Air_Data <- read.csv("D:\\DataScience\\Assignments\\Clustaring\\EastWestAirlines.csv")
View(Air_Data)
Air1<- Air_Data[,-1]
Air <- scale(Air1)

View(Air)

#data Normalization

plot(Air)

km <- kmeans(Air,4) #kmeans clustering
str(km)
## List of 9
##  $ cluster     : int [1:3999] 4 4 4 4 2 4 2 3 1 2 ...
##  $ centers     : num [1:4, 1:11] 1.234 0.632 -0.157 -0.3 0.778 ...
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : chr [1:4] "1" "2" "3" "4"
##   .. ..$ : chr [1:11] "Balance" "Qual_miles" "cc1_miles" "cc2_miles" ...
##  $ totss       : num 43978
##  $ withinss    : num [1:4] 8602 6671 5251 8210
##  $ tot.withinss: num 28735
##  $ betweenss   : num 15243
##  $ size        : int [1:4] 151 912 832 2104
##  $ iter        : int 4
##  $ ifault      : int 0
##  - attr(*, "class")= chr "kmeans"
km$centers
##      Balance  Qual_miles  cc1_miles   cc2_miles   cc3_miles Bonus_miles
## 1  1.2344208  0.77765957  0.2405468  0.17088676  1.36187041   0.9758147
## 2  0.6317661 -0.01183768  1.4809650 -0.08337706 -0.02906215   1.2619693
## 3 -0.1573947  0.11086843 -0.2762895  0.03201582 -0.06275873  -0.2695878
## 4 -0.3001976 -0.09452147 -0.5499476  0.01121617 -0.06032438  -0.5104406
##   Bonus_trans Flight_miles_12mo Flight_trans_12 Days_since_enroll
## 1   1.8067560        3.51834178      3.78789227        0.29274276
## 2   0.8396323       -0.06722512     -0.06669335        0.45863789
## 3  -0.0943362       -0.02689278     -0.02244345        0.05671985
## 4  -0.4563104       -0.21273075     -0.23406580       -0.24223994
##       Award.
## 1  0.9335192
## 2  0.4342030
## 3  1.2938004
## 4 -0.7668234
km$cluster
##    [1] 4 4 4 4 2 4 2 3 1 2 4 2 4 4 4 2 2 3 2 3 2 3 4 4 4 4 4 4 2 3 2 4 2 4
##   [35] 4 2 3 4 2 3 4 2 3 2 2 3 4 3 2 4 4 4 2 3 4 4 2 3 4 2 2 4 4 4 4 1 4 2
##   [69] 2 3 3 2 2 4 2 2 4 2 2 2 3 4 4 4 4 2 3 2 4 3 3 4 2 3 1 4 4 2 4 3 2 3
##  [103] 4 3 4 2 1 3 2 2 2 3 1 3 3 2 4 2 2 3 4 2 2 2 2 2 2 1 3 2 3 3 3 3 3 1
##  [137] 2 2 3 4 