Lectura de Datos

library(readxl)
pulgas=read_excel("C:/Users/Alumno/Desktop/baseTaller/pulgas.xlsx")
pulgas=data.frame(pulgas)
head(pulgas)
##    x1  x2  x3  x4                    Grupo
## 1 189 245 137 163 Especie Haltica Oleracea
## 2 192 260 132 217 Especie Haltica Oleracea
## 3 217 276 141 192 Especie Haltica Oleracea
## 4 221 299 142 213 Especie Haltica Oleracea
## 5 171 239 128 158 Especie Haltica Oleracea
## 6 192 262 147 173 Especie Haltica Oleracea

Supuestos de ANOVA Prueba de Normalidad probando la normalidad install.packages(“MVN”)

library(MVN)
## sROC 0.1-2 loaded
mvn(data = pulgas[,1:4], mvnTest = "mardia")
## $multivariateNormality
##              Test        Statistic            p value Result
## 1 Mardia Skewness 14.5033549394537  0.804085904776078    YES
## 2 Mardia Kurtosis -2.1127725094963 0.0346202436872789     NO
## 3             MVN             <NA>               <NA>     NO
## 
## $univariateNormality
##           Test  Variable Statistic   p value Normality
## 1 Shapiro-Wilk    x1        0.9710    0.4021    YES   
## 2 Shapiro-Wilk    x2        0.9595    0.1714    YES   
## 3 Shapiro-Wilk    x3        0.9619    0.2066    YES   
## 4 Shapiro-Wilk    x4        0.9843    0.8510    YES   
## 
## $Descriptives
##     n     Mean  Std.Dev Median Min Max  25th  75th       Skew   Kurtosis
## x1 39 186.8205 14.03168    184 158 221 177.0 193.5  0.3790264 -0.1856496
## x2 39 279.2308 22.42116    278 237 317 262.5 299.0 -0.2462722 -1.0623505
## x3 39 147.5385 14.69845    146 121 184 137.5 161.0  0.3847308 -0.6784951
## x4 39 197.8974 18.48868    197 158 235 187.0 213.0 -0.1040536 -0.6351910
mvn(data = pulgas[,1:4], mvnTest = "hz")
## $multivariateNormality
##            Test       HZ   p value MVN
## 1 Henze-Zirkler 0.856282 0.1467007 YES
## 
## $univariateNormality
##           Test  Variable Statistic   p value Normality
## 1 Shapiro-Wilk    x1        0.9710    0.4021    YES   
## 2 Shapiro-Wilk    x2        0.9595    0.1714    YES   
## 3 Shapiro-Wilk    x3        0.9619    0.2066    YES   
## 4 Shapiro-Wilk    x4        0.9843    0.8510    YES   
## 
## $Descriptives
##     n     Mean  Std.Dev Median Min Max  25th  75th       Skew   Kurtosis
## x1 39 186.8205 14.03168    184 158 221 177.0 193.5  0.3790264 -0.1856496
## x2 39 279.2308 22.42116    278 237 317 262.5 299.0 -0.2462722 -1.0623505
## x3 39 147.5385 14.69845    146 121 184 137.5 161.0  0.3847308 -0.6784951
## x4 39 197.8974 18.48868    197 158 235 187.0 213.0 -0.1040536 -0.6351910
mvn(data = pulgas[,1:4], mvnTest = "royston")
## $multivariateNormality
##      Test        H   p value MVN
## 1 Royston 4.191205 0.3790543 YES
## 
## $univariateNormality
##           Test  Variable Statistic   p value Normality
## 1 Shapiro-Wilk    x1        0.9710    0.4021    YES   
## 2 Shapiro-Wilk    x2        0.9595    0.1714    YES   
## 3 Shapiro-Wilk    x3        0.9619    0.2066    YES   
## 4 Shapiro-Wilk    x4        0.9843    0.8510    YES   
## 
## $Descriptives
##     n     Mean  Std.Dev Median Min Max  25th  75th       Skew   Kurtosis
## x1 39 186.8205 14.03168    184 158 221 177.0 193.5  0.3790264 -0.1856496
## x2 39 279.2308 22.42116    278 237 317 262.5 299.0 -0.2462722 -1.0623505
## x3 39 147.5385 14.69845    146 121 184 137.5 161.0  0.3847308 -0.6784951
## x4 39 197.8974 18.48868    197 158 235 187.0 213.0 -0.1040536 -0.6351910

Estudio de datos Perdidos

mvn(data = pulgas[,1:4], mvnTest = "mardia",multivariateOutlierMethod="adj")

## $multivariateNormality
##              Test        Statistic            p value Result
## 1 Mardia Skewness 14.5033549394537  0.804085904776078    YES
## 2 Mardia Kurtosis -2.1127725094963 0.0346202436872789     NO
## 3             MVN             <NA>               <NA>     NO
## 
## $univariateNormality
##           Test  Variable Statistic   p value Normality
## 1 Shapiro-Wilk    x1        0.9710    0.4021    YES   
## 2 Shapiro-Wilk    x2        0.9595    0.1714    YES   
## 3 Shapiro-Wilk    x3        0.9619    0.2066    YES   
## 4 Shapiro-Wilk    x4        0.9843    0.8510    YES   
## 
## $Descriptives
##     n     Mean  Std.Dev Median Min Max  25th  75th       Skew   Kurtosis
## x1 39 186.8205 14.03168    184 158 221 177.0 193.5  0.3790264 -0.1856496
## x2 39 279.2308 22.42116    278 237 317 262.5 299.0 -0.2462722 -1.0623505
## x3 39 147.5385 14.69845    146 121 184 137.5 161.0  0.3847308 -0.6784951
## x4 39 197.8974 18.48868    197 158 235 187.0 213.0 -0.1040536 -0.6351910
mvn(data = pulgas[,1:4], mvnTest = "mardia",multivariatePlot="qq")

## $multivariateNormality
##              Test        Statistic            p value Result
## 1 Mardia Skewness 14.5033549394537  0.804085904776078    YES
## 2 Mardia Kurtosis -2.1127725094963 0.0346202436872789     NO
## 3             MVN             <NA>               <NA>     NO
## 
## $univariateNormality
##           Test  Variable Statistic   p value Normality
## 1 Shapiro-Wilk    x1        0.9710    0.4021    YES   
## 2 Shapiro-Wilk    x2        0.9595    0.1714    YES   
## 3 Shapiro-Wilk    x3        0.9619    0.2066    YES   
## 4 Shapiro-Wilk    x4        0.9843    0.8510    YES   
## 
## $Descriptives
##     n     Mean  Std.Dev Median Min Max  25th  75th       Skew   Kurtosis
## x1 39 186.8205 14.03168    184 158 221 177.0 193.5  0.3790264 -0.1856496
## x2 39 279.2308 22.42116    278 237 317 262.5 299.0 -0.2462722 -1.0623505
## x3 39 147.5385 14.69845    146 121 184 137.5 161.0  0.3847308 -0.6784951
## x4 39 197.8974 18.48868    197 158 235 187.0 213.0 -0.1040536 -0.6351910

Prueba de Homocedasticidad

library(car)
## Loading required package: carData
leveneTest(pulgas[,1],pulgas[,5],center=mean)
## Warning in leveneTest.default(pulgas[, 1], pulgas[, 5], center = mean):
## pulgas[, 5] coerced to factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  1  1.2583 0.2692
##       37

Multivariado test que contrastan la homogeneidad de varianza (boxM) install.packages(“biotools”)

library(biotools)
## Loading required package: rpanel
## Loading required package: tcltk
## Package `rpanel', version 1.1-4: type help(rpanel) for summary information
## Loading required package: tkrplot
## Loading required package: MASS
## Loading required package: lattice
## Loading required package: SpatialEpi
## Loading required package: sp
## ---
## biotools version 3.1
## 
boxM(pulgas[1:4],pulgas[,5])
## 
##  Box's M-test for Homogeneity of Covariance Matrices
## 
## data:  pulgas[1:4]
## Chi-Sq (approx.) = 8.7457, df = 10, p-value = 0.5564

