rm(list=ls(all=T))
options(digits=4, scipen=12)
library(dplyr); library(ggplot2)

【A】 Definitions

機率、勝率(Odd)、Logit

  • Odd = \(p/(1-p)\)

  • Logit = \(log(odd)\) = \(log(\frac{p}{1=p})\)

  • \(o = p/(1-p)\) ; \(p = o/(1+o)\) ; \(logit = log(o)\)

par(cex=0.8, mfcol=c(1,2))
curve(x/(1-x), 0.02, 0.98, col='cyan',lwd=2, main='odd',xlab='p')
abline(v=seq(0,1,0.1), h=seq(0,50,5), col='lightgray', lty=3)
curve(log(x/(1-x)), 0.005, 0.995, lwd=2, col='purple', main="logit",xlab='p')
abline(v=seq(0,1,0.1), h=seq(-5,5,1), col='lightgray', lty=3)

Logistic Function & Logistic Regression

  • Linear Model: \(y = f(x) = b_0 + b_1x_1 + b_2x_2 + ...\)

  • General Linear Model(GLM): \(y = Link(f(x))\)

  • Logistic Regression: \(logit(y) = log(\frac{p}{1-p}) = f(x) \text{ where } p = prob[y=1]\)

  • Logistic Function: \(Logistic(F_x) = \frac{1}{1+Exp(-F_x)} = \frac{Exp(F_x)}{1+Exp(F_x)}\)

par(cex=0.8)
curve(1/(1+exp(-x)), -5, 5, col='blue', lwd=2,main="Logistic Function",
      xlab="f(x): the logit of y = 1", ylab="the probability of y = 1")
abline(v=-5:5, h=seq(0,1,0.1), col='lightgray', lty=2)
abline(v=0,h=0.5,col='pink')
points(0,0.5,pch=20,cex=1.5,col='red')

Q】What are the definiion of ligit & logistic function? What is the relationship between them?



【B】glm(, family=binomial)

glm()的功能:在 \(\{x\}\) 的空間之中,找出區隔 \(y\) 的(類別)界線

Q = read.csv("data/quality.csv")  # Read in dataset
glm1 = glm(PoorCare~OfficeVisits+Narcotics, Q, family=binomial)
summary(glm1)

Call:
glm(formula = PoorCare ~ OfficeVisits + Narcotics, family = binomial, 
    data = Q)

Deviance Residuals: 
   Min      1Q  Median      3Q     Max  
-2.377  -0.627  -0.510  -0.154   2.119  

Coefficients:
             Estimate Std. Error z value    Pr(>|z|)    
(Intercept)   -2.5402     0.4500   -5.64 0.000000017 ***
OfficeVisits   0.0627     0.0240    2.62     0.00892 ** 
Narcotics      0.1099     0.0326    3.37     0.00076 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 147.88  on 130  degrees of freedom
Residual deviance: 116.45  on 128  degrees of freedom
AIC: 122.4

Number of Fisher Scoring iterations: 5
b = coef(glm1); b   # extract the regression coef
 (Intercept) OfficeVisits    Narcotics 
    -2.54021      0.06273      0.10990 

Given OfficeVisits=3, Narcotics=4, what are the predicted logit, odd and probability?

logit = sum(b * c(1, 3, 4))
odd = exp(logit)
prob = odd/(1+odd)
c(logit=logit, odd=odd, prob=prob)
  logit     odd    prob 
-1.9124  0.1477  0.1287 

Q】What if OfficeVisits=2, Narcotics=3?

#
#

We can plot the line of logit = 0 or prob = 0.5 on the plane of \(X\)

par(cex=0.8)
plot(Q$OfficeVisits, Q$Narcotics, col=1+Q$PoorCare,pch=20)
abline(-b[1]/b[3], -b[2]/b[3])

Furthermore, we can translate probability, logit and coefficents to intercept & slope …

\[f(x) = b_1 + b_2 x_2 + b_3 x_3 = g \Rightarrow x_3 = \frac{g - b_1}{b_3} - \frac{b_2}{b_3}x_2\]

p = seq(0.1,0.9,0.1)
logit = log(p/(1-p))
data.frame(prob = p, logit)
  prob   logit
1  0.1 -2.1972
2  0.2 -1.3863
3  0.3 -0.8473
4  0.4 -0.4055
5  0.5  0.0000
6  0.6  0.4055
7  0.7  0.8473
8  0.8  1.3863
9  0.9  2.1972

then mark the contours of proabilities into the scatter plot

par(cex=0.7)
plot(Q$OfficeVisits, Q$Narcotics, col=1+Q$PoorCare,
     pch=20, cex=1.3, xlab='X2', ylab='X3')
for(g in logit) {
  abline((g-b[1])/b[3], -b[2]/b[3], col=ifelse(g==0,'blue','cyan')) }

Q】What do the blue/cyan lines means?

Q】Given any point in the figure above, how can you tell its (predicted) probability approximately?



【C】The Confusion Matrix

Figure 1 - Confusion Matrix

Figure 1 - Confusion Matrix



【D】The Distribution of Predicted Probability (DPP)

Confusion matrix is not fixed. It changes by Threshold

Figure 2 - Dist. Prediected Prob.

Figure 2 - Dist. Prediected Prob.

library(caTools)
DPP2 = function(pred,class,tvalue,breaks=0.01) {
  mx = table(class == tvalue, pred > 0.5) 
  tn = sum(class != tvalue & pred <= 0.5)
  fn = sum(class == tvalue & pred <= 0.5)
  fp = sum(class != tvalue & pred > 0.5)
  tp = sum(class == tvalue & pred > 0.5)
  acc = (tn + tp)/length(pred)
  sens = tp/(fn+tp)
  spec = tn/(tn+fp)
  auc = colAUC(pred,class)
  data.frame(pred,class) %>% 
    ggplot(aes(x=pred, fill=class)) +
    geom_histogram(col='gray',alpha=0.5,breaks=seq(0,1,breaks)) +
    xlim(0,1) + theme_bw() + xlab("predicted probability") + 
    ggtitle(
      sprintf("Distribution of Prob[class = \'%s\']", tvalue),
      sprintf("AUC=%.3f, Acc=%.3f, Sens=%.3f, Spec=%.3f",
              auc, acc, sens, spec) ) 
  }
N1 = 300; N2 = 100
DPP2(pred = c(rnorm(N1,0.125,0.03), rnorm(N2,0.375,0.03)),
     class = c(rep('B',N1), rep('A',N2)), 
     tvalue = 'A')

Q】Is it possible to have AUC = ACC = SENS = SPEC = 1? Can you modify the code to make it happen?

# 
# 

Q】Is it possible to have AUC = ACC = SENS = SPEC = 0? Can you modify the code to make that happen?

# 
# 



【E】Modeling Expert

E1: Random Split

set.seed(88)
split = sample.split(Q$PoorCare, SplitRatio = 0.75)
table(split) %>% prop.table()
split
 FALSE   TRUE 
0.2443 0.7557 
table(y = Q$PoorCare, split) %>% prop.table(2)
   split
y    FALSE   TRUE
  0 0.7500 0.7475
  1 0.2500 0.2525
TR = subset(Q, split == TRUE)
TS = subset(Q, split == FALSE)

E2: Build Model

glm1 = glm(PoorCare ~ OfficeVisits + Narcotics, TR, family=binomial)
summary(glm1)

Call:
glm(formula = PoorCare ~ OfficeVisits + Narcotics, family = binomial, 
    data = TR)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-2.0630  -0.6316  -0.5050  -0.0969   2.1669  

Coefficients:
             Estimate Std. Error z value   Pr(>|z|)    
(Intercept)   -2.6461     0.5236   -5.05 0.00000043 ***
OfficeVisits   0.0821     0.0305    2.69     0.0072 ** 
Narcotics      0.0763     0.0321    2.38     0.0173 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 111.888  on 98  degrees of freedom
Residual deviance:  89.127  on 96  degrees of freedom
AIC: 95.13

Number of Fisher Scoring iterations: 4

E3: Prediction & Evaluation

pred = predict(glm1, type='response')
mx = table(TR$PoorCare, pred > 0.5); mx
   
    FALSE TRUE
  0    70    4
  1    15   10
c(accuracy = sum(diag(mx))/sum(mx),
  sensitivity = mx[2,2]/sum(mx[2,]),
  specificity = mx[1,1]/sum(mx[1,]))
   accuracy sensitivity specificity 
     0.8081      0.4000      0.9459 

E4: ROC & AUC

library(ROCR)
Loading required package: gplots

Attaching package: 'gplots'

The following object is masked from 'package:stats':

    lowess
ROCRpred = prediction(pred, TR$PoorCare)
ROCRperf = performance(ROCRpred, "tpr", "fpr")
par(cex=0.8)
plot(ROCRperf, colorize=TRUE, print.cutoffs.at=seq(0,1,0.1))

as.numeric(performance(ROCRpred, "auc")@y.values)
[1] 0.7746
caTools::colAUC(pred, TR$PoorCare)
          [,1]
0 vs. 1 0.7746



【F】Framingham Heart Study

source("DPP.R")

F1: Reading & Splitting

F = read.csv("data/framingham.csv")
set.seed(1000)
split = sample.split(F$TenYearCHD, SplitRatio = 0.65)
TR = subset(F, split==TRUE)
TS = subset(F, split==FALSE)

F2: Logistic Regression Model

glm2 = glm(TenYearCHD ~ ., TR, family=binomial)
summary(glm2)

Call:
glm(formula = TenYearCHD ~ ., family = binomial, data = TR)

Deviance Residuals: 
   Min      1Q  Median      3Q     Max  
-1.849  -0.601  -0.426  -0.284   2.837  

Coefficients:
                Estimate Std. Error z value        Pr(>|z|)    
(Intercept)     -7.88657    0.89073   -8.85         < 2e-16 ***
male             0.52846    0.13544    3.90 0.0000955212349 ***
age              0.06206    0.00834    7.44 0.0000000000001 ***
education       -0.05892    0.06243   -0.94          0.3453    
currentSmoker    0.09324    0.19401    0.48          0.6308    
cigsPerDay       0.01501    0.00783    1.92          0.0551 .  
BPMeds           0.31122    0.28741    1.08          0.2789    
prevalentStroke  1.16579    0.57121    2.04          0.0413 *  
prevalentHyp     0.31582    0.17176    1.84          0.0660 .  
diabetes        -0.42149    0.40799   -1.03          0.3016    
totChol          0.00384    0.00138    2.79          0.0053 ** 
sysBP            0.01134    0.00457    2.48          0.0130 *  
diaBP           -0.00474    0.00800   -0.59          0.5535    
BMI              0.01072    0.01616    0.66          0.5069    
heartRate       -0.00810    0.00531   -1.52          0.1274    
glucose          0.00893    0.00284    3.15          0.0016 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 2020.7  on 2384  degrees of freedom
Residual deviance: 1792.3  on 2369  degrees of freedom
  (371 observations deleted due to missingness)
AIC: 1824