4 4 4 2 4 3 4 2 2 4 2 2 2 4 2 2 2 3 2 4 2 2 3 2 3 4 4 2 2 2
##  [171] 2 4 2 3 2 2 3 3 3 3 4 3 4 3 2 4 1 4 2 4 2 1 2 4 3 4 2 2 3 2 2 3 4 2
##  [205] 4 4 2 3 3 4 2 4 4 3 4 2 4 4 2 2 1 2 3 4 2 4 3 2 4 2 2 2 4 3 3 3 4 3
##  [239] 1 4 2 3 2 1 2 1 4 3 2 4 4 4 2 3 3 2 2 3 4 2 4 4 4 4 3 2 4 4 2 2 2 2
##  [273] 2 4 4 1 4 2 4 2 4 2 4 3 2 2 2 4 2 2 2 2 2 4 4 2 2 2 1 4 3 4 2 2 4 2
##  [307] 4 1 4 4 2 2 2 2 3 3 4 4 2 3 2 2 2 1 4 3 4 1 2 4 2 4 2 3 2 2 2 4 4 2
##  [341] 2 3 4 4 4 2 2 2 2 3 4 2 4 3 2 4 4 2 4 4 3 4 2 4 4 3 3 4 4 2 3 2 2 4
##  [375] 3 1 4 2 4 2 1 4 2 2 1 2 4 2 2 4 4 3 3 4 4 4 4 4 4 4 4 4 4 4 1 2 4 3
##  [409] 4 4 1 2 1 2 4 3 3 3 2 4 1 4 2 2 2 2 4 2 4 2 3 3 3 2 3 4 2 2 2 4 4 2
##  [443] 4 4 2 3 2 4 2 4 2 4 2 2 4 4 3 4 2 2 4 2 3 4 4 2 1 2 4 3 4 1 2 4 4 1
##  [477] 4 2 2 2 4 2 3 4 3 3 2 3 1 2 3 4 1 4 2 4 3 3 4 2 1 2 4 2 4 2 2 3 4 4
##  [511] 2 1 2 4 2 2 3 2 2 3 4 4 2 4 3 4 2 2 2 3 3 1 2 4 2 3 3 2 4 4 4 3 4 4
##  [545] 3 3 2 2 3 1 2 3 4 4 2 3 4 3 4 4 3 2 3 2 2 2 4 2 4 4 3 2 4 4 2 4 2 4
##  [579] 3 4 2 4 4 4 4 4 4 2 4 3 4 4 3 2 1 4 4 4 2 2 2 2 2 2 3 3 3 4 2 4 4 1
##  [613] 3 3 3 2 4 3 2 2 2 4 1 2 2 2 4 2 4 2 1 4 4 4 4 4 4 3 2 2 3 4 4 4 4 4
##  [647] 4 3 4 3 3 3 3 2 4 4 4 2 3 3 2 4 1 3 2 4 4 4 4 2 2 4 2 3 2 3 3 3 2 4
##  [681] 4 1 2 1 4 2 4 2 4 2 4 2 2 2 4 4 4 2 4 4 4 2 1 3 2 2 3 4 1 4 3 2 4 3
##  [715] 2 4 2 3 1 4 4 3 3 2 4 2 2 4 4 4 2 2 4 4 3 4 2 4 4 2 3 2 4 1 3 2 4 4
##  [749] 4 4 2 3 4 3 2 4 2 2 3 3 3 4 4 2 2 2 4 3 3 2 4 4 1 2 2 4 3 4 4 3 2 2
##  [783] 3 4 4 4 4 2 2 3 3 2 2 2 4 3 2 2 2 3 2 4 4 3 4 3 2 2 4 4 4 3 2 2 2 3
##  [817] 4 4 2 4 3 4 3 2 4 4 3 4 2 3 2 2 2 1 3 2 2 2 4 1 2 2 2 4 2 4 4 2 4 2
##  [851] 1 1 4 4 2 2 4 4 2 2 1 2 3 4 2 2 3 4 3 3 3 3 3 4 4 3 4 2 4 4 2 2 4 2
##  [885] 2 3 3 2 4 3 4 2 4 2 4 4 3 4 4 4 2 2 4 4 1 2 4 4 4 2 4 2 4 4 1 3 3 2
##  [919] 4 2 4 4 2 3 4 3 3 4 4 4 2 4 2 4 2 2 2 2 3 4 3 3 3 4 4 4 2 2 3 4 4 4
##  [953] 4 2 2 2 4 4 1 2 4 4 2 2 3 3 1 4 3 2 4 3 2 4 4 2 1 2 4 2 2 4 4 2 2 4
##  [987] 3 4 2 4 4 3 2 2 