allData is a list with 20 objects. 4 are the Winter 2018 exam files, 14 are the past exam files. 2 are gender and time cluster information for Winter 2018.
| allData_Elements | Name |
|---|---|
| 1 | WN2018_E4 |
| 2 | WN2018_E3 |
| 3 | WN2018_E2 |
| 4 | WN2018_E1 |
| 5 | WN2016_E1 |
| 6 | WN2015_E4 |
| 7 | WN2015_E3 |
| 8 | WN2015_E2 |
| 9 | WN2015_E1 |
| 10 | WN2014_E4 |
| 11 | WN2014_E3 |
| 12 | WN2014_E2 |
| 13 | WN2014_E1 |
| 14 | WN2013_E4 |
| 15 | WN2013_E3 |
| 16 | WN2013_E2 |
| 17 | WN2013_E1 |
| 18 | FA2004_E3 |
| 19 | WN2018_gender_3cluster |
| 20 | WN2018_gender_2cluster |
| Number | WN2018_Info | OriginalTerm_Info |
|---|---|---|
| 1 | WN2018_E4_Q1 | WN2013_E4_Q6 |
| 2 | WN2018_E4_Q5 | WN2013_E4_Q4 |
| 3 | WN2018_E4_Q7 | WN2015_E4_Q3 |
| 4 | WN2018_E4_Q13 | WN2013_E4_Q7 |
| 5 | WN2018_E4_Q14 | WN2013_E4_Q10 |
| 6 | WN2018_E4_Q16 | WN2015_E4_Q17 |
| 7 | WN2018_E4_Q17 | WN2015_E4_Q14 |
| 8 | WN2018_E4_Q18 | WN2015_E4_Q15 |
| 9 | WN2018_E4_Q19 | WN2014_E4_Q12 |
| 10 | WN2018_E4_Q20 | WN2013_E4_Q19 |
| 11 | WN2018_E4_Q21 | WN2013_E4_Q24 |
| 12 | WN2018_E4_Q22 | WN2015_E4_Q19 |
| 13 | WN2018_E3_Q4 | WN2015_E3_Q4 |
| 14 | WN2018_E3_Q5 | WN2013_E3_Q5 |
| 15 | WN2018_E3_Q6 | FA2004_E3_Q5 |
| 16 | WN2018_E3_Q7 | WN2014_E3_Q7 |
| 17 | WN2018_E3_Q9 | WN2015_E3_Q9 |
| 18 | WN2018_E3_Q12 | FA2004_E3_Q12 |
| 19 | WN2018_E3_Q13 | WN2013_E3_Q13 |
| 20 | WN2018_E3_Q17 | FA2004_E3_Q17 |
| 21 | WN2018_E3_Q18 | WN2013_E3_Q18 |
| 22 | WN2018_E2_Q1 | WN2013_E2_Q1 |
| 23 | WN2018_E2_Q2 | WN2015_E2_Q2 |
| 24 | WN2018_E2_Q4 | WN2014_E2_Q4 |
| 25 | WN2018_E2_Q7 | WN2014_E2_Q7 |
| 26 | WN2018_E2_Q8 | WN2013_E2_Q8 |
| 27 | WN2018_E2_Q11 | WN2013_E2_Q11 |
| 28 | WN2018_E2_Q12 | WN2013_E2_Q13 |
| 29 | WN2018_E2_Q13 | WN2014_E2_Q13 |
| 30 | WN2018_E2_Q14 | WN2013_E2_Q14 |
| 31 | WN2018_E2_Q19 | WN2015_E2_Q19 |
| 32 | WN2018_E1_Q2 | WN2016_E1_Q2 |
| 33 | WN2018_E1_Q3 | WN2014_E4_Q4 |
| 34 | WN2018_E1_Q4 | WN2013_E1_Q4 |
| 35 | WN2018_E1_Q5 | WN2014_E1_Q5 |
| 36 | WN2018_E1_Q6 | WN2014_E4_Q6 |
| 37 | WN2018_E1_Q8 | WN2013_E1_Q8 |
| 38 | WN2018_E1_Q9 | WN2016_E1_Q8 |
| 39 | WN2018_E1_Q12 | WN2015_E1_Q12 |
| 40 | WN2018_E1_Q16 | WN2013_E1_Q16 |
| 41 | WN2018_E1_Q19 | WN2014_E1_Q19 |
# Bootstrap - sample with replacement many times, recalculate percent correct each time.
# To determine R = 10000 for the boot() function, I kept changing the R value for a specific question until the hundredth place of the standard error did not change.