Calculo del p-Value

qchisq(0.95,10,ncp=0,lower.tail = TRUE,log.p = FALSE)
## [1] 18.30704

Test de esfericidad de Barltet (mide si existe relación entre las variables analizadas)

library(psych)
## 
## Attaching package: 'psych'
## The following object is masked from 'package:car':
## 
##     logit
R=cor(pulgas[1:4])
cortest.bartlett(R,n=39)
## $chisq
## [1] 54.82669
## 
## $p.value
## [1] 5.024446e-10
## 
## $df
## [1] 6

MANOVA

mlm=lm(cbind(x1,x2,x3,x4) ~Grupo, data =pulgas)
mnova.m=manova(mlm)
summary(mnova.m)
##           Df  Pillai approx F num Df den Df    Pr(>F)    
## Grupo      1 0.78298   30.666      4     34 7.522e-11 ***
## Residuals 37                                             
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Por variables predictoras

summary.aov(mnova.m)
##  Response x1 :
##             Df Sum Sq Mean Sq F value    Pr(>F)    
## Grupo        1 2170.1 2170.06  15.116 0.0004049 ***
## Residuals   37 5311.7  143.56                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response x2 :
##             Df  Sum Sq Mean Sq F value    Pr(>F)    
## Grupo        1  5494.8  5494.8   14.94 0.0004326 ***
## Residuals   37 13608.1   367.8                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response x3 :
##             Df Sum Sq Mean Sq F value    Pr(>F)    
## Grupo        1 3832.1  3832.1  32.389 1.645e-06 ***
## Residuals   37 4377.6   118.3                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response x4 :
##             Df Sum Sq Mean Sq F value    Pr(>F)    
## Grupo        1 5290.9  5290.9  25.428 1.236e-05 ***
## Residuals   37 7698.7   208.1                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mnova.m,test="Wilks")
##           Df   Wilks approx F num Df den Df    Pr(>F)    
## Grupo      1 0.21702   30.666      4     34 7.522e-11 ***
## Residuals 37                                             
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mnova.m,test="Roy")
##           Df    Roy approx F num Df den Df    Pr(>F)    
## Grupo      1 3.6078   30.666      4     34 7.522e-11 ***
## Residuals 37                                            
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mnova.m,test="Hotelling-Lawley")
##           Df Hotelling-Lawley approx F num Df den Df    Pr(>F)    
## Grupo      1           3.6078   30.666      4     34 7.522e-11 ***
## Residuals 37                                                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(rrcov)
## Loading required package: robustbase
## 
## Attaching package: 'robustbase'
## The following object is masked from 'package:psych':
## 
##     cushny
## Scalable Robust Estimators with High Breakdown Point (version 1.4-4)
Wilks.test(pulgas[,5]~pulgas[,1]+pulgas[,2]+pulgas[,3]+pulgas[,4], data = pulgas, method = "c")
## 
##  One-way MANOVA (Bartlett Chi2)
## 
## data:  x
## Wilks' Lambda = 0.21702, Chi2-Value = 53.471, DF = 4.000, p-value
## = 6.791e-11
## sample estimates:
##                            pulgas[, 1] pulgas[, 2] pulgas[, 3] pulgas[, 4]
## Especie Haltica  Carduorum    179.5500    290.8000    157.2000    209.2500
## Especie Haltica Oleracea      194.4737    267.0526    137.3684    185.9474

“c” para los estimadores estándar de la media y la varianza, “mcd” para los estimadores de MCD: Matriz de covarianzas de determinante mínimo “rank” para la lambda de wilks de rango según lo propuesto por Nath y Pavur (1985). —- Comparaciones múltiples Pruebas post hoc

# promedios cuadráticos
library(lsmeans)
## The 'lsmeans' package is being deprecated.
## Users are encouraged to switch to 'emmeans'.
## See help('transition') for more information, including how
## to convert 'lsmeans' objects and scripts to work with 'emmeans'.
Vlsm=lsmeans(mlm, "Grupo")
# Multiple comparisons with fdr p value adjustment
test(contrast(Vlsm, "pairwise"), side = "=", adjust = "fdr")
##  contrast                                              estimate       SE
##  Especie Haltica  Carduorum - Especie Haltica Oleracea 12.98947 3.500922
##  df t.ratio p.value
##  37    3.71  0.0007
## 
## Results are averaged over the levels of: rep.meas
# With threshold spcified
test(contrast(Vlsm, "pairwise"), side = "=", adjust = "fdr", delta = 0.25)
##  contrast                                              estimate       SE
##  Especie Haltica  Carduorum - Especie Haltica Oleracea 12.98947 3.500922
##  df t.ratio p.value
##  37   3.639  0.9996
## 
## Results are averaged over the levels of: rep.meas 
## Statistics are tests of equivalence with a threshold of 0.25 
## P values are left-tailed

Ejemplo con dos Factores

library(readxl)
merca=read_excel("C:/Users/Alumno/Desktop/baseTaller/Mercado.xlsx")
merca=data.frame(merca)
head(merca)
##   semana tipsuper cola ron
## 1     S1       UC   11   5
## 2     S1       UC    8   7
## 3     S1       UC   10   5
## 4     S1       UC   14   6
## 5     S1       UC   17   9
## 6     S1       UC   18  10

Supuestos de ANOVA Prueba de Normalidad install.packages(“MVN”)

library(MVN)
mvn(data = merca[,3:4], mvnTest = "mardia")
## $multivariateNormality
##              Test          Statistic            p value Result
## 1 Mardia Skewness   8.67982469368392 0.0696200200606715    YES
## 2 Mardia Kurtosis -0.440425348113378  0.659629069378468    YES
## 3             MVN               <NA>               <NA>    YES
## 
## $univariateNormality
##           Test  Variable Statistic   p value Normality
## 1 Shapiro-Wilk   cola       0.9016    0.0038    NO    
## 2 Shapiro-Wilk    ron       0.9636    0.2763    YES   
## 
## $Descriptives
##       n Mean  Std.Dev Median Min Max 25th 75th      Skew   Kurtosis
## cola 36   12 5.237229     10   5  24    8 15.5 0.7912766 -0.5383030
## ron  36    7 3.577709      6   1  15    4 10.0 0.3821405 -0.7613661
mvn(data = merca[,3:4], mvnTest = "hz")
## $multivariateNormality
##            Test       HZ      p value MVN
## 1 Henze-Zirkler 1.559498 0.0005021985  NO
## 
## $univariateNormality
##           Test  Variable Statistic   p value Normality
## 1 Shapiro-Wilk   cola       0.9016    0.0038    NO    
## 2 Shapiro-Wilk    ron       0.9636    0.2763    YES   
## 
## $Descriptives
##       n Mean  Std.Dev Median Min Max 25th 75th      Skew   Kurtosis
## cola 36   12 5.237229     10   5  24    8 15.5 0.7912766 -0.5383030
## ron  36    7 3.577709      6   1  15    4 10.0 0.3821405 -0.7613661
mvn(data = merca[,3:4], mvnTest = "royston")
## $multivariateNormality
##      Test       H   p value MVN
## 1 Royston 8.66777 0.0105294  NO
## 
## $univariateNormality
##           Test  Variable Statistic   p value Normality
## 1 Shapiro-Wilk   cola       0.9016    0.0038    NO    
## 2 Shapiro-Wilk    ron       0.9636    0.2763    YES   
## 
## $Descriptives
##       n Mean  Std.Dev Median Min Max 25th 75th      Skew   Kurtosis
## cola 36   12 5.237229     10   5  24    8 15.5 0.7912766 -0.5383030
## ron  36    7 3.577709      6   1  15    4 10.0 0.3821405 -0.7613661

Estudio de datos Perdidos

mvn(data = merca[,3:4], mvnTest = "mardia",multivariateOutlierMethod="adj")

## $multivariateNormality
##              Test          Statistic            p value Result
## 1 Mardia Skewness   8.67982469368392 0.0696200200606715    YES
## 2 Mardia Kurtosis -0.440425348113378  0.659629069378468    YES
## 3             MVN               <NA>               <NA>    YES
## 
## $univariateNormality
##           Test  Variable Statistic   p value Normality
## 1 Shapiro-Wilk   cola       0.9016    0.0038    NO    
## 2 Shapiro-Wilk    ron       0.9636    0.2763    YES   
## 
## $Descriptives
##       n Mean  Std.Dev Median Min Max 25th 75th      Skew   Kurtosis
## cola 36   12 5.237229     10   5  24    8 15.5 0.7912766 -0.5383030
## ron  36    7 3.577709      6   1  15    4 10.0 0.3821405 -0.7613661
mvn(data = merca[,3:4], mvnTest = "mardia",multivariatePlot="qq")

## $multivariateNormality
##              Test          Statistic            p value Result
## 1 Mardia Skewness   8.67982469368392 0.0696200200606715    YES
## 2 Mardia Kurtosis -0.440425348113378  0.659629069378468    YES
## 3             MVN               <NA>               <NA>    YES
## 
## $univariateNormality
##           Test  Variable Statistic   p value Normality
## 1 Shapiro-Wilk   cola       0.9016    0.0038    NO    
## 2 Shapiro-Wilk    ron       0.9636    0.2763    YES   
## 
## $Descriptives
##       n Mean  Std.Dev Median Min Max 25th 75th      Skew   Kurtosis
## cola 36   12 5.237229     10   5  24    8 15.5 0.7912766 -0.5383030
## ron  36    7 3.577709      6   1  15    4 10.0 0.3821405 -0.7613661

Prueba de Homocedasticidad

library(car)
leveneTest(merca[,3],merca[,4],center=mean)
## Warning in leveneTest.default(merca[, 3], merca[, 4], center = mean):
## merca[, 4] coerced to factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value   Pr(>F)   
## group 14  3.4085 0.005614 **
##       21                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Multivariado, test que contrastan la homogeneidad de varianza (boxM) install.packages(“biotools”)

library(biotools)
boxM(merca[,3:4],merca[,1])
## 
##  Box's M-test for Homogeneity of Covariance Matrices
## 
## data:  merca[, 3:4]
## Chi-Sq (approx.) = 10.094, df = 3, p-value = 0.01779
boxM(merca[,3:4],merca[,2])
## 
##  Box's M-test for Homogeneity of Covariance Matrices
## 
## data:  merca[, 3:4]
## Chi-Sq (approx.) = 13.049, df = 6, p-value = 0.04226

Calculo del p-Value

qchisq(0.95,10,ncp=0,lower.tail = TRUE,log.p = FALSE)
## [1] 18.30704

Test de esfericidad de Barltet (mide si existe relacion entre las variables analizadas)

library(psych)
R=cor(merca[,3:4])
cortest.bartlett(R,n=37)
## $chisq
## [1] 35.80355
## 
## $p.value
## [1] 2.182494e-09
## 
## $df
## [1] 1

MANOVA

mlm=lm(cbind(cola,ron)~semana*tipsuper,data=merca)
mnova.m=manova(mlm)
summary(mnova.m)
##                 Df  Pillai approx F num Df den Df    Pr(>F)    
## semana           1 0.40954   10.057      2     29 0.0004812 ***
## tipsuper         2 1.00348   15.105      4     60 1.347e-08 ***
## semana:tipsuper  2 0.36521    3.351      4     60 0.0152903 *  
## Residuals       30                                             
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Por variables predictors

