的呢?($20/$40)這組最大。"



【G】分析流程:資料、模型、預測、決策

Figure 4 - 資料、模型、預測、決策

Figure 4 - 資料、模型、預測、決策






LS0tDQp0aXRsZTogIkFTMy0wIg0KYXV0aG9yOiAiR3JvdXAgMiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCmBgYHtyIGVjaG89VCwgbWVzc2FnZT1GLCBjYWNoZT1GLCB3YXJuaW5nPUZ9DQpybShsaXN0PWxzKGFsbD1UKSkNCm9wdGlvbnMoZGlnaXRzPTQsIHNjaXBlbj0xMikNCmxpYnJhcnkoZHBseXIpOyBsaWJyYXJ5KGdncGxvdDIpDQpgYGANCg0KDQotIC0gLQ0KDQojIyMg44CQQeOAkSBEZWZpbml0aW9ucw0KDQojIyMjIOapn+eOh+OAgeWLneeOhyhPZGQp44CBTG9naXQNCg0KKyBPZGQgPSAgJHAvKDEtcCkkDQoNCisgTG9naXQgPSAkbG9nKG9kZCkkID0gJGxvZyhcZnJhY3twfXsxPXB9KSQNCg0KKyAkbyA9IHAvKDEtcCkkIDsgJHAgPSBvLygxK28pJCA7ICAkbG9naXQgPSBsb2cobykkDQoNCmBgYHtyIGZpZy5oZWlnaHQ9My42LCBmaWcud2lkdGg9N30NCnBhcihjZXg9MC44LCBtZmNvbD1jKDEsMikpDQpjdXJ2ZSh4LygxLXgpLCAwLjAyLCAwLjk4LCBjb2w9J2N5YW4nLGx3ZD0yLCBtYWluPSdvZGQnKQ0KYWJsaW5lKHY9c2VxKDAsMSwwLjEpLCBoPXNlcSgwLDUwLDUpLCBjb2w9J2xpZ2h0Z3JheScsIGx0eT0zKQ0KY3VydmUobG9nKHgvKDEteCkpLCAwLjAwNSwgMC45OTUsIGx3ZD0yLCBjb2w9J3B1cnBsZScsIG1haW49ImxvZ2l0IikNCmFibGluZSh2PXNlcSgwLDEsMC4xKSwgaD1zZXEoLTUsNSwxKSwgY29sPSdsaWdodGdyYXknLCBsdHk9MykNCg0KYGBgDQoNCiMjIyMgTG9naXN0aWMgRnVuY3Rpb24gJiBMb2dpc3RpYyBSZWdyZXNzaW9uDQoNCisgTGluZWFyIE1vZGVsOiAkeSA9IGYoeCkgPSBiXzAgKyBiXzF4XzEgKyBiXzJ4XzIgKyAuLi4kDQoNCisgR2VuZXJhbCBMaW5lYXIgTW9kZWwoR0xNKTogJHkgPSBMaW5rKGYoeCkpJCANCg0KKyBMb2dpc3RpYyBSZWdyZXNzaW9uOiAkbG9naXQoeSkgPSBsb2coXGZyYWN7cH17MS1wfSkgPSBmKHgpIFx0ZXh0eyB3aGVyZSB9IHAgPSBwcm9iW3k9MV0kIA0KDQorIExvZ2lzdGljIEZ1bmN0aW9uOiAkTG9naXN0aWMoRl94KSA9IFxmcmFjezF9ezErRXhwKC1GX3gpfSA9IFxmcmFje0V4cChGX3gpfXsxK0V4cChGX3gpfSQNCg0KYGBge3IgIGZpZy53aWR0aD00LCBmaWcuaGVpZ2h0PTR9DQpwYXIoY2V4PTAuOCkNCmN1cnZlKDEvKDErZXhwKC14KSksIC01LCA1LCBjb2w9J2JsdWUnLCBsd2Q9MixtYWluPSJMb2dpc3RpYyBGdW5jdGlvbiIsDQogICAgICB4bGFiPSJmKHgpOiB0aGUgbG9naXQgb2YgeSA9IDEiLCB5bGFiPSJ0aGUgcHJvYmFiaWxpdHkgb2YgeSA9IDEiKQ0KYWJsaW5lKHY9LTU6NSwgaD1zZXEoMCwxLDAuMSksIGNvbD0nbGlnaHRncmF5JywgbHR5PTIpDQphYmxpbmUodj0wLGg9MC41LGNvbD0ncGluaycpDQpwb2ludHMoMCwwLjUscGNoPTIwLGNleD0xLjUsY29sPSdyZWQnKQ0KYGBgDQoNCuOAkCoqUSoq44CRV2hhdCBhcmUgdGhlIGRlZmluaWlvbiBvZiBgbGlnaXRgICYgYGxvZ2lzdGljIGZ1bmN0aW9uYD8gV2hhdCBpcyB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gdGhlbT8NCg0KbG9naXQgOiDmqZ/njofnmoTkuIDnqK7nrpfms5UgPT4gbG9nKG9kZCkNCmxvZ2lzdGljIGZ1bmN0aW9uIDog5oqKbG9naXTovYnmiJB5PTHnmoTmqZ/njofjgIINCg0KPGJyPg0KDQotIC0gLQ0KDQojIyMg44CQQuOAkWBnbG0oLCBmYW1pbHk9Ymlub21pYWwpYA0KDQpgZ2xtKClg55qE5Yqf6IO977ya5ZyoICRce3hcfSQg55qE56m66ZaT5LmL5Lit77yM5om+5Ye65Y2A6ZqUICR5JCDnmoQo6aGe5YilKeeVjOe3mg0KDQpgYGB7cn0NClEgPSByZWFkLmNzdigiZGF0YS9xdWFsaXR5LmNzdiIpDQpnbG0xID0gZ2xtKFBvb3JDYXJlfk9mZmljZVZpc2l0cytOYXJjb3RpY3MsIFEsIGZhbWlseT1iaW5vbWlhbCkNCnN1bW1hcnkoZ2xtMSkNCmBgYA0KDQpgYGB7cn0NCmIgPSBjb2VmKGdsbTEpOyBiICAgIyBleHRyYWN0IHRoZSByZWdyZXNzaW9uIGNvZWYNCmBgYA0KDQpHaXZlbiBgT2ZmaWNlVmlzaXRzPTMsIE5hcmNvdGljcz00YCwgd2hhdCBhcmUgdGhlIHByZWRpY3RlZCBsb2dpdCwgb2RkIGFuZCBwcm9iYWJpbGl0eT8NCmBgYHtyfQ0KbG9naXQgPSBzdW0oYiAqIGMoMSwgMywgNCkpDQpvZGQgPSBleHAobG9naXQpDQpwcm9iID0gb2RkLygxK29kZCkNCmMobG9naXQ9bG9naXQsIG9kZD1vZGQsIHByb2I9cHJvYikNCmBgYA0KDQrjgJAqKlEqKuOAkVdoYXQgaWYgYE9mZmljZVZpc2l0cz0yLCBOYXJjb3RpY3M9M2A/DQpgYGB7cn0NCmxvZ2l0X3EgPSBzdW0oYiAqIGMoMSwgMiwgMykpDQpvZGRfcSA9IGV4cChsb2dpdF9xKQ0KcHJvYl9xID0gb2RkX3EgLyAoMStvZGRfcSkgIyA9PiAocCAvIDEtcCkgLyAoMS8oMS1wKSkgPSBwKigxLXApIC8gMSgxLXApID0gcA0KcHJvYl9xMiA9IDEgLyAoMStleHAoLTEqbG9naXRfcSkpICNBbm90aGVyIHdheSB0byBjYWxjdWxhdGUgcHJvYmFiaWxpdHlzIGZyb20gbG9naXQuDQpjKGxvZ2l0PWxvZ2l0X3EsIG9kZD1vZGRfcSwgcHJvYj1wcm9iX3EpDQojDQpgYGANCg0KV2UgY2FuIHBsb3QgdGhlIGxpbmUgb2YgYGxvZ2l0ID0gMGAgb3IgYHByb2IgPSAwLjVgIG9uIHRoZSBwbGFuZSBvZiAkWCQNCmBgYHtyIGZpZy53aWR0aD