3 2 4 2 2 2 2 3 4 2 4 4 4 3 4 2 3 4 4 3 1 3 3 2 4 4
## [1021] 2 4 3 4 4 3 4 3 4 4 4 4 1 3 4 4 2 2 4 3 4 4 2 3 3 4 3 2 2 2 4 4 2 2
## [1055] 4 2 2 2 2 4 4 1 4 3 1 3 3 2 2 4 2 2 4 4 4 4 2 4 3 3 3 4 4 3 3 2 4 3
## [1089] 4 4 4 4 4 2 3 3 3 4 4 2 4 4 2 2 4 2 2 4 3 4 2 2 2 2 4 2 4 2 4 2 4 4
## [1123] 1 2 2 2 2 4 2 4 2 3 4 4 2 3 3 4 2 4 2 3 4 2 3 3 3 3 3 4 1 4 4 4 2 3
## [1157] 4 2 2 4 3 4 4 2 3 4 4 4 2 2 3 2 2 3 3 4 2 3 2 4 4 2 3 4 4 4 2 1 2 4
## [1191] 4 4 4 2 4 4 3 4 4 4 3 4 4 4 3 4 1 3 2 4 2 4 4 3 4 2 3 4 4 3 3 2 3 4
## [1225] 2 3 2 3 4 4 4 4 3 4 4 4 1 4 4 4 3 4 4 4 1 2 4 3 4 3 2 4 3 4 2 3 3 4
## [1259] 2 4 4 3 1 4 4 3 2 3 2 2 4 3 4 2 4 4 4 3 3 4 4 2 2 2 4 2 4 4 2 3 4 3
## [1293] 3 2 3 2 4 4 1 4 1 4 1 4 4 3 2 4 4 4 2 4 4 2 1 2 3 2 4 3 4 2 3 4 4 2
## [1327] 3 2 3 3 4 4 4 4 4 4 4 2 4 2 4 4 4 4 3 4 4 3 3 4 4 3 2 2 3 4 4 3 2 4
## [1361] 4 4 3 4 2 4 4 4 4 4 3 4 2 4 3 4 4 4 2 2 4 4 2 3 2 2 3 4 3 4 4 4 4 4
## [1395] 2 3 4 2 4 4 4 2 4 4 3 2 2 2 4 4 4 2 4 2 2 2 4 3 2 2 2 4 2 3 4 2 4 4
## [1429] 1 2 2 4 4 1 4 3 2 4 2 4 3 2 4 3 4 4 3 4 4 3 2 3 2 2 4 2 4 4 4 3 4 2
## [1463] 2 2 4 4 4 3 4 3 2 2 4 4 4 4 3 2 3 2 4 2 4 2 4 4 2 4 2 1 4 4 3 3 3 4
## [1497] 2 3 3 4 3 3 4 2 4 2 4 4 4 4 4 4 3 3 4 4 3 3 3 2 3 3 4 3 3 2 2 4 4 1
## [1531] 3 4 4 3 2 4 2 4 3 2 4 4 2 4 4 3 2 1 4 4 2 4 4 4 4 4 3 3 4 4 4 4 4 4
## [1565] 4 3 4 3 3 2 4 4 4 3 4 4 3 3 4 3 4 4 4 3 3 3 4 3 3 2 4 4 2 1 4 1 3 2
## [1599] 4 3 3 4 2 4 4 2 4 4 3 4 4 4 2 2 3 2 2 4 2 2 1 4 2 1 2 4 4 4 2 4 2 4
## [1633] 2 2 4 2 4 3 4 2 4 2 2 4 4 2 4 4 4 4 2 2 4 2 4 3 2 2 3 3 3 3 2 2 4 4
## [1667] 2 3 4 3 4 2 4 2 2 3 1 4 4 3 2 2 4 2 4 4 3 2 2 3 4 2 2 3 3 4 4 4 3 3
## [1701] 3 4 2 2 4 4 2 2 4 4 2 4 4 4 4 3 3 2 2 4 4 2 2 2 2 2 4 2 1 4 2 4 3 2
## [1735] 4 4 2 4 2 4 2 4 4 4 2 4 2 4 4 4 3 2 4 2 4 4 4 4 4 4 3 4 4 2 4 2 2 3
## [1769] 4 4 4 4 3 2 2 3 4 2 4 4 4 2 4 2 3 4 2 4 4 3 4 4 4 4 3 4 4 4 3 4 3 2
## [1803] 3 2 4 3 2 4 3 4 2 4 4 4 4 3 3 2 4 2 4 4 3 4 3 4 4 4 3 4 4 4 4 3 2 4
## [1837] 4 2 2 4 2 2 2 4 4 2 1 4 