bootfunc <- function(d, i) {
d1 <- d[i]
return(mean(d1))
}
| Number | Term | Gender | Percent Correct | Standard Error |
|---|---|---|---|---|
| 1 | WN2018 | Female | 0.7021277 | 0.0302968 |
| 2 | WN2018 | Female | 0.6851064 | 0.0300686 |
| 3 | WN2018 | Female | 0.8170213 | 0.0251248 |
| 4 | WN2018 | Female | 0.7234043 | 0.0292542 |
| 5 | WN2018 | Female | 0.6893617 | 0.0302612 |
| 6 | WN2018 | Female | 0.7234043 | 0.0291326 |
| 7 | WN2018 | Female | 0.8468085 | 0.0235895 |
| 8 | WN2018 | Female | 0.8553191 | 0.0228080 |
| 9 | WN2018 | Female | 0.7276596 | 0.0289995 |
| 10 | WN2018 | Female | 0.6000000 | 0.0316706 |
| 11 | WN2018 | Female | 0.4255319 | 0.0322631 |
| 12 | WN2018 | Female | 0.4723404 | 0.0326208 |
| 13 | WN2018 | Female | 0.7805907 | 0.0266174 |
| 14 | WN2018 | Female | 0.7594937 | 0.0277285 |
| 15 | WN2018 | Female | 0.3924051 | 0.0317967 |
| 16 | WN2018 | Female | 0.6666667 | 0.0305134 |
| 17 | WN2018 | Female | 0.6877637 | 0.0298609 |
| 18 | WN2018 | Female | 0.6582278 | 0.0307194 |
| 19 | WN2018 | Female | 0.5907173 | 0.0318258 |
| 20 | WN2018 | Female | 0.3248945 | 0.0304075 |
| 21 | WN2018 | Female | 0.4641350 | 0.0323115 |
| 22 | WN2018 | Female | 0.7581967 | 0.0274691 |
| 23 | WN2018 | Female | 0.8934426 | 0.0197779 |
| 24 | WN2018 | Female | 0.7745902 | 0.0196302 |
| 25 | WN2018 | Female | 0.8606557 | 0.0221393 |
| 26 | WN2018 | Female | 0.9098361 | 0.0183066 |
| 27 | WN2018 | Female | 0.7418033 | 0.0279454 |
| 28 | WN2018 | Female | 0.6639344 | 0.0304604 |
| 29 | WN2018 | Female | 0.4672131 | 0.0313665 |
| 30 | WN2018 | Female | 0.6311475 | 0.0303187 |
| 31 | WN2018 | Female | 0.6188525 | 0.0310441 |
| 32 | WN2018 | Female | 0.7800000 | 0.0259110 |
| 33 | WN2018 | Female | 0.7880000 | 0.0255754 |
| 34 | WN2018 | Female | 0.7760000 | 0.0260927 |
| 35 | WN2018 | Female | 0.5680000 | 0.0310474 |
| 36 | WN2018 | Female | 0.8040000 | 0.0254270 |
| 37 | WN2018 | Female | 0.7240000 | 0.0284501 |
| 38 | WN2018 | Female | 0.7360000 | 0.0282362 |
| 39 | WN2018 | Female | 0.8520000 | 0.0222707 |
| 40 | WN2018 | Female | 0.6280000 | 0.0305099 |
| 41 | WN2018 | Female | 0.7960000 | 0.0255005 |
| 1 | WN2018 | Male | 0.7853403 | 0.0209742 |
| 2 | WN2018 | Male | 0.7094241 | 0.0230821 |
| 3 | WN2018 | Male | 0.8848168 | 0.0162861 |
| 4 | WN2018 | Male | 0.8115183 | 0.0201900 |
| 5 | WN2018 | Male | 0.8455497 | 0.0187042 |
| 6 | WN2018 | Male | 0.7277487 | 0.0227680 |
| 7 | WN2018 | Male | 0.8376963 | 0.0189520 |
| 8 | WN2018 | Male | 0.8952880 | 0.0156233 |
| 9 | WN2018 | Male | 0.8979058 | 0.0156432 |
| 10 | WN2018 | Male | 0.6858639 | 0.0237546 |
| 11 | WN2018 | Male | 0.5759162 | 0.0253045 |