0zLjYsIGZpZy5oZWlnaHQ9My42fQ0KcGFyKGNleD0wLjgpDQpwbG90KFEkT2ZmaWNlVmlzaXRzLCBRJE5hcmNvdGljcywgY29sPTErUSRQb29yQ2FyZSxwY2g9MjApDQphYmxpbmUoLWJbMV0vYlszXSwgLWJbMl0vYlszXSkNCmBgYA0KDQpGdXJ0aGVybW9yZSwgd2UgY2FuIHRyYW5zbGF0ZSBwcm9iYWJpbGl0eSwgbG9naXQgYW5kIGNvZWZmaWNlbnRzIHRvIGludGVyY2VwdCAmIHNsb3BlIC4uLg0KDQokJGYoeCkgPSBiXzEgKyBiXzIgeF8yICsgYl8zIHhfMyA9IGcgXFJpZ2h0YXJyb3cgIHhfMyA9IFxmcmFje2cgLSBiXzF9e2JfM30gLSBcZnJhY3tiXzJ9e2JfM314XzIkJA0KDQoNCmBgYHtyICBmaWcud2lkdGg9My42LCBmaWcuaGVpZ2h0PTMuNn0NCnAgPSBzZXEoMC4xLDAuOSwwLjEpDQpsb2dpdCA9IGxvZyhwLygxLXApKQ0KZGF0YS5mcmFtZShwcm9iID0gcCwgbG9naXQpDQpgYGANCg0KdGhlbiBtYXJrIHRoZSBjb250b3VycyBvZiBwcm9hYmlsaXRpZXMgaW50byB0aGUgc2NhdHRlciBwbG90IA0KYGBge3IgIGZpZy53aWR0aD0zLjYsIGZpZy5oZWlnaHQ9My42fQ0KcGFyKGNleD0wLjcpDQpwbG90KFEkT2ZmaWNlVmlzaXRzLCBRJE5hcmNvdGljcywgY29sPTErUSRQb29yQ2FyZSwNCiAgICAgcGNoPTIwLCBjZXg9MS4zLCB4bGFiPSdYMicsIHlsYWI9J1gzJykNCmZvcihnIGluIGxvZ2l0KSB7DQogIGFibGluZSgoZy1iWzFdKS9iWzNdLCAtYlsyXS9iWzNdLCBjb2w9aWZlbHNlKGc9PTAsJ2JsdWUnLCdjeWFuJykpIH0NCmBgYA0KDQrjgJAqKlEqKuOAkVdoYXQgZG8gdGhlIGJsdWUvY3lhbiBsaW5lcyBtZWFucz8NCiDmqZ/njoflvp4wLjF+MC4555qE57eaDQrjgJAqKlEqKuOAkUdpdmVuIGFueSBwb2ludCBpbiB0aGUgZmlndXJlIGFib3ZlLCBob3cgY2FuIHlvdSB0ZWxsIGl0cyAocHJlZGljdGVkKSBwcm9iYWJpbGl0eSBhcHByb3hpbWF0ZWx5Pw0KIOWboOeCuuaOpei/kTAuN+eahOe3mu+8jOaJgOS7peipsum7nuapn+eOh+Wkp+e0hOeCujAuNw0KPGJyPg0KDQotIC0gLQ0KDQojIyMg44CQQ+OAkVRoZSBDb25mdXNpb24gTWF0cml4DQoNCg0KIVtGaWd1cmUgMSAtIENvbmZ1c2lvbiBNYXRyaXhdKHJlcy9jb25mdXNpb25fbWF0cml4LmpwZykNCg0KDQo8YnI+DQoNCi0gLSAtDQojIyMg44CQROOAkVRoZSBEaXN0cmlidXRpb24gb2YgUHJlZGljdGVkIFByb2JhYmlsaXR5IChEUFApDQoNCkNvbmZ1c2lvbiBtYXRyaXggaXMgbm90IGZpeGVkLiBJdCBjaGFuZ2VzIGJ5IGBUaHJlc2hvbGRgIC4uLg0KDQohW0ZpZ3VyZSAyIC0gRGlzdC4gUHJlZGllY3RlZCBQcm9iLl0ocmVzL2RwcC5qcGcpDQoNCg0KDQpgYGB7cn0NCmxpYnJhcnkoY2FUb29scykNCkRQUDIgPSBmdW5jdGlvbihwcmVkLGNsYXNzLHR2YWx1ZSxicmVha3M9MC4wMSkgew0KICBteCA9IHRhYmxlKGNsYXNzID09IHR2YWx1ZSwgcHJlZCA+IDAuNSkgDQogIHRuID0gc3VtKGNsYXNzICE9IHR2YWx1ZSAmIHByZWQgPD0gMC41KQ0KICBmbiA9IHN1bShjbGFzcyA9PSB0dmFsdWUgJiBwcmVkIDw9IDAuNSkNCiAgZnAgPSBzdW0oY2xhc3MgIT0gdHZhbHVlICYgcHJlZCA+IDAuNSkNCiAgdHAgPSBzdW0oY2xhc3MgPT0gdHZhbHVlICYgcHJlZCA+IDAuNSkNCiAgYWNjID0gKHRuICsgdHApL2xlbmd0aChwcmVkKQ0KICBzZW5zID0gdHAvKGZuK3RwKQ0KICBzcGVjID0gdG4vKHRuK2ZwKQ0KICBhdWMgPSBjb2xBVUMocHJlZCxjbGFzcykNCiAgZGF0YS5mcmFtZShwcmVkLGNsYXNzKSAlPiUgDQogICAgZ2dwbG90KGFlcyh4PXByZWQsIGZpbGw9Y2xhc3MpKSArDQogICAgZ2VvbV9oaXN0b2dyYW0oY29sPSdncmF5JyxhbHBoYT0wLjUsYnJlYWtzPXNlcSgwLDEsYnJlYWtzKSkgKw0KICAgIHhsaW0oMCwxKSArIHRoZW1lX2J3KCkgKyB4bGFiKCJwcmVkaWN0ZWQgcHJvYmFiaWxpdHkiKSArIA0KICAgIGdndGl0bGUoDQogICAgICBzcHJpbnRmKCJEaXN0cmlidXRpb24gb2YgUHJvYltjbGFzcyA9IFwnJXNcJ10iLCB0dmFsdWUpLA0KICAgICAgc3ByaW50ZigiQVVDPSUuM2YsIEFjYz0lLjNmLCBTZW5zPSUuM2YsIFNwZWM9JS4zZiIsDQogICAgICAgICAgICAgIGF1YywgYWNjLCBzZW5zLCBzcGVjKSApIA0KICB9DQoNCmBgYA0KDQpgYGB7ciBmaWcud2lkdGg9OCwgZmlnLmhlaWdodD0yLjV9DQpOMSA9IDMwMDsgTjIgPSAxMDANCkRQUDIocHJlZCA9IGMocm5vcm0oTjEsMC4xMjUsMC4wMyksIHJub3JtKE4yLDAuMzc1LDAuMDMpKSwNCiAgICAgY2xhc3MgPSBjKHJlcCgnQicsTjEpLCByZXAoJ0EnLE4yKSksIA0KICAgICB0dmFsdWUgPSAnQScpDQpgYGANCg0K44CQKipRKirjgJFJcyBpdCBwb3NzaWJsZSB0byBoYXZlIGBBVUMgPSBBQ0MgPSBTRU5TID0gU1BFQyA9IDFgPyBDYW4geW91IG1vZGlmeSB0aGUgY29kZSB0byBtYWtlIGl0IGhhcHBlbj8NCg0KYGBge3IgZmlnLndpZHRoPTgsIGZpZy5oZWlnaHQ9Mi41fQ0KTjEgPSAzMDA7IE4yID0gMTAwDQpEUFAyKHByZWQgPSBjKHJub3JtKE4xLDAuMTI1LDAuMDMpLCBybm9ybShOMiwwLjYyNSwwLjAzKSksDQogICAgIGNsYXNzID0gYyhyZXAoJ0InLE4xKSwgcmVwKCdBJyxOMikpLCANCiAgICAgdHZhbHVlID0gJ0EnKQ0KYGBgDQoNCg0K44CQKipRKirjgJFJcyBpdCBwb3NzaWJsZSB0byBoYXZlIGBBVUMgPSBBQ0MgPSBTRU5TID0gU1BFQyA9IDBgPyBDYW4geW91IG1vZGlmeSB0aGUgY29kZSB0byBtYWtlIHRoYXQgaGFwcGVuPw0KDQpgYGB7ciBmaWcud2lkdGg9OCwgZmlnLmhlaWdodD0yLjV9DQpOMSA9IDMwMDsgTjIgPSAxMDANCkRQUDIocHJlZCA9IGMocm5vcm0oTjEsMC44NzUsMC4wMyksIHJub3JtKE4yLDAuMTI1LDAuMDMpKSwNCiAgICAgY2xhc3MgPSBjKHJlcCgnQicsTjEpLCByZXAoJ0EnLE4yKSksIA0KICAgICB0dmFsdWUgPSAnQScpDQpgYGANCjxicj4NCg0KLSAtIC0NCiMjIyDjgJBF44CRTW9kZWxpbmcgRXhwZXJ0DQoNCiMjIyMgRTE6IFJhbmRvbSBTcGxpdA0KYGBge3J9DQpzZXQuc2VlZCg4OCkNCnNwbGl0ID0gc2FtcGxlLnNwbGl0KFEkUG9vckNhcmUsIFNwbGl0UmF0aW8gPSAwLjc1KQ0KdGFibGUoc3BsaXQpICU+JSBwcm9wLnRhYmxlKCkNCnRhYmxlKHkgPSBRJFBvb3JDYXJlLCBzcGxpdCkgJT4lIHByb3AudGFibGUoMikNCmBgYA0KDQpgYGB7cn0NClRSID0gc3Vic2V0KFEsIHNwbGl0ID09IFRSVUUpDQpUUyA9IHN1YnNldChRLCBzcGxpdCA9PSBGQUxTRSkNCmBgYA0KDQojIyMjIEUyOiBCdWlsZCBNb2RlbA0KYGBge3J9DQpnbG0xID0gZ2xtKFBvb3JDYXJlIH4gT2ZmaWNlVmlzaXRzICsgTmFyY290aWNzLCBUUiwgZmFtaWx5PWJpbm9taWFsKQ0Kc3VtbWFyeShnbG0xKQ0KYGBgDQoNCiMjIyMgRTM6IFByZWRpY3Rpb24gJiBFdmFsdWF0aW9uDQpgYGB7cn0NCnByZWQgPSBwcmVkaWN0KGdsbTEsIHR5cGU9J3Jlc3BvbnNlJykNCm14ID0gdGFibGUoVFIkUG9vckNhcmUsIHByZWQgPiAwLjUpOyBteA0KYyhhY2N1cmFjeSA9IHN1bShkaWFnKG14KSkvc3VtKG14KSwNCiAgc2Vuc2l0aXZpdHkgPSBteFsyLDJdL3N1bShteFsyLF0pLA0KICBzcGVjaWZpY2l0eSA9IG14WzEsMV0vc3VtKG14WzEsXSkpDQpgYGANCg0KIyMjIyBFNDogUk9DICYgQVVDDQpgYGB7ciBmaWcud2lkdGg9NSwgZmlnLmhlaWdodD01fQ0KbGlicmFyeShST0NSKQ0KUk9DUnByZWQgPSBwcmVkaWN0aW9uKHByZWQsIFRSJFBvb3JDYXJlKQ0KUk9DUnBlcmYgPSBwZXJmb3JtYW5jZShST0NScHJlZCwgInRwciIsICJmcHIiKQ0KcGFyKGNleD0wLjgpDQpwbG90KFJPQ1JwZXJmLCBjb2xvcml6ZT1UUlVFLCBwcmludC5jdXRvZmZzLmF0PXNlcSgwLDEsMC4xKSkNCmBgYA0KDQpgYGB7cn0NCmFzLm51bWVyaWMocGVyZm9ybWFuY2UoUk9DUnByZWQsICJhdWMiKUB5LnZhbHVlcykNCmNhVG9vbHM6OmNvbEFVQyhwcmVkLCBUUiRQb29yQ2FyZSkNCmBgYA0KDQo8YnI+DQoNCi0gLSAtDQojIyMg44CQRuOAkUZyYW1pbmdoYW0gSGVhcnQgU3R1ZHkNCg0KYGBge3J9DQpzb3VyY2UoIkRQUC5SIikNCmBgYA0KDQojIyMjIEYxOiBSZWFkaW5nICYgU3BsaXR0aW5nDQpgYGB7cn0NCkYgPSByZWFkLmNzdigiZGF0YS9mcmFtaW5naGFtLmNzdiIpDQpzZXQuc2VlZCgxMDAwKQ0Kc3BsaXQgPSBzYW1wbGUuc3BsaXQoRiRUZW5ZZWFyQ0hELCBTcGxpdFJhdGlvID0gMC42NSkNClRSID0gc3Vic2V0KEYsIHNwbGl0PT1UUlVFKQ0KVFMgPSBzdWJzZXQoRiwgc3BsaXQ9PUZBTFNFKQ0KYGBgDQoNCiMjIyMgRjI6IExvZ2lzdGljIFJlZ3Jlc3Npb24gTW9kZWwNCmBgYHtyfQ0KZ2xtMiA9IGdsbShUZW5ZZWFyQ0hEIH4gLiwgVFIsIGZhbWlseT1iaW5vbWlhbCkNCnN1bW1hcnkoZ2xtMikNCmBgYA0KDQojIyMjIEYzOiBQcmVkaWN0aW9uICYgRXZhbHVhdGlvbg0KYGBge3J9DQpwcmVkID0gcHJlZGljdChnbG0yLCBUUywgdHlwZT0icmVzcG9uc2UiKQ0KeSA9IFRTJFRlblllYXJDSERbIWlzLm5hKHByZWQpXSAgICAgICAgICAgICAjIHJlbW92ZSBOQQ0KcHJlZCA9IHByZWRbIWlzLm5hKHByZWQpXQ0KDQpteCA9IHRhYmxlKHksIHByZWQgPiAwLjUpOyBteA0KYyhhY2N1cmFjeSA9IHN1bShkaWFnKG14KSkvc3VtKG14KSwNCiAgc2Vuc2l0aXZpdHkgPSBteFsyLDJdL3N1bShteFsyLF0pLA0KICBzcGVjaWZpY2l0eSA9IG14WzEsMV0vc3VtKG14WzEsXSkpDQpgYGANCg0KIyMjIyBGNDogQVVDICYgRFBQDQpgYGB7ciBmaWcud2lkdGg9NywgZmlnLmhlaWdodD0yLjR9DQpwYXIoY2V4PTAuNykNCmF1YyA9IERQUChwcmVkLCB5LCAxLCBiPXNlcSgwLDEsMC4wMikpICAjIDAuNzQyMTENCmBgYA0KDQojIyMjIEY1OiBFeHBlY3RlZCBSZXN1bHQgJiBPcHRpbWl6YXRpb24NCg0KDQohW0ZpZ3VyZSAzIC0gU3RhcnRlZ2ljIE9wdGltaXphdGlvbl0ocmVzL29wdGltaXphdGlvbi5qcGcpDQoNCg0KYGBge3IgZmlnLndpZHRoPTUsIGZpZy5oZWlnaHQ9NH0NCnBheW9mZiA9IG1hdHJpeChjKDAsLTEwMCwtMTAsLTYwKSwyLDIpIA0KY3V0b2ZmID0gc2VxKDAuMDIsIDAuNywgMC4wMSkNCnJlc3VsdCA9IHNhcHBseShjdXRvZmYsIGZ1bmN0aW9uKHApIHN1bSh0YWJsZSh5LHByZWQ+cCkqcGF5b2ZmKSApDQppID0gd2hpY2gubWF4KHJlc3VsdCkNCnBhcihjZXg9MC43KQ0KcGxvdChjdXRvZmYsIHJlc3VsdCwgdHlwZT0nbCcsIGNvbD0nY3lhbicsIGx3ZD0yLCBtYWluPXNwcmludGYoDQogICJPcHRvbWFsIEV4cGVjdGVkIFJlc3VsdDogJCVkIEAgJS4yZiIscmVzdWx0W2ldLGN1dG9mZltpXSkpDQphYmxpbmUodj1zZXEoMCwxLDAuMDUpLGg9c2VxKC0yMzAwMCwtMTcwMDAsNTAwKSxjb2w9J2xpZ2h0Z3JheScsbHR5PTMpDQphYmxpbmUodj1jdXRvZmZbaV0sY29sPSdyZWQnKQ0KYGBgDQoNCuOAkCoqUSoq44CR5aaC5p6c5LuA6bq86YO95LiN5YGa77yM5pyf5pyb5aCx6YWs5piv5aSa5bCR77yfDQogIOi2qOi/keaWvC0yMDUwMOWFgw0KICA8YnI+DQrjgJAqKlEqKuOAkeWmguaenOavj+S9jeeXheS6uumDveWBmuWRou+8nw0KICAtMjI1ODDlhYMNCiAgPGJyPg0K44CQKipRKirjgJHku6XkuIrlk6rkuIDnqK7lgZrms5XmnJ/mnJvloLHphazmr5TovIPpq5jvvJ8NCiAgIOS7gOm6vOmDveS4jeWBmg0KICA8YnI+DQrjgJAqKlEqKuOAkeWcqOaJgOacieeahOWVhuWLmeaDheWig+mDveaYr+mAmeeorueLgOazgeWXju+8nw0KICAg55W26Kqk5Yik55qE5oiQ5pys5qW16auY5pmC77yM5bi45pyD5Ye654++6YCZ5qij55qE54uA5rOB44CCDQogIDxicj4NCuOAkCoqUSoq44CR5L2g5Y+v5Lul5qih5pOs5Ye644CM5YWo5YGa44CN5q+U44CM5YWo5LiN5YGa44CN6YKE6KaB5aW955qE54uA5rOB44CB5Lim6IiJ5Ye65LiA5YCL5pyD55m855Sf6YCZ56iu54uA5rOB55qE5ZWG5YuZ5oOF5aKD5ZeO77yfDQogICDlpoLmnpzlgZrpjK/kuobkuI3mnIPmnInku7vkvZXmkI3lpLHvvIzkvYblgZrlsI3kuobmnIPmnInlvojmo5LnmoTliKnmvaTvvIzliYflj6/ku6XljrvlgZrjgII8YnI+DQogICDnlbbkvaDkuI3lgZrljbvnmbznlJ/mhI/lpJYoRmFsc2UgIE5lZ2F0aXZlKeeahOaZguWAmeeUoueUn+eahOaIkOacrOmBoOmrmOaWvOWBmuaZguWAme+8jOWwseWPr+S7peWOu+WBmuOAgu+8iOmjm+WuieWumuacn+aqouafpSkNCg0KYGBge3J9DQpwYXlvZmYgPSBtYXRyaXgoYygxMDAsMCwwLDEwMCksMiwyKSANCmN1dG9mZiA9IHNlcSgwLjAyLCAwLjcsIDAuMDEpDQoNCnJlc3VsdCA9IHNhcHBseShjdXRvZmYsIGZ1bmN0aW9uKHApIHN1bSh0YWJsZSh5LHByZWQ+cCkqcGF5b2ZmKSApDQoNCmkgPSB3aGljaC5tYXgocmVzdWx0KQ0KcGFyKGNleD0wLjcpDQpwbG90KGN1dG9mZiwgcmVzdWx0LCB0eXBlPSdsJywgY29sPSdjeWFuJywgbHdkPTIsIG1haW49c3ByaW50ZigNCiAgIk9wdG9tYWwgRXhwZWN0ZWQgUmVzdWx0OiAkJWQgQCAlLjJmIixyZXN1bHRbaV0sY3V0b2ZmW2ldKSkNCmFibGluZSh2PXNlcSgwLDEsMC4wNSksaD1zZXEoLTIzMDAwLC0xNzAwMCw1MDApLGNvbD0nbGlnaHRncmF5JyxsdHk9MykNCmFibGluZSh2PWN1dG9mZltpXSxjb2w9J3JlZCcpDQpgYGANCg0KPGJyPg0KDQojIyMjIEY2OiBTaW11bGF0aW9uDQpgYGB7ciBmaWcud2lkdGg9NiwgZmlnLmhlaWdodD02fQ0KbGlicmFyeShtYW5pcHVsYXRlKQ0KcDAgPSBwYXIobWZyb3c9YygyLDEpLGNleD0wLjgpDQptYW5pcHVsYXRlKHsNCiAgWTAgPSAtMjIwMDA7IFkxID0gLTEyMDAwDQogIG14ID0gbWF0cml4KGModHJ1ZV9uZWcsIGZhbHNlX25lZywgZmFsc2VfcG9zLCB0cnVlX3BvcyksMiwyKSANCiAgY3ggPSBzZXEoMC4wMiwgMC42NCwgMC4wMSkNCiAgcnggPSBzYXBwbHkoY3gsIGZ1bmN0aW9uKHApIHN1bSh0YWJsZSh5LCBwcmVkPnApKm14KSApDQogIGkgPSB3aGljaC5tYXgocngpDQogIHBsb3QoY3gsIHJ4LCB0eXBlPSdsJyxjb2w9J2N5YW4nLGx3ZD0yLG1haW49c3ByaW50ZigNCiAgICAiT3B0b21hbCBFeHBlY3RlZCBSZXN1bHQ6ICQlZCBAICUuMmYsIFQ6JWQiLHJ4W2ldLGN4W2ldLHN1bShwcmVkPmN4W2ldKSksDQogICAgeWxpbT1jKFkwLFkxKSkNCiAgYWJsaW5lKHY9Y3hbaV0sY29sPSdyZWQnKQ0KICBhYmxpbmUodj1zZXEoMCwxLDAuMSksaD1zZXEoWTAsWTEsMjAwMCksY29sPSdsaWdodGdyYXknLGx0eT0zKQ0KICBEUFAocHJlZCwgeSwgMSwgYj1zZXEoMCwxLDAuMDIpKQ0KICBhYmxpbmUodj1jeFtpXSxjb2w9J3JlZCcpDQogIH0sDQogIHRydWVfbmVnICA9IHNsaWRlcigtMTAwLDEwMCwwLHN0ZXA9NSksDQogIGZhbHNlX25lZyA9IHNsaWRlcigtMTAwLDEwMCwtMTAwLHN0ZXA9NSksDQogIGZhbHNlX3BvcyA9IHNsaWRlcigtMTAwLDEwMCwtMTAsc3RlcD01KSwNCiAgdHJ1ZV9wb3MgID0gc2xpZGVyKC0xMDAsMTAwLC02MCxzdGVwPTUpDQogICkgDQpwYXIocDApDQpgYGANCg0KDQrjgJAqKlEqKuOAkeacieS6lOeoruaIkOacrOWIhuWIpeeCuiBgJDUsICQxMCwgJDE1LCAkMjAsICQzMGAg55qE6Jel77yM5a6D5YCR5YiG5Yil5Y+v5Lul5bCH6aKo6Zqq5oiQ5pys5b6eIGAkMTAwYCDpmY3kvY7liLAgYCQ3MCwgJDYwLCAkNTAsICQ0MCwgJDI1YO+8jOWTquS4gOeoruiXpeeahOacn+acm+aViOebiuaYr+acgOWkp+eahOWRou+8nw0KDQoNCmBgYHtyfQ0KIzEgJDUkNzAgIEV4cGVjdGVkIFJlc3VsdDotMTc0MTUNCg0KIzIgJDEwJDYwIEV4cGVjdGVkIFJlc3VsdDotMTc1MDANCg0KIzMgJDE1JDUwIEV4cGVjdGVkIFJlc3VsdDotMTc0NTANCg0KIzQgJDIwJDQwIEV4cGVjdGVkIFJlc3VsdDotMTc0MDANCg0KIzUgJDMwJDI1IEV4cGVjdGVkIFJlc3VsdDotMTc2NTUNCg0KI2FuczogLTE3NDAwDQoj5ZOq5LiA56iu6Jel55qE5pyf5pyb5pWI55uK5piv5pyA5aSn55qE5ZGi77yfKCQyMC8kNDAp6YCZ57WE5pyA5aSn44CCDQpgYGANCg0KPGJyPg0KDQotIC0gLQ0KIyMjIOOAkEfjgJHliIbmnpDmtYHnqIvvvJros4fmlpnjgIHmqKHlnovjgIHpoJDmuKzjgIHmsbrnrZYNCg0KIVtGaWd1cmUgNCAtIOizh+aWmeOAgeaooeWei+OAgemgkOa4rOOAgeaxuuetll0ocmVzL2Zsb3cuanBnKQ0KDQoNCg0KPGJyPjxicj48YnI+PGJyPjxicj4NCg0KDQoNCg0KDQoNCg0KDQoNCg==