This is analysis associated with the first RQ for the STEM-IE project.

Joining Community Space data set

community_space <- rename(community_space,
              response_date = resp_date,
              signal_number = signal,
              program_ID = SiteIDNumeric)

community_space$program_ID <- as.character(community_space$program_ID)



community_space$sociedad_class <- ifelse(community_space$eighth_math == 1, "8th Math",
                             ifelse(community_space$seventh_math == 1, "7th Math",
                                    ifelse(community_space$sixth_math == 1, "6th Math",
                                           ifelse(community_space$robotics == 1, "Robotics",
                                                  ifelse(community_space$dance == 1, "Dance", NA)))))

community_space$response_date <- format(as.Date(community_space$response_date, format = "%m/%d/%Y"), "%Y-%m-%d")

community_space <- mutate(community_space, response_date = