\(f(x)=-2x^{2}+100x-800\)
Q2 <- function(x){8*x^3 + 7*x^2 - 5}
Q2(3) ## Step 1
## [1] 274
Q2(-2) ## Step 2
## [1] -41
Q2(x+c) = 8(x+c)^3 +7(x+c)^2 - 5 ## Step 3
0 ## Step 1
-5 ## Step 2
Does Not Exist ## Step 3
library(Deriv)
Q4 <- function(x){(-2)*x^3}
Deriv(Q4)
## function (x)
## -(6 * x^2)
Q5 <- function(x){(-8)/(x^2)}
Deriv(Q5)
## function (x)
## 16/x^3
Q6 <- function(x){5*x^(1/3)}
Deriv(Q6)
## function (x)
## 1.66666666666667/x^0.666666666666667
Q7 <- function(x){-2*x^(9/8)}
Deriv(Q7)
## function (x)
## -(2.25 * x^0.125)
library(MASS)
## The average rate of change:
y2 <- 35
y1 <- 40
x1 <- 4
x2 <- 0
m <- ((y2-y1)/(x2-x1))
fractions(m)
## [1] 5/4
# Average cost = Total Cost / Number of Items
Q9 <- function(x){(630+2.4*x)/x}
print(Q9)
## function(x){(630+2.4*x)/x}
Q10 <- function(x){(-2*x^(-2)+1)*(-5*x+9)}
Deriv(Q10)
## function (x)
## 4 * ((9 - 5 * x)/x^3) - 5 * (1 - 2/x^2)
Q11 <- function(x){(5*x^(1/2)+7)/(-x^3+1)}
Deriv(Q11)
## function (x)
## {
## .e1 <- 1 - x^3
## .e2 <- sqrt(x)
## (2.5/.e2 + 3 * (x^2 * (5 * .e2 + 7)/.e1))/.e1
## }
Q12 <- function(x){(3 * x^(-3) -8 * x + 6)^(4/3)}
Deriv(Q12)
## function (x)
## -(1.33333333333333 * ((3/x^3 + 6 - 8 * x)^0.333333333333333 *
## (8 + 9/x^4)))
\(f'(x)=\frac{4}{3}(-9x^{-4}-8)(3x^{-3}-8x+6)^\frac{1}{2}\)
Q13 <- function(t){(550*t^2)/( t^2 + 15)^(1/2)}
round(Deriv(Q13)(3),0)
## [1] 547
Q14 <- function(t){1000*(6 + 0.1*t)^(1/2)}
round(Q14(3),0) ## Step 1
## [1] 2510
round(Deriv(Q14)(3),0) ## Step 2
## [1] 20
x <- 3
y <- -1
dydx <- (-3*x^2) / (4*y^2) ## Step 1
fractions(dydx) ## Step 2
## [1] -27/4
\(f'(x)=-\frac{11}{(x-8)^{2}}\) ## First Derivative
Since the denominator is squared, a positive number, \(f'(x)\) will always be negative and decreasing.
\(F'(t)=\frac{73400t}{(t^{2}+100)^{2}}\) ## First Derivative
\(F'(t)=0\)
\(t=0\)
\(F''(t)=\frac{73400(-3t^{2}+100)}{(t^{2}+100)^{3}}\) ## Second Derivative
Evaluating \(t=0\),
\(F''(0)=\frac{73400(-3*0^{2}+100)}{(0^{2}+100)^{3}}\)
\(F''(0)=\frac{367}{50}\) ## Since \(F''(0)>0\), \(F(0)\) is a minimum with \(t=0\).
Temperature increases when \(F(t)>0\) for \(t>0\).
Temperature decreases when \(F(t)<0\) for \(t<0\).
\(f'(x)=\frac {3x^{2}}{3340000}-\frac{14x}{9475}+\frac{42417727}{1265860000}\) ## First Derivative
\(f'(x)=0\)
\(x=23, x=\frac{1844249}{1137}\)
\(f''(x)=\frac {3x}{1670000}-\frac{14}{9475}\) ## Second Derivative
\(f''(23)=-\frac{909049}{632930000}\) ## Since \(f''(23)<0\), most packages were delivered on 23rd of November
\(f(23)=0.41\) ## The maximum number of packages delievered is 0.41 million.
\(f'(x)=14x+28\) ## First Derivative
\(f'(x)=0\)
\(14x+28=0\)
\(x=-2\)
\(f''(x)=14\) ## Second Derivative
\(f''(-2)=14\) Since \(f''(-2)>0\), \(x=-2, f(-2)=-63\) is the minimum.
\((-2,-63)\) ## Local Extrema
\(f'(x)=-18x^{2}+54x+180\) ## First Derivative
\(f'(x)=0\)
\(-18x^{2}+54x+180=0\)
\(x=-2, x=5\)
\(f''(x)=-36x+54\) ## Second Derivative
\(f''(-2)=126\) Since \(f''(-2)>0\), \(x=-2, f(-2)=-240\) is the minimum.
\(f''(5)=-126\) Since \(f''(5)<0\), \(x=5, f(5)=825\) is the maximum.
\((-2,204)\) and \((5,825)\) ## Local Extrema
Let,
\(x\) number of orders per year
\(\frac{120}{x}\) lot size divided by the number of order per year
\(\frac{120}{x}*1.60\) storage fees
\(x*(6+4.5*\frac{120}{x})\) reorder fees
\(f(x)=\frac{120}{x}*1.60+x*(6+4.5*\frac{120}{x})\) ## inventory cost function
\(f'(x)=6-\frac{192}{x^{2}}\) ## First Derivative
\(f'(x)=0\)
\(x=5.65\)
\(f''(x)=\frac{384}{x^{3}}\) ## Second Derivative
\(f''(5.65)=607.88\)
\(f''(x)=0\)
\(x=20\) ## In 20 lot size and 6 times per year an order should be placed to minimize inventory costs
Let,
\(x=\) dimension for square base of the crate
\(y=\) height of the crate
\(3(4(x+y))+3(x^{2})\) cost of top and sides material
\(5(x^{2})\) cost of bottom material
\(v=18432ft^{3}\)
Total cost,
\(f(x)=(3(4(x+y))+3(x^{2}))+(5(x^{2}))\)
Height of the crate,
\(V=x*x*y\)
\(18432ft^{3}=x^{2}y\)
\(y=\frac{18432}{x^{2}}\)
Total cost function in terms of \(x\),
\(f(x)=\frac{221184}{x}+8x^{2}\)
\(f'(x)=16x-\frac{221184}{x^{2}}\) ## First Derivative
\(f'(x)=0\)
\(16x-\frac{221184}{x^{2}}=0\)
\(x=24\)
To find y,
\(y=\frac{18432}{x^{2}}\)
\(y=\frac{18432}{24^{2}}\)
\(y=32\)
## To minimize the cost of material, the dimensions of the crate must be 24ft x 24ft x 32ft.
Let,
\(x=\) wide side of the fence
\(y=\) length side of then fence
\(14.4(2x+2y)\) cost of the exterior fence material
\(12(2x)\) cost of the interior fence material
\(A=1056yards^{2}\)
Total cost,
\(f(x)=(14.4(2x+2y))+(12(2x))\)
Length of the pen,
\(A=1056yards^{2}\)
\(1056=xy\)
\(y=\frac{1056}{x}\)
Total cost function in terms of \(x\),
\(f(x)=52.8x+\frac{30412.8}{x}\)
\(f'(x)=52.8-\frac{30412.8}{x^{2}}\) ## First Derivative
\(f'(x)=0\)
\(52.8-\frac{30412.8}{x^{2}}=0\)
\(x=24\)
To find y,
\(y=\frac{1056}{x}\)
\(y=\frac{1056}{24}\)
\(y=44\)
## To minimize the cost of material, the dimensions of the rectangular must be 24 yards x 44 yards.
Let,
\(t_{0}=37000\) price of machine 7 years ago
\(t_{1}=67000\) price of machine now
Using exponential decay formula,
\(f(t_{0})=f(t_{1})*e^{kt}\)
\(67000=37000*e^{7k}\)
\(k=-0.0848\) ## decay rate of machine’s value
To find t in 9 years,
\(P(t_{2})=37000*e^{9k}\)
\(P(t_{2})=17245.27\) ## The value of the machine 9 years from now will be $17,245.27
Let,
\(x=\) units of television
\(p(x)=23.2-0.4x\) price of television
Since revenue = units * price,
\(D(x)=23.2x-0.4x^{2}\)
\(D'(x)=23.2-0.8x\) ## First Derivative
\(D'(x)=0\)
\(23.2-0.8x=0\)
\(x=29\)
## To maximize the revenue, the level of production must be 29 units.
Let,
\(t_{0}=0\) cost of goods and services in year 1995
\(t_{1}=11\) cost of goods and services in year 2006
\(t_{2}=22\) cost of goods and services in year 2017
Using exponential growth formula,
\(P(t_{1})=P(t_{0})*e^{kt}\)
\(426.80=400*e^{11k}\)
\(k=0.00589\) ## Growth rate of dollar value
To find t in year 2017,
\(P(t_{2})=400*e^{0.00589*22}\)
\(P(t_{2})=455.34\) ## The cost of same goods and services in year 2017 is $455.34
Marginal profit function as given,
\(P'(x)=380-4x\)
Therefore, the profit function by taking integral,
\(P(x)=380x-2x^{2}+C\)
To find c,
\(1700=380(38)-2(38)^{2}+C\)
\(C=-9852\)
Step 1,
\(P(x)=380x-2x^{2}-9852\) ## The profit function
Step 2,
\(P(x)=380*56-2*56^{2}-9852\)
\(P=5156\) ## The profit from the sale of 56 clock radios is $5,156.00.
Using integration by substituion,
\(\int f(g(x))*g'(x)dx\)
\(\int f(u)du\)
\(u=g(x)\)
Set,
\(u=ln(y)\)
\(\frac{du}{dy}=\frac{1}{y}\)
\(du=\frac{1}{y}dy\)
Replace u,
\(-5\int u^{3}du=\frac{-5}{4}u^{4}+C\)
\(-\frac{5}{4}ln(y)^{4}+C\) ## Final Answer
To find the population function take the integral,
\(P´(t)=75-9t^\frac{1}{2}\)
\(P(t) = 75t-6t^\frac{3}{2}+C\)
Population of wild animals on the 9th year,
\(P(9)=75(9)-6(9)^\frac{3}{2}\)
\(P(9)=513\)
\(P(0)=0\)
\(P(9)-P(0)=513\) ## The population increased by 513 wild animals during the first 9 years.
To find points of interaction, solve the equations:
\(6x^{2}=6\sqrt{x}\)
\(x(x^{3}-1)=0\)
\(x=0, x=1\)
Calculating definite integrals,
\(\int_{0}^{1}6\sqrt{x}dx = 4\)
\(\int_{0}^{1}6x^{2}dx = 2\)
\(4-2=2\) ## The area of the region bounded by the graphs is 2.
\(\frac{dy}{dx}=x^{3}y\)
\(dy=x^{3}ydx\)
\(\frac{dy}{y}=x^{3}dx\)
\(\int\frac{dy}{y}=\int x^{3}dx\)
\(ln(y)+C_{1}=\frac{x^{4}}{4}+C_{2}\)
\(ln(y)=\frac{x^{4}}{4}+C_{2}-C_{1}\)
\(ln(y)=\frac{x^{4}}{4}+C\)
\(y=e^{\frac{x^{4}}{4}}+C\)
\(y=e^{\frac{x^{4}}{4}+C}\) ## Answer
Q32 <- function(x){x*sqrt(x+7)}
Q32a <- integrate(Q32, -7, 2)
fractions(Q32a$value)
## [1] -144/5
Let,
\(x\) number of bounces
\(f(x)=46*(0.22)^{x}\)
To find the sum of the finite geometric sequence:
\(\sum_{x=1}^{20} 46(0.22)^{x}=12.97\)
To find the vertical distance of the 20th bounce:
\(46+2*12.97=71.95\) ## Step 1
To find the vertical distance of indefinite bounce:
\(d(x)=46+2*\sum_{x=1}^{20} 46(0.22)^{x}=71.95\) ## Step 2
\(P(x)=3e^{17}+15e^{17}(x-4)+\frac{72}{2}e^{17}(x-4)^{2}+\frac{125}{2}e^{17}(x-4)^{3}+\frac{625}{8}e^{17}(x-4)^{4}+\frac{628}{8}e^{17}(x-4)^{5}\)