Number of Fisher Scoring iterations: 5

F3: Prediction & Evaluation

pred = predict(glm2, TS, type="response")
y = TS$TenYearCHD[!is.na(pred)]             # remove NA
pred = pred[!is.na(pred)]
mx = table(y, pred > 0.5); mx
   
y   FALSE TRUE
  0  1069    6
  1   187   11
c(accuracy = sum(diag(mx))/sum(mx),
  sensitivity = mx[2,2]/sum(mx[2,]),
  specificity = mx[1,1]/sum(mx[1,]))
   accuracy sensitivity specificity 
    0.84839     0.05556     0.99442 

F4: AUC & DPP

par(cex=0.7)
auc = DPP(pred, y, 1, b=seq(0,1,0.02))  # 0.74211

F5: Expected Result & Optimization

Figure 3 - Startegic Optimization

Figure 3 - Startegic Optimization

payoff = matrix(c(0,-100,-10,-60),2,2) 
cutoff = seq(0.02, 0.64, 0.01)
result = sapply(cutoff, function(p) sum(table(y,pred>p)*payoff) )
i = which.max(result)
par(cex=0.7)
plot(cutoff, result, type='l', col='cyan', lwd=2, main=sprintf(
  "Optomal Expected Result: $%d @ %.2f",result[i],cutoff[i]))
abline(v=seq(0,1,0.05),h=seq(-23000,-17000,500),col='lightgray',lty=3)
abline(v=cutoff[i],col='red')

Q】如果什麼都不做,期望報酬是多少?

Q】如果每位病人都做呢?

Q】以上哪一種做法期望報酬比較高?

Q】在所有的商務情境都是這種狀況嗎?

Q】你可以模擬出「全做」比「全不做」還要好的狀況、並舉出一個會發生這種狀況的商務情境嗎?

#
#
#


F6: Simulation

library(manipulate)
p0 = par(mfrow=c(2,1),cex=0.8)
manipulate({
  Y0 = -22000; Y1 = -12000
  mx = matrix(c(true_neg, false_neg, false_pos, true_pos),2,2) 
  cx = seq(0.02, 0.64, 0.01)
  rx = sapply(cx, function(p) sum(table(y, pred>p)*mx) )
  i = which.max(rx)
  plot(cx, rx, type='l',col='cyan',lwd=2,main=sprintf(
    "Optomal Expected Result: $%d @ %.2f, T:%d",rx[i],cx[i],sum(pred>cx[i])),
    ylim=c(Y0,Y1))
  abline(v=cx[i],col='red')
  abline(v=seq(0,1,0.1),h=seq(Y0,Y1,2000),col='lightgray',lty=3)
  DPP(pred, y, 1, b=seq(0,1,0.02))
  abline(v=cx[i],col='red')
  },
  true_neg  = slider(-100,100,0,step=5),
  false_neg = slider(-100,100,-100,step=5),
  false_pos = slider(-100,100,-10,step=5),
  true_pos  = slider(-100,100,-60,step=5)
  ) 
par(p0)

Q】有五種成本分別為 $5, $10, $15, $20, $30 的藥,它們分別可以將風險成本從 $100 降低到 $70, $60, $50, $40, $25,哪一種藥的期望效益是最大的呢?