2 2 4 2 4 4 4 4 4 4 3 4 2 3 4 3 2 4 4 3 3 4
## [1871] 4 2 2 4 2 4 2 2 1 4 4 2 3 4 4 1 4 4 4 4 2 4 3 2 2 4 4 4 4 2 4 4 4 4
## [1905] 4 3 4 2 4 4 2 1 4 3 4 4 2 1 4 2 2 3 3 2 3 4 4 4 4 4 1 4 4 4 2 4 2 4
## [1939] 4 2 4 2 2 2 4 4 1 4 2 2 4 3 4 4 2 3 3 4 2 4 3 3 4 4 4 3 3 4 3 4 4 4
## [1973] 4 4 2 3 4 2 4 4 3 4 4 4 4 4 4 2 4 4 4 3 2 4 4 4 4 2 3 2 4 2 2 2 1 4
## [2007] 4 4 4 2 4 3 2 4 4 1 4 4 3 2 3 2 3 4 2 3 4 4 3 4 4 4 4 2 4 4 4 2 3 3
## [2041] 4 4 4 3 4 4 2 3 4 1 3 2 3 4 4 4 3 4 1 3 4 2 3 3 4 4 3 4 3 2 2 4 2 4
## [2075] 2 4 4 4 2 4 3 4 4 3 4 4 4 2 4 4 4 3 2 3 3 4 4 3 4 4 4 3 4 4 4 2 3 3
## [2109] 4 4 4 4 2 3 3 4 4 4 3 4 4 3 3 2 4 2 4 4 4 4 3 2 2 2 3 4 2 2 4 4 4 4
## [2143] 4 4 4 2 4 3 4 4 4 1 4 1 4 4 3 3 4 4 4 3 2 2 4 4 1 3 4 2 4 3 2 2 4 3
## [2177] 3 2 4 1 3 2 3 4 4 2 2 3 4 3 4 4 4 3 3 4 2 4 3 2 4 2 3 4 3 4 3 4 4 3
## [2211] 4 3 3 3 3 4 3 1 3 4 4 4 3 4 4 1 3 4 4 4 2 4 3 4 4 4 4 4 4 4 3 3 3 2
## [2245] 4 3 2 4 4 4 1 1 2 4 3 4 4 3 4 4 4 2 4 3 3 4 3 1 4 2 3 4 2 2 3 2 2 3
## [2279] 4 4 4 3 4 2 4 4 4 2 2 4 3 4 3 3 2 2 4 3 4 4 4 3 4 4 2 2 4 2 2 3 3 2
## [2313] 4 4 4 4 2 4 2 2 4 4 3 2 4 4 4 3 3 4 4 3 2 4 2 4 3 4 3 3 4 3 4 2 3 3
## [2347] 3 4 4 4 3 2 2 4 4 2 4 2 2 2 4 4 2 4 1 4 2 3 4 4 4 4 4 3 4 1 2 4 2 3
## [2381] 4 3 4 3 4 4 4 3 4 4 3 4 2 4 4 4 4 4 3 3 4 3 2 2 4 4 4 4 4 4 4 2 3 1
## [2415] 3 4 3 2 2 4 2 4 2 4 4 3 4 3 2 4 4 4 4 4 2 2 3 2 3 3 4 2 4 2 4 2 2 4
## [2449] 1 1 4 4 2 4 2 2 2 4 3 4 4 2 2 3 4 2 4 3 4 3 4 4 2 2 2 2 4 3 4 3 4 3
## [2483] 2 4 4 4 3 2 4 2 3 4 3 3 4 4 4 4 4 3 2 1 4 3 3 3 2 4 3 3 3 4 3 2 3 4
## [2517] 4 4 3 2 4 4 1 4 4 2 2 4 3 4 4 2 3 2 3 2 4 4 4 2 4 3 4 2 4 4 4 4 2 2
## [2551] 4 4 4 3 3 4 4 3 4 2 3 2 4 4 3 4 4 3 4 4 3 4 4 3 4 4 4 4 4 2 4 4 4 3
## [2585] 4 3 3 4 4 2 4 2 4 3 2 4 4 4 4 3 3 4 4 3 2 3 4 3 2 4 3 3 2 4 3 2 4 4
## [2619] 4 4 3 3 4 4 4 3 4 4 4 4 4 4 4 3 4 3 4 3 2 2 4 4 3 4 3 3 3 2 4 4 3 2
## [2653] 4 3 4 4 1 2 4 3 4 3 4 4 4 2 4 4 4 4 2 3 1 1 2 4 4 4 4 4 4 4 3 3 3 2
## [2687] 4 4 4 3 3 3 4 2 3 4 1 4 4 4 4 4 4 4 4 4 4 3 3 1 4 2 4 4 3 2 3 4 3 4
## [2721] 4 3 3 4 4 3 3 3 2 2 2 2 3 4 4 4 4 3 3 4 2 4 3 2 4 4 4 1 4 4 4 1 3 3
## [2755] 3 4 4 4 3 4 3 3 4 4 3 4 2 4 4 4 4 2 3 3 4 1 4 4 4 4 2 4 4 2 4 4 4 4
## [2789] 4 1 4 3 3 4 3 4 4 4 4 4 4 3 1 3 4 4 2 4 4 4 4 4 4 3 4 2 4 3 4 2 2 2
## [2823] 2 3 4 4 4 4 4 3 4 2 4 4 4 3 3 4 4 2 2 4 4 4 4 3 4 4 3 2 3 4 3 2 2 3
## [2857] 3 4 4 4 4 4 3 4 3 4 3 4 4 4 3 4 3 4 4 4 4 4 3 4 4 4 2 4 4 4 4 4 1 3
## [2891] 4 3 2 4 4 2 3 3 4 2 4 3 4 1 4 2 4 4 4 4 4 4 4 3 3 4 4 4 2 3 4 4 3 4
## [2925] 4 2 4 2 4 4 4 4 2 3 2 4 4 4 2 4 4 4 3 4 4 4 4 4 4 4 3 4 4 4 3 1 3 3
## [2959] 4 4 4 4 2 4 3 4 4 3 4 4 4 4 4 4 3 4 4 4 3 4 4 4 4 3 4 2 4 3 4 4 2 4
## [2993] 3 3 2 3 3 4 4 1 3 2 2 4 4 3 3 4 4 4 4 3 4 3 2 2 2 3 3 4 2 2 4 4 4 4
## [3027] 3 3 4 4 2 1 2 4 4 3 3 3 4 4 1 4 2 3 4 4 4 4 4 3 4 2 4 3 4 4 4 3 3 4
## [3061] 4 3 2 2 4 4 4 4 4 2 3 4 4 2 4 3 2 4 4 2 3 4 1 4 3 4 4 4 4 4 4 4 3 1
## [3095] 4 4 1 4 3 4 4 3 4 2 1 1 2 4 3 4 4 4 4 2 4 4 4 4 3 3 4 4 4 4 4 4 3 2
## [3129] 4 3 4 4 4 3 4 4 2 2 3 4 4 4 4 4 4 4 2 2 2 2 4 4 4 4 2 4 3 3 3 4 1 4
## [3163] 3 4 4 1 4 3 2 3 4 3 4 3 3 3 4 3 4 4 3 4 4 3 4 2 4 4 4 4 4 4 4 3 3 4
## [3197] 4 3 4 2 4 4 4 4 4 4 4 4 3 4 4 4 3 4 2 4 4 2 3 2 4 4 4 4 4 3 4 4 4 4
## [3231] 3 4 4 4 4 1 3 3 4 4 4 3 4 4 3 4 4 4 4 1 3 4 3 4 4 1 3 4 4 4 1 2 3 3
## [3265] 4 4 4 4 4 4 3 4 4 4 4 4 4 4 2 3 4 3 1 4 4 3 4 4 4 4 3 4 4 2 3 4 4 4
## [3299] 2 4 4 4 3 4 2 4 4 4 4 3 4 2 3 4 2 2 4 4 4 4 3 4 4 4 3 4 3 4 4 2 4 3
## [3333] 3 4 4 3 4 4 1 3 3 4 4 4 4 4 2 4 4 3 4 4 2 4 3 4 2 4 4 4 4 4 2 4 4 4
## [3367] 2 4 4 3 4 4 4 4 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 2 4 3
## [3401] 4 3 4 3 4 3 4 4 4 4 4 2 4 4 4 4 4 2 4 4 4 4 4 4 2 2 4 4 4 1 4 4 4 4
## [3435] 4 4 4 4 2 4 4 4 4 4 2 4 4 2 4 4 3 4 3 4 4 4 4 4 4 4 4 3 3 1 4 4 4 3
## [3469] 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 3 2 4 4 2 4 2 4 4 3 4 4 4 2 3 4 4 2
## [3503] 4 4 4 4 4 3 3 4 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [3537] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 