summary.aov(mnova.m)
##  Response cola :
##                 Df Sum Sq Mean Sq F value    Pr(>F)    
## semana           1    144     144    18.0 0.0001952 ***
## tipsuper         2    504     252    31.5 4.262e-08 ***
## semana:tipsuper  2     72      36     4.5 0.0195366 *  
## Residuals       30    240       8                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response ron :
##                 Df Sum Sq Mean Sq F value    Pr(>F)    
## semana           1    100 100.000 17.4419 0.0002347 ***
## tipsuper         2    168  84.000 14.6512 3.637e-05 ***
## semana:tipsuper  2      8   4.000  0.6977 0.5056373    
## Residuals       30    172   5.733                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mnova.m,test="Wilks")
##                 Df   Wilks approx F num Df den Df    Pr(>F)    
## semana           1 0.59046  10.0569      2     29 0.0004812 ***
## tipsuper         2 0.21490  16.7790      4     58 3.438e-09 ***
## semana:tipsuper  2 0.64823   3.5095      4     58 0.0123884 *  
## Residuals       30                                             
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mnova.m,test="Roy")
##                 Df     Roy approx F num Df den Df    Pr(>F)    
## semana           1 0.69358   10.057      2     29 0.0004812 ***
## tipsuper         2 2.16865   32.530      2     30 3.068e-08 ***
## semana:tipsuper  2 0.47858    7.179      2     30 0.0028335 ** 
## Residuals       30                                             
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mnova.m,test="Hotelling-Lawley")
##                 Df Hotelling-Lawley approx F num Df den Df    Pr(>F)    
## semana           1          0.69358  10.0569      2     29 0.0004812 ***
## tipsuper         2          2.63722  18.4606      4     56 1.005e-09 ***
## semana:tipsuper  2          0.52191   3.6534      4     56 0.0102934 *  
## Residuals       30                                                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Comparaciones múltiples Pruebas post hoc (semana)

# promedios cuadráticos
library(lsmeans)
Vlsm=lsmeans(mlm, "semana")
## NOTE: Results may be misleading due to involvement in interactions
# Multiple comparisons with fdr p value adjustment
test(contrast(Vlsm, "pairwise"), side = "=", adjust = "fdr")
##  contrast  estimate        SE df t.ratio p.value
##  S1 - S2  -3.666667 0.8039256 30  -4.561  0.0001
## 
## Results are averaged over the levels of: tipsuper, rep.meas
# With threshold spcified
test(contrast(Vlsm, "pairwise"), side = "=", adjust = "fdr", delta = 0.25)
##  contrast  estimate        SE df t.ratio p.value
##  S1 - S2  -3.666667 0.8039256 30    4.25  0.9999
## 
## Results are averaged over the levels of: tipsuper, rep.meas 
## Statistics are tests of equivalence with a threshold of 0.25 
## P values are left-tailed

Comparaciones múltiples Pruebas post hoc (tipsuper)

# promedios cuadráticos
library(lsmeans)
Vlsm=lsmeans(mlm, "tipsuper")
## NOTE: Results may be misleading due to involvement in interactions
# Multiple comparisons with fdr p value adjustment
test(contrast(Vlsm, "pairwise"), side = "=", adjust = "fdr")
##  contrast estimate        SE df t.ratio p.value
##  R - UC       -7.0 0.9846037 30  -7.109  <.0001
##  R - UR       -3.5 0.9846037 30  -3.555  0.0013
##  UC - UR       3.5 0.9846037 30   3.555  0.0013
## 
## Results are averaged over the levels of: semana, rep.meas 
## P value adjustment: fdr method for 3 tests
# With threshold spcified
test(contrast(Vlsm, "pairwise"), side = "=", adjust = "fdr", delta = 0.25)
##  contrast estimate        SE df t.ratio p.value
##  R - UC       -7.0 0.9846037 30   6.856  1.0000
##  R - UR       -3.5 0.9846037 30   3.301  1.0000
##  UC - UR       3.5 0.9846037 30   3.301  1.0000
## 
## Results are averaged over the levels of: semana, rep.meas 
## P value adjustment: fdr method for 3 tests 
## Statistics are tests of equivalence with a threshold of 0.25 
## P values are left-tailed