| 12 | WN2018 | Male | 0.5732984 | 0.0253104 |
| 13 | WN2018 | Male | 0.8036649 | 0.0203145 |
| 14 | WN2018 | Male | 0.8507853 | 0.0182542 |
| 15 | WN2018 | Male | 0.6204188 | 0.0249660 |
| 16 | WN2018 | Male | 0.7041885 | 0.0234207 |
| 17 | WN2018 | Male | 0.7748691 | 0.0213938 |
| 18 | WN2018 | Male | 0.7513089 | 0.0222013 |
| 19 | WN2018 | Male | 0.6178010 | 0.0248206 |
| 20 | WN2018 | Male | 0.4083770 | 0.0250996 |
| 21 | WN2018 | Male | 0.5235602 | 0.0255495 |
| 22 | WN2018 | Male | 0.7328244 | 0.0222370 |
| 23 | WN2018 | Male | 0.9134860 | 0.0140619 |
| 24 | WN2018 | Male | 0.8320611 | 0.0188567 |
| 25 | WN2018 | Male | 0.8193384 | 0.0196628 |
| 26 | WN2018 | Male | 0.9083969 | 0.0144544 |
| 27 | WN2018 | Male | 0.7201018 | 0.0226358 |
| 28 | WN2018 | Male | 0.7353690 | 0.0221429 |
| 29 | WN2018 | Male | 0.5776081 | 0.0246025 |
| 30 | WN2018 | Male | 0.6513995 | 0.0239635 |
| 31 | WN2018 | Male | 0.6106870 | 0.0244895 |
| 32 | WN2018 | Male | 0.8019802 | 0.0198464 |
| 33 | WN2018 | Male | 0.8193069 | 0.0192164 |
| 34 | WN2018 | Male | 0.8168317 | 0.0191365 |
| 35 | WN2018 | Male | 0.7574257 | 0.0211885 |
| 36 | WN2018 | Male | 0.7722772 | 0.0206060 |
| 37 | WN2018 | Male | 0.8242574 | 0.0187510 |
| 38 | WN2018 | Male | 0.7252475 | 0.0222904 |
| 39 | WN2018 | Male | 0.9306931 | 0.0127014 |
| 40 | WN2018 | Male | 0.5841584 | 0.0247624 |
| 41 | WN2018 | Male | 0.8044554 | 0.0196529 |
| 1 | OG | Female | 0.6681614 | 0.0316327 |
| 2 | OG | Female | 0.6771300 | 0.0309875 |
| 3 | OG | Female | 0.6842105 | 0.0306285 |
| 4 | OG | Female | 0.7713004 | 0.0280581 |
| 5 | OG | Female | 0.7174888 | 0.0296601 |
| 6 | OG | Female | 0.5657895 | 0.0329115 |
| 7 | OG | Female | 0.6973684 | 0.0304330 |
| 8 | OG | Female | 0.7456140 | 0.0290233 |
| 9 | OG | Female | 0.8009950 | 0.0280870 |
| 10 | OG | Female | 0.6457399 | 0.0320210 |
| 11 | OG | Female | 0.6771300 | 0.0311270 |
| 12 | OG | Female | 0.6052632 | 0.0323296 |
| 13 | OG | Female | 0.7412281 | 0.0287328 |
| 14 | OG | Female | 0.7318182 | 0.0298106 |
| 15 | OG | Female | NA | NA |
| 16 | OG | Female | 0.6865672 | 0.0328242 |
| 17 | OG | Female | 0.6271930 | 0.0317047 |
| 18 | OG | Female | NA | NA |
| 19 | OG | Female | 0.7000000 | 0.0306765 |
| 20 | OG | Female | NA | NA |
| 21 | OG | Female | 0.4772727 | 0.0341304 |
| 22 | OG | Female | 0.7008197 | 0.0294753 |
| 23 | OG | Female | 0.7327586 | 0.0291066 |
| 24 | OG | Female | 0.6271930 | 0.0317720 |
| 25 | OG | Female | 0.6622807 | 0.0315889 |
| 26 | OG | Female | 0.8073770 | 0.0253274 |
| 27 | OG | Female | 0.6311475 | 0.0310733 |
| 28 | OG | Female | 0.8811475 | 0.0205673 |
| 29 | OG | Female | 0.5219298 | 0.0331831 |