#
#
#



【G】分析流程:資料、模型、預測、決策

Figure 4 - 資料、模型、預測、決策

Figure 4 - 資料、模型、預測、決策






LS0tDQp0aXRsZTogIkFTMy0wIEdyb3VwLTAiDQphdXRob3I6ICLljZPpm43nhLYgRDk5NDAxMDAwMSwgLi4uIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KYGBge3IgZWNobz1ULCBtZXNzYWdlPUYsIGNhY2hlPUYsIHdhcm5pbmc9Rn0NCnJtKGxpc3Q9bHMoYWxsPVQpKQ0Kb3B0aW9ucyhkaWdpdHM9NCwgc2NpcGVuPTEyKQ0KbGlicmFyeShkcGx5cik7IGxpYnJhcnkoZ2dwbG90MikNCmBgYA0KDQoNCi0gLSAtDQoNCiMjIyDjgJBB44CRIERlZmluaXRpb25zDQoNCiMjIyMg5qmf546H44CB5Yud546HKE9kZCnjgIFMb2dpdA0KDQorIE9kZCA9ICAkcC8oMS1wKSQNCg0KKyBMb2dpdCA9ICRsb2cob2RkKSQgPSAkbG9nKFxmcmFje3B9ezE9cH0pJA0KDQorICRvID0gcC8oMS1wKSQgOyAkcCA9IG8vKDErbykkIDsgICRsb2dpdCA9IGxvZyhvKSQNCg0KYGBge3IgZmlnLmhlaWdodD0zLjYsIGZpZy53aWR0aD03fQ0KcGFyKGNleD0wLjgsIG1mY29sPWMoMSwyKSkNCmN1cnZlKHgvKDEteCksIDAuMDIsIDAuOTgsIGNvbD0nY3lhbicsbHdkPTIsIG1haW49J29kZCcseGxhYj0ncCcpDQphYmxpbmUodj1zZXEoMCwxLDAuMSksIGg9c2VxKDAsNTAsNSksIGNvbD0nbGlnaHRncmF5JywgbHR5PTMpDQpjdXJ2ZShsb2coeC8oMS14KSksIDAuMDA1LCAwLjk5NSwgbHdkPTIsIGNvbD0ncHVycGxlJywgbWFpbj0ibG9naXQiLHhsYWI9J3AnKQ0KYWJsaW5lKHY9c2VxKDAsMSwwLjEpLCBoPXNlcSgtNSw1LDEpLCBjb2w9J2xpZ2h0Z3JheScsIGx0eT0zKQ0KDQpgYGANCg0KIyMjIyBMb2dpc3RpYyBGdW5jdGlvbiAmIExvZ2lzdGljIFJlZ3Jlc3Npb24NCg0KKyBMaW5lYXIgTW9kZWw6ICR5ID0gZih4KSA9IGJfMCArIGJfMXhfMSArIGJfMnhfMiArIC4uLiQNCg0KKyBHZW5lcmFsIExpbmVhciBNb2RlbChHTE0pOiAkeSA9IExpbmsoZih4KSkkIA0KDQorIExvZ2lzdGljIFJlZ3Jlc3Npb246ICRsb2dpdCh5KSA9IGxvZyhcZnJhY3twfXsxLXB9KSA9IGYoeCkgXHRleHR7IHdoZXJlIH0gcCA9IHByb2JbeT0xXSQgDQoNCisgTG9naXN0aWMgRnVuY3Rpb246ICRMb2dpc3RpYyhGX3gpID0gXGZyYWN7MX17MStFeHAoLUZfeCl9ID0gXGZyYWN7RXhwKEZfeCl9ezErRXhwKEZfeCl9JA0KDQpgYGB7ciAgZmlnLndpZHRoPTQsIGZpZy5oZWlnaHQ9NH0NCnBhcihjZXg9MC44KQ0KY3VydmUoMS8oMStleHAoLXgpKSwgLTUsIDUsIGNvbD0nYmx1ZScsIGx3ZD0yLG1haW49IkxvZ2lzdGljIEZ1bmN0aW9uIiwNCiAgICAgIHhsYWI9ImYoeCk6IHRoZSBsb2dpdCBvZiB5ID0gMSIsIHlsYWI9InRoZSBwcm9iYWJpbGl0eSBvZiB5ID0gMSIpDQphYmxpbmUodj0tNTo1LCBoPXNlcSgwLDEsMC4xKSwgY29sPSdsaWdodGdyYXknLCBsdHk9MikNCmFibGluZSh2PTAsaD0wLjUsY29sPSdwaW5rJykNCnBvaW50cygwLDAuNSxwY2g9MjAsY2V4PTEuNSxjb2w9J3JlZCcpDQpgYGANCg0K44CQKipRKirjgJFXaGF0IGFyZSB0aGUgZGVmaW5paW9uIG9mIGBsaWdpdGAgJiBgbG9naXN0aWMgZnVuY3Rpb25gPyBXaGF0IGlzIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiB0aGVtPw0KDQoNCjxicj4NCg0KLSAtIC0NCg0KIyMjIOOAkELjgJFgZ2xtKCwgZmFtaWx5PWJpbm9taWFsKWANCg0KYGdsbSgpYOeahOWKn+iDve+8muWcqCAkXHt4XH0kIOeahOepuumWk+S5i+S4re+8jOaJvuWHuuWNgOmalCAkeSQg55qEKOmhnuWIpSnnlYznt5oNCg0KYGBge3J9DQpRID0gcmVhZC5jc3YoImRhdGEvcXVhbGl0eS5jc3YiKSAgIyBSZWFkIGluIGRhdGFzZXQNCmdsbTEgPSBnbG0oUG9vckNhcmV+T2ZmaWNlVmlzaXRzK05hcmNvdGljcywgUSwgZmFtaWx5PWJpbm9taWFsKQ0Kc3VtbWFyeShnbG0xKQ0KYGBgDQoNCmBgYHtyfQ0KYiA9IGNvZWYoZ2xtMSk7IGIgICAjIGV4dHJhY3QgdGhlIHJlZ3Jlc3Npb24gY29lZg0KYGBgDQoNCkdpdmVuIGBPZmZpY2VWaXNpdHM9MywgTmFyY290aWNzPTRgLCB3aGF0IGFyZSB0aGUgcHJlZGljdGVkIGxvZ2l0LCBvZGQgYW5kIHByb2JhYmlsaXR5Pw0KYGBge3J9DQpsb2dpdCA9IHN1bShiICogYygxLCAzLCA0KSkNCm9kZCA9IGV4cChsb2dpdCkNCnByb2IgPSBvZGQvKDErb2RkKQ0KYyhsb2dpdD1sb2dpdCwgb2RkPW9kZCwgcHJvYj1wcm9iKQ0KYGBgDQoNCuOAkCoqUSoq44CRV2hhdCBpZiBgT2ZmaWNlVmlzaXRzPTIsIE5hcmNvdGljcz0zYD8NCmBgYHtyfQ0KIw0KIw0KYGBgDQoNCldlIGNhbiBwbG90IHRoZSBsaW5lIG9mIGBsb2dpdCA9IDBgIG9yIGBwcm9iID0gMC41YCBvbiB0aGUgcGxhbmUgb2YgJFgkDQpgYGB7ciBmaWcud2lkdGg9My42LCBmaWcuaGVpZ2h0PTMuNn0NCnBhcihjZXg9MC44KQ0KcGxvdChRJE9mZmljZVZpc2l0cywgUSROYXJjb3RpY3MsIGNvbD0xK1EkUG9vckNhcmUscGNoPTIwKQ0KYWJsaW5lKC1iWzFdL2JbM10sIC1iWzJdL2JbM10pDQpgYGANCg0KRnVydGhlcm1vcmUsIHdlIGNhbiB0cmFuc2xhdGUgcHJvYmFiaWxpdHksIGxvZ2l0IGFuZCBjb2VmZmljZW50cyB0byBpbnRlcmNlcHQgJiBzbG9wZSAuLi4NCg0KJCRmKHgpID0gYl8xICsgYl8yIHhfMiArIGJfMyB4XzMgPSBnIFxSaWdodGFycm93ICB4XzMgPSBcZnJhY3tnIC0gYl8xfXtiXzN9IC0gXGZyYWN7Yl8yfXtiXzN9eF8yJCQNCg0KDQpgYGB7ciAgZmlnLndpZHRoPTMuNiwgZmlnLmhlaWdodD0zLjZ9DQpwID0gc2VxKDAuMSwwLjksMC4xKQ0KbG9naXQgPSBsb2cocC8oMS1wKSkNCmRhdGEuZnJhbWUocHJvYiA9IHAsIGxvZ2l0KQ0KYGBgDQoNCnRoZW4gbWFyayB0aGUgY29udG91cnMgb2YgcHJvYWJpbGl0aWVzIGludG8gdGhlIHNjYXR0ZXIgcGxvdCANCmBgYHtyICBmaWcud2lkdGg9My42LCBmaWcuaGVpZ2h0PTMuNn0NCnBhcihjZXg9MC43KQ0KcGxvdChRJE9mZmljZVZpc2l0cywgUSROYXJjb3RpY3MsIGNvbD0xK1EkUG9vckNhcmUsDQogICAgIHBjaD0yMCwgY2V4PTEuMywgeGxhYj0nWDInLCB5bGFiPSdYMycpDQpmb3IoZyBpbiBsb2dpdCkgew0KICBhYmxpbmUoKGctYlsxXSkvYlszXSwgLWJbMl0vYlszXSwgY29sPWlmZWxzZShnPT0wLCdibHVlJywnY3lhbicpKSB9DQpgYGANCg0K44CQKipRKirjgJFXaGF0IGRvIHRoZSBibHVlL2N5YW4gbGluZXMgbWVhbnM/DQoNCuOAkCoqUSoq44CRR2l2ZW4gYW55IHBvaW50IGluIHRoZSBmaWd1cmUgYWJvdmUsIGhvdyBjYW4geW91IHRlbGwgaXRzIChwcmVkaWN0ZWQpIHByb2JhYmlsaXR5IGFwcHJveGltYXRlbHk/DQoNCjxicj4NCg0KLSAtIC0NCg0KIyMjIOOAkEPjgJFUaGUgQ29uZnVzaW9uIE1hdHJpeA0KDQoNCiFbRmlndXJlIDEgLSBDb25mdXNpb24gTWF0cml4XShyZXMvY29uZnVzaW9uX21hdHJpeC5qcGcpDQoNCg0KPGJyPg0KDQotIC0gLQ0KIyMjIOOAkETjgJFUaGUgRGlzdHJpYnV0aW9uIG9mIFByZWRpY3RlZCBQcm9iYWJpbGl0eSAoRFBQKQ0KDQpDb25mdXNpb24gbWF0cml4IGlzIG5vdCBmaXhlZC4gSXQgY2hhbmdlcyBieSBgVGhyZXNob2xkYCAuLi4NCg0KIVtGaWd1cmUgMiAtIERpc3QuIFByZWRpZWN0ZWQgUHJvYi5dKHJlcy9kcHAuanBnKQ0KDQoNCg0KYGBge3J9DQpsaWJyYXJ5KGNhVG9vbHMpDQpEUFAyID0gZnVuY3Rpb24ocHJlZCxjbGFzcyx0dmFsdWUsYnJlYWtzPTAuMDEpIHsNCiAgbXggPSB0YWJsZShjbGFzcyA9PSB0dmFsdWUsIHByZWQgPiAwLjUpIA0KICB0biA9IHN1bShjbGFzcyAhPSB0dmFsdWUgJiBwcmVkIDw9IDAuNSkNCiAgZm4gPSBzdW0oY2xhc3MgPT0gdHZhbHVlICYgcHJlZCA8PSAwLjUpDQogIGZwID0gc3VtKGNsYXNzICE9IHR2YWx1ZSAmIHByZWQgPiAwLjUpDQogIHRwID0gc3VtKGNsYXNzID09IHR2YWx1ZSAmIHByZWQgPiAwLjUpDQogIGFjYyA9ICh0biArIHRwKS9sZW5ndGgocHJlZCkNCiAgc2VucyA9IHRwLyhmbit0cCkNCiAgc3BlYyA9IHRuLyh0bitmcCkNCiAgYXVjID0gY29sQVVDKHByZWQsY2xhc3MpDQogIGRhdGEuZnJhbWUocHJlZCxjbGFzcykgJT4lIA0KICAgIGdncGxvdChhZXMoeD1wcmVkLCBmaWxsPWNsYXNzKSkgKw0KICAgIGdlb21faGlzdG9ncmFtKGNvbD0nZ3JheScsYWxwaGE9MC41LGJyZWFrcz1zZXEoMCwxLGJyZWFrcykpICsNCiAgICB4bGltKDAsMSkgKyB0aGVtZV9idygpICsgeGxhYigicHJlZGljdGVkIHByb2JhYmlsaXR5IikgKyANCiAgICBnZ3RpdGxlKA0KICAgICAgc3ByaW50ZigiRGlzdHJpYnV0aW9uIG9mIFByb2JbY2xhc3MgPSBcJyVzXCddIiwgdHZhbHVlKSwNCiAgICAgIHNwcmludGYoIkFVQz0lLjNmLCBBY2M9JS4zZiwgU2Vucz0lLjNmLCBTcGVjPSUuM2YiLA0KICAgICAgICAgICAgICBhdWMsIGFjYywgc2Vucywgc3BlYykgKSANCiAgfQ0KDQpgYGANCg0KYGBge3IgZmlnLndpZHRoPTgsIGZpZy5oZWlnaHQ9Mi41fQ0KTjEgPSAzMDA7IE4yID0gMTAwDQpEUFAyKHByZWQgPSBjKHJub3JtKE4xLDAuMTI1LDAuMDMpLCBybm9ybShOMiwwLjM3NSwwLjAzKSksDQogICAgIGNsYXNzID0gYyhyZXAoJ0InLE4xKSwgcmVwKCdBJyxOMikpLCANCiAgICAgdHZhbHVlID0gJ0EnKQ0KYGBgDQoNCuOAkCoqUSoq44CRSXMgaXQgcG9zc2libGUgdG8gaGF2ZSBgQVVDID0gQUNDID0gU0VOUyA9IFNQRUMgPSAxYD8gQ2FuIHlvdSBtb2RpZnkgdGhlIGNvZGUgdG8gbWFrZSBpdCBoYXBwZW4/DQoNCmBgYHtyIGZpZy53aWR0aD04LCBmaWcuaGVpZ2h0PTIuNX0NCiMgDQojIA0KYGBgDQoNCg0K44CQKipRKirjgJFJcyBpdCBwb3NzaWJsZSB0byBoYXZlIGBBVUMgPSBBQ0MgPSBTRU5TID0gU1BFQyA9IDBgPyBDYW4geW91IG1vZGlmeSB0aGUgY29kZSB0byBtYWtlIHRoYXQgaGFwcGVuPw0KDQpgYGB7ciBmaWcud2lkdGg9OCwgZmlnLmhlaWdodD0yLjV9DQojIA0KIyANCmBgYA0KPGJyPg0KDQotIC0gLQ0KIyMjIOOAkEXjgJFNb2RlbGluZyBFeHBlcnQNCg0KIyMjIyBFMTogUmFuZG9tIFNwbGl0DQpgYGB7cn0NCnNldC5zZWVkKDg4KQ0Kc3BsaXQgPSBzYW1wbGUuc3BsaXQoUSRQb29yQ2FyZSwgU3BsaXRSYXRpbyA9IDAuNzUpDQp0YWJsZShzcGxpdCkgJT4lIHByb3AudGFibGUoKQ0KdGFibGUoeSA9IFEkUG9vckNhcmUsIHNwbGl0KSAlPiUgcHJvcC50YWJsZSgyKQ0KYGBgDQoNCmBgYHtyfQ0KVFIgPSBzdWJzZXQoUSwgc3BsaXQgPT0gVFJVRSkNClRTID0gc3Vic2V0KFEsIHNwbGl0ID09IEZBTFNFKQ0KYGBgDQoNCiMjIyMgRTI6IEJ1aWxkIE1vZGVsDQpgYGB7cn0NCmdsbTEgPSBnbG0oUG9vckNhcmUgfiBPZmZpY2VWaXNpdHMgKyBOYXJjb3RpY3MsIFRSLCBmYW1pbHk9Ymlub21pYWwpDQpzdW1tYXJ5KGdsbTEpDQpgYGANCg0KIyMjIyBFMzogUHJlZGljdGlvbiAmIEV2YWx1YXRpb24NCmBgYHtyfQ0KcHJlZCA9IHByZWRpY3QoZ2xtMSwgdHlwZT0ncmVzcG9uc2UnKQ0KbXggPSB0YWJsZShUUiRQb29yQ2FyZSwgcHJlZCA+IDAuNSk7IG14DQpjKGFjY3VyYWN5ID0gc3VtKGRpYWcobXgpKS9zdW0obXgpLA0KICBzZW5zaXRpdml0eSA9IG14WzIsMl0vc3VtKG14WzIsXSksDQogIHNwZWNpZmljaXR5ID0gbXhbMSwxXS9zdW0obXhbMSxdKSkNCmBgYA0KDQojIyMjIEU0OiBST0MgJiBBVUMNCmBgYHtyIGZpZy53aWR0aD01LCBmaWcuaGVpZ2h0PTV9DQpsaWJyYXJ5KFJPQ1IpDQpST0NScHJlZCA9IHByZWRpY3Rpb24ocHJlZCwgVFIkUG9vckNhcmUpDQpST0NScGVyZiA9IHBlcmZvcm1hbmNlKFJPQ1JwcmVkLCAidHByIiwgImZwciIpDQpwYXIoY2V4PTAuOCkNCnBsb3QoUk9DUnBlcmYsIGNvbG9yaXplPVRSVUUsIHByaW50LmN1dG9mZnMuYXQ9c2VxKDAsMSwwLjEpKQ0KYGBgDQoNCmBgYHtyfQ0KYXMubnVtZXJpYyhwZXJmb3JtYW5jZShST0NScHJlZCwgImF1YyIpQHkudmFsdWVzKQ0KY2FUb29sczo6Y29sQVVDKHByZWQsIFRSJFBvb3JDYXJlKQ0KYGBgDQoNCjxicj4NCg0KLSAtIC0NCiMjIyDjgJBG44CRRnJhbWluZ2hhbSBIZWFydCBTdHVkeQ0KDQpgYGB7cn0NCnNvdXJjZSgiRFBQLlIiKQ0KYGBgDQoNCiMjIyMgRjE6IFJlYWRpbmcgJiBTcGxpdHRpbmcNCmBgYHtyfQ0KRiA9IHJlYWQuY3N2KCJkYXRhL2ZyYW1pbmdoYW0uY3N2IikNCnNldC5zZWVkKDEwMDApDQpzcGxpdCA9IHNhbXBsZS5zcGxpdChGJFRlblllYXJDSEQsIFNwbGl0UmF0aW8gPSAwLjY1KQ0KVFIgPSBzdWJzZXQoRiwgc3BsaXQ9PVRSVUUpDQpUUyA9IHN1YnNldChGLCBzcGxpdD09RkFMU0UpDQpgYGANCg0KIyMjIyBGMjogTG9naXN0aWMgUmVncmVzc2lvbiBNb2RlbA0KYGBge3J9DQpnbG0yID0gZ2xtKFRlblllYXJDSEQgfiAuLCBUUiwgZmFtaWx5PWJpbm9taWFsKQ0Kc3VtbWFyeShnbG0yKQ0KYGBgDQoNCiMjIyMgRjM6IFByZWRpY3Rpb24gJiBFdmFsdWF0aW9uDQpgYGB7cn0NCnByZWQgPSBwcmVkaWN0KGdsbTIsIFRTLCB0eXBlPSJyZXNwb25zZSIpDQp5ID0gVFMkVGVuWWVhckNIRFshaXMubmEocHJlZCldICAgICAgICAgICAgICMgcmVtb3ZlIE5BDQpwcmVkID0gcHJlZFshaXMubmEocHJlZCldDQoNCm14ID0gdGFibGUoeSwgcHJlZCA+IDAuNSk7IG14DQpjKGFjY3VyYWN5ID0gc3VtKGRpYWcobXgpKS9zdW0obXgpLA0KICBzZW5zaXRpdml0eSA9IG14WzIsMl0vc3VtKG14WzIsXSksDQogIHNwZWNpZmljaXR5ID0gbXhbMSwxXS9zdW0obXhbMSxdKSkNCmBgYA0KDQojIyMjIEY0OiBBVUMgJiBEUFANCmBgYHtyIGZpZy53aWR0aD03LCBmaWcuaGVpZ2h0PTIuNH0NCnBhcihjZXg9MC43KQ0KYXVjID0gRFBQKHByZWQsIHksIDEsIGI9c2VxKDAsMSwwLjAyKSkgICMgMC43NDIxMQ0KYGBgDQoNCiMjIyMgRjU6IEV4cGVjdGVkIFJlc3VsdCAmIE9wdGltaXphdGlvbg0KDQoNCiFbRmlndXJlIDMgLSBTdGFydGVnaWMgT3B0aW1pemF0aW9uXShyZXMvb3B0aW1pemF0aW9uLmpwZykNCg0KDQpgYGB7ciBmaWcud2lkdGg9NSwgZmlnLmhlaWdodD00fQ0KcGF5b2ZmID0gbWF0cml4KGMoMCwtMTAwLC0xMCwtNjApLDIsMikgDQpjdXRvZmYgPSBzZXEoMC4wMiwgMC42NCwgMC4wMSkNCnJlc3VsdCA9IHNhcHBseShjdXRvZmYsIGZ1bmN0aW9uKHApIHN1bSh0YWJsZSh5LHByZWQ+cCkqcGF5b2ZmKSApDQppID0gd2hpY2gubWF4KHJlc3VsdCkNCnBhcihjZXg9MC43KQ0KcGxvdChjdXRvZmYsIHJlc3VsdCwgdHlwZT0nbCcsIGNvbD0nY3lhbicsIGx3ZD0yLCBtYWluPXNwcmludGYoDQogICJPcHRvbWFsIEV4cGVjdGVkIFJlc3VsdDogJCVkIEAgJS4yZiIscmVzdWx0W2ldLGN1dG9mZltpXSkpDQphYmxpbmUodj1zZXEoMCwxLDAuMDUpLGg9c2VxKC0yMzAwMCwtMTcwMDAsNTAwKSxjb2w9J2xpZ2h0Z3JheScsbHR5PTMpDQphYmxpbmUodj1jdXRvZmZbaV0sY29sPSdyZWQnKQ0KYGBgDQoNCuOAkCoqUSoq44CR5aaC5p6c5LuA6bq86YO95LiN5YGa77yM5pyf5pyb5aCx6YWs5piv5aSa5bCR77yfDQoNCuOAkCoqUSoq44CR5aaC5p6c5q+P5L2N55eF5Lq66YO95YGa5ZGi77yfDQoNCuOAkCoqUSoq44CR5Lul5LiK5ZOq5LiA56iu5YGa5rOV5pyf5pyb5aCx6YWs5q+U6LyD6auY77yfDQoNCuOAkCoqUSoq44CR5Zyo5omA5pyJ55qE5ZWG5YuZ5oOF5aKD6YO95piv6YCZ56iu54uA5rOB5ZeO77yfDQoNCuOAkCoqUSoq44CR5L2g5Y+v5Lul5qih5pOs5Ye644CM5YWo5YGa44CN5q+U44CM5YWo5LiN5YGa44CN6YKE6KaB5aW955qE54uA5rOB44CB5Lim6IiJ5Ye65LiA5YCL5pyD55m855Sf6YCZ56iu54uA5rOB55qE5ZWG5YuZ5oOF5aKD5ZeO77yfDQoNCg0KYGBge3J9DQojDQojDQojDQpgYGANCg0KPGJyPg0KDQojIyMjIEY2OiBTaW11bGF0aW9uDQpgYGB7ciBmaWcud2lkdGg9NiwgZmlnLmhlaWdodD02fQ0KbGlicmFyeShtYW5pcHVsYXRlKQ0KcDAgPSBwYXIobWZyb3c9YygyLDEpLGNleD0wLjgpDQptYW5pcHVsYXRlKHsNCiAgWTAgPSAtMjIwMDA7IFkxID0gLTEyMDAwDQogIG14ID0gbWF0cml4KGModHJ1ZV9uZWcsIGZhbHNlX25lZywgZmFsc2VfcG9zLCB0cnVlX3BvcyksMiwyKSANCiAgY3ggPSBzZXEoMC4wMiwgMC42NCwgMC4wMSkNCiAgcnggPSBzYXBwbHkoY3gsIGZ1bmN0aW9uKHApIHN1bSh0YWJsZSh5LCBwcmVkPnApKm14KSApDQogIGkgPSB3aGljaC5tYXgocngpDQogIHBsb3QoY3gsIHJ4LCB0eXBlPSdsJyxjb2w9J2N5YW4nLGx3ZD0yLG1haW49c3ByaW50ZigNCiAgICAiT3B0b21hbCBFeHBlY3RlZCBSZXN1bHQ6ICQlZCBAICUuMmYsIFQ6JWQiLHJ4W2ldLGN4W2ldLHN1bShwcmVkPmN4W2ldKSksDQogICAgeWxpbT1jKFkwLFkxKSkNCiAgYWJsaW5lKHY9Y3hbaV0sY29sPSdyZWQnKQ0KICBhYmxpbmUodj1zZXEoMCwxLDAuMSksaD1zZXEoWTAsWTEsMjAwMCksY29sPSdsaWdodGdyYXknLGx0eT0zKQ0KICBEUFAocHJlZCwgeSwgMSwgYj1zZXEoMCwxLDAuMDIpKQ0KICBhYmxpbmUodj1jeFtpXSxjb2w9J3JlZCcpDQogIH0sDQogIHRydWVfbmVnICA9IHNsaWRlcigtMTAwLDEwMCwwLHN0ZXA9NSksDQogIGZhbHNlX25lZyA9IHNsaWRlcigtMTAwLDEwMCwtMTAwLHN0ZXA9NSksDQogIGZhbHNlX3BvcyA9IHNsaWRlcigtMTAwLDEwMCwtMTAsc3RlcD01KSwNCiAgdHJ1ZV9wb3MgID0gc2xpZGVyKC0xMDAsMTAwLC02MCxzdGVwPTUpDQogICkgDQpwYXIocDApDQpgYGANCg0KDQrjgJAqKlEqKuOAkeacieS6lOeoruaIkOacrOWIhuWIpeeCuiBgJDUsICQxMCwgJDE1LCAkMjAsICQzMGAg55qE6Jel77yM5a6D5YCR5YiG5Yil5Y+v5Lul5bCH6aKo6Zqq5oiQ5pys5b6eIGAkMTAwYCDpmY3kvY7liLAgYCQ3MCwgJDYwLCAkNTAsICQ0MCwgJDI1YO+8jOWTquS4gOeoruiXpeeahOacn+acm+aViOebiuaYr+acgOWkp+eahOWRou+8nw0KDQoNCmBgYHtyfQ0KIw0KIw0KIw0KYGBgDQoNCjxicj4NCg0KLSAtIC0NCiMjIyDjgJBH44CR5YiG5p6Q5rWB56iL77ya6LOH5paZ44CB5qih5Z6L44CB6aCQ5ris44CB5rG6562WDQoNCiFbRmlndXJlIDQgLSDos4fmlpnjgIHmqKHlnovjgIHpoJDmuKzjgIHmsbrnrZZdKHJlcy9mbG93LmpwZykNCg0KDQoNCjxicj48YnI+PGJyPjxicj48YnI+DQoNCg0KDQoNCg0KDQoNCg0KDQo=