2 2
## [3571] 4 4 4 4 4 4 4 4 4 4 4 4 4 1 4 4 4 4 4 4 4 4 4 4 1 4 4 4 4 4 4 2 4 4
## [3605] 4 3 4 4 4 3 4 4 3 4 4 4 4 2 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 3 4
## [3639] 4 4 4 4 3 4 4 4 2 4 4 3 4 4 4 4 4 4 4 3 4 4 4 3 4 4 4 3 4 4 4 4 4 4
## [3673] 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [3707] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## [3741] 3 4 4 4 4 4 4 4 3 4 4 3 3 2 3 3 3 4 4 4 3 3 3 4 4 4 4 4 4 2 4 4 2 4
## [3775] 4 2 4 3 4 4 4 4 3 3 2 2 4 3 1 2 4 2 2 4 4 4 2 4 3 4 3 2 4 4 3 4 3 4
## [3809] 4 4 4 3 4 4 4 4 3 4 3 2 4 4 2 2 1 4 4 4 4 3 3 3 1 4 2 4 4 3 4 4 4 4
## [3843] 4 2 4 4 1 4 4 4 4 3 4 4 4 2 3 4 4 4 2 4 3 3 4 4 4 2 4 3 4 3 4 4 4 4
## [3877] 4 3 4 4 4 2 4 2 4 4 2 4 3 4 3 4 4 4 4 4 4 3 4 2 3 4 3 4 3 4 4 1 2 4
## [3911] 4 1 4 3 4 3 4 1 4 4 4 3 4 3 4 4 4 4 4 3 2 3 3 4 1 4 3 4 4 4 4 3 4 4
## [3945] 3 4 4 4 4 4 1 4 4 3 3 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 4 4 3 2 4 4 4
## [3979] 3 3 4 4 4 4 4 2 4 3 4 3 4 4 4 4 3 3 3 4 4
finalmodel <- data.frame(km$cluster,Air1)

View(finalmodel)
x <- aggregate(Air1[,1:11],by=list(km$cluster),FUN=mean)

x
##   Group.1   Balance Qual_miles cc1_miles cc2_miles cc3_miles Bonus_miles
## 1       1 198000.90  745.76159  2.390728  1.039735  1.278146   40711.715
## 2       2 137267.98  134.95614  4.098684  1.002193  1.006579   47622.625
## 3       3  57739.77  229.88942  1.679087  1.019231  1.000000   10634.041
## 4       4  43348.71   70.98669  1.302281  1.016160  1.000475    4817.212
##   Bonus_trans Flight_miles_12mo Flight_trans_12 Days_since_enroll
## 1   28.953642         5386.4702      15.7417219          4723.113
## 2   19.665570          365.9265       1.1206140          5065.708
## 3   10.695913          422.4002       1.2884615          4235.694
## 4    7.219582          162.1882       0.4857414          3618.301
##      Award.
## 1 0.8211921
## 2 0.5800439
## 3 0.9951923
## 4 0.0000000