| 30 | OG | Female | 0.7459016 | 0.0278455 |
| 31 | OG | Female | 0.5043103 | 0.0330215 |
| 32 | OG | Female | 0.8202765 | 0.0263653 |
| 33 | OG | Female | 0.8308458 | 0.0264963 |
| 34 | OG | Female | 0.5510204 | 0.0316009 |
| 35 | OG | Female | 0.6008584 | 0.0315948 |
| 36 | OG | Female | 0.7661692 | 0.0299176 |
| 37 | OG | Female | 0.6612245 | 0.0300096 |
| 38 | OG | Female | 0.6451613 | 0.0322209 |
| 39 | OG | Female | 0.5064935 | 0.0329156 |
| 40 | OG | Female | 0.6244898 | 0.0312253 |
| 41 | OG | Female | 0.7467811 | 0.0282806 |
| 1 | OG | Male | 0.5916824 | 0.0212956 |
| 2 | OG | Male | 0.6446125 | 0.0207586 |
| 3 | OG | Male | 0.7750000 | 0.0196362 |
| 4 | OG | Male | 0.8771267 | 0.0141304 |
| 5 | OG | Male | 0.8015123 | 0.0172872 |
| 6 | OG | Male | 0.6409091 | 0.0229167 |
| 7 | OG | Male | 0.7522727 | 0.0205534 |
| 8 | OG | Male | 0.8136364 | 0.0187230 |
| 9 | OG | Male | 0.8800000 | 0.0153773 |
| 10 | OG | Male | 0.7296786 | 0.0191199 |
| 11 | OG | Male | 0.5500945 | 0.0214212 |
| 12 | OG | Male | 0.6113636 | 0.0233134 |
| 13 | OG | Male | 0.7871854 | 0.0198038 |
| 14 | OG | Male | 0.7424242 | 0.0191127 |
| 15 | OG | Male | NA | NA |
| 16 | OG | Male | 0.7510917 | 0.0201091 |
| 17 | OG | Male | 0.5881007 | 0.0236960 |
| 18 | OG | Male | NA | NA |
| 19 | OG | Male | 0.6742424 | 0.0201300 |
| 20 | OG | Male | NA | NA |
| 21 | OG | Male | 0.4375000 | 0.0217816 |
| 22 | OG | Male | 0.6445242 | 0.0203019 |
| 23 | OG | Male | 0.7732181 | 0.0198239 |
| 24 | OG | Male | 0.7566462 | 0.0196647 |
| 25 | OG | Male | 0.6666667 | 0.0212854 |
| 26 | OG | Male | 0.8025135 | 0.0167033 |
| 27 | OG | Male | 0.6463196 | 0.0201740 |
| 28 | OG | Male | 0.8545781 | 0.0148968 |
| 29 | OG | Male | 0.5971370 | 0.0221904 |
| 30 | OG | Male | 0.7522442 | 0.0183262 |
| 31 | OG | Male | 0.4946004 | 0.0231028 |
| 32 | OG | Male | 0.7600000 | 0.0196879 |
| 33 | OG | Male | 0.8377778 | 0.0171420 |
| 34 | OG | Male | 0.4822695 | 0.0209597 |
| 35 | OG | Male | 0.7686117 | 0.0187051 |
| 36 | OG | Male | 0.7755556 | 0.0196226 |
| 37 | OG | Male | 0.8599291 | 0.0146037 |
| 38 | OG | Male | 0.6757895 | 0.0214076 |
| 39 | OG | Male | 0.6143791 | 0.0225560 |
| 40 | OG | Male | 0.5460993 | 0.0209255 |
| 41 | OG | Male | 0.7283702 | 0.0201700 |
Note that missing values correspond to the 3 Fall 2004 questions.
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 2 rows containing missing values (geom_errorbar).
## Warning: Removed 4 rows containing missing values (geom_point).
## Warning: Removed 4 rows containing missing values (geom_errorbar).
Note that missing values correspond to the 3 Fall 2004 questions.
| Number | Term | Percent Correct Difference (F-M) | Standard Error |
|---|---|---|---|
| 1 | WN2018 | -0.0832127 | 0.0368485 |
| 2 | WN2018 | -0.0243177 | 0.0379065 |
| 3 | WN2018 | -0.0677955 | 0.0299415 |
| 4 | WN2018 | -0.0881141 | 0.0355450 |
| 5 | WN2018 | -0.1561880 | 0.0355751 |
| 6 | WN2018 | -0.0043444 | 0.0369742 |
| 7 | WN2018 | 0.0091122 | 0.0302596 |
| 8 | WN2018 | -0.0399688 | 0.0276458 |
| 9 | WN2018 | -0.1702462 | 0.0329497 |
| 10 | WN2018 | -0.0858639 | 0.0395892 |
| 11 | WN2018 | -0.1503843 | 0.0410027 |
| 12 | WN2018 | -0.1009580 | 0.0412884 |
| 13 | WN2018 | -0.0230742 | 0.0334838 |
| 14 | WN2018 | -0.0912917 | 0.0331977 |
| 15 | WN2018 | -0.2280138 | 0.0404269 |
| 16 | WN2018 | -0.0375218 | 0.0384655 |
| 17 | WN2018 | -0.0871054 | 0.0367338 |
| 18 | WN2018 | -0.0930811 | 0.0379022 |
| 19 | WN2018 | -0.0270837 | 0.0403602 |
| 20 | WN2018 | -0.0834824 | 0.0394285 |
| 21 | WN2018 | -0.0594252 | 0.0411924 |
| 22 | WN2018 | 0.0253723 | 0.0353418 |
| 23 | WN2018 | -0.0200434 | 0.0242673 |
| 24 | WN2018 | -0.0574709 | 0.0272198 |
| 25 | WN2018 | 0.0413173 | 0.0296104 |
| 26 | WN2018 | 0.0014391 | 0.0233251 |
| 27 | WN2018 | 0.0217015 | 0.0359629 |
| 28 | WN2018 | -0.0714345 | 0.0376583 |
| 29 | WN2018 | -0.1103950 | 0.0398640 |
| 30 | WN2018 | -0.0202520 | 0.0386455 |
| 31 | WN2018 | 0.0081654 | 0.0395408 |
| 32 | WN2018 | -0.0219802 | 0.0326383 |
| 33 | WN2018 | -0.0313069 | 0.0319902 |
| 34 | WN2018 | -0.0408317 | 0.0323580 |
| 35 | WN2018 | -0.1894257 | 0.0375885 |
| 36 | WN2018 | 0.0317228 | 0.0327282 |
| 37 | WN2018 | -0.1002574 | 0.0340736 |
| 38 | WN2018 | 0.0107525 | 0.0359742 |
| 39 | WN2018 | -0.0786931 | 0.0256381 |
| 40 | WN2018 | 0.0438416 | 0.0392941 |
| 41 | WN2018 | -0.0084554 | 0.0321949 |
| 1 | OG | 0.0764790 | 0.0381330 |
| 2 | OG | 0.0325176 | 0.0372980 |
| 3 | OG | -0.0907895 | 0.0363825 |
| 4 | OG | -0.1058262 | 0.0314153 |
| 5 | OG | -0.0840235 | 0.0343303 |
| 6 | OG | -0.0751196 | 0.0401042 |
| 7 | OG | -0.0549043 | 0.0367234 |
| 8 | OG | -0.0680223 | 0.0345384 |
| 9 | OG | -0.0790050 | 0.0320210 |
| 10 | OG | -0.0839387 | 0.0372949 |
| 11 | OG | 0.1270355 | 0.0377857 |
| 12 | OG | -0.0061005 | 0.0398588 |
| 13 | OG | -0.0459573 | 0.0348965 |
| 14 | OG | -0.0106061 | 0.0354114 |
| 15 | OG | NA | NA |
| 16 | OG | -0.0645245 | 0.0384942 |
| 17 | OG | 0.0390923 | 0.0395814 |
| 18 | OG | NA | NA |
| 19 | OG | 0.0257576 | 0.0366914 |
| 20 | OG | NA | NA |
| 21 | OG | 0.0397727 | 0.0404885 |
| 22 | OG | 0.0562954 | 0.0357905 |
| 23 | OG | -0.0404595 | 0.0352162 |
| 24 | OG | -0.1294532 | 0.0373652 |
| 25 | OG | -0.0043860 | 0.0380910 |
| 26 | OG | 0.0048636 | 0.0303393 |
| 27 | OG | -0.0151720 | 0.0370478 |
| 28 | OG | 0.0265694 | 0.0253954 |
| 29 | OG | -0.0752072 | 0.0399191 |
| 30 | OG | -0.0063425 | 0.0333350 |
| 31 | OG | 0.0097099 | 0.0403009 |
| 32 | OG | 0.0602765 | 0.0329050 |
| 33 | OG | -0.0069320 | 0.0315580 |
| 34 | OG | 0.0687509 | 0.0379200 |
| 35 | OG | -0.1677533 | 0.0367166 |
| 36 | OG | -0.0093864 | 0.0357786 |
| 37 | OG | -0.1987046 | 0.0333743 |
| 38 | OG | -0.0306282 | 0.0386843 |
| 39 | OG | -0.1078856 | 0.0399025 |
| 40 | OG | 0.0783905 | 0.0375885 |
| 41 | OG | 0.0184109 | 0.0347364 |
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_errorbar).
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 2 rows containing missing values (geom_errorbar).
If percent correct difference for a question is positive, this means that females performed better on this question than males.
When comparing between terms, a positive difference means that the gender gap favors women more in the Winter 2018 term than the original term. This does not mean that female performance was better than male. It only means that the difference in performance is better (for women) in the Winter 2018 term than the original term.
Only 38 questions plotted here because I am not taking into account the questions taken from Fall 2004 (Question numbers 15, 18, and 20).
Example: Question 7
Females OG = 70% +- 3%
Males OG = 75% +- 2%
Females OG - Males OG = -5% +- 4%
Females WN2018 = 85% +- 2%
Males WN2018 = 84% +- 2%
Females WN2018 - Males WN2018 = 1% +- 3%
Difference in Percent Correct Difference (WN2018 - OG) = 6% +- 5%
So originally, women performed 5% worse than males. In Winter 2018 they performed 1% better. So the change from OG to Winter 2018 is 6%. The difference in performance between females and males is 6% better (for females) than in the OG term.
The orange point represents the average difference in percent correct difference from OG to WN2018. The average difference is -2%, meaning the gender gap worsened after students were given extended time on exams.
| Number | Difference (WN2018-OG) | Standard Error | |
|---|---|---|---|
| 1 | 1 | -0.1596917 | 0.0530277 |
| 2 | 2 | -0.0568353 | 0.0531794 |
| 3 | 3 | 0.0229940 | 0.0471187 |
| 4 | 4 | 0.0177121 | 0.0474380 |
| 5 | 5 | -0.0721645 | 0.0494384 |
| 6 | 6 | 0.0707752 | 0.0545476 |
| 7 | 7 | 0.0640165 | 0.0475842 |
| 8 | 8 | 0.0280535 | 0.0442402 |
| 9 | 9 | -0.0912412 | 0.0459459 |
| 10 | 10 | -0.0019251 | 0.0543895 |
| 11 | 11 | -0.2774198 | 0.0557583 |
| 12 | 12 | -0.0948575 | 0.0573886 |
| 13 | 13 | 0.0228831 | 0.0483624 |
| 14 | 14 | -0.0806856 | 0.0485392 |
| 16 | 16 | 0.0270027 | 0.0544187 |
| 17 | 17 | -0.1261977 | 0.0540006 |
| 19 | 19 | -0.0528413 | 0.0545455 |
| 21 | 21 | -0.0991979 | 0.0577592 |
| 22 | 22 | -0.0309231 | 0.0502991 |
| 23 | 23 | 0.0204161 | 0.0427678 |
| 24 | 24 | 0.0719823 | 0.0462285 |
| 25 | 25 | 0.0457033 | 0.0482462 |
| 26 | 26 | -0.0034245 | 0.0382693 |
| 27 | 27 | 0.0368735 | 0.0516321 |
| 28 | 28 | -0.0980040 | 0.0454211 |
| 29 | 29 | -0.0351878 | 0.0564152 |
| 30 | 30 | -0.0139094 | 0.0510362 |
| 31 | 31 | -0.0015445 | 0.0564591 |
| 32 | 32 | -0.0822567 | 0.0463465 |
| 33 | 33 | -0.0243749 | 0.0449364 |
| 34 | 34 | -0.1095826 | 0.0498495 |
| 35 | 35 | -0.0216724 | 0.0525453 |
| 36 | 36 | 0.0411092 | 0.0484896 |
| 37 | 37 | 0.0984472 | 0.0476955 |
| 38 | 38 | 0.0413807 | 0.0528263 |
| 39 | 39 | 0.0291925 | 0.0474291 |
| 40 | 40 | -0.0345489 | 0.0543776 |
| 41 | 41 | -0.0268663 | 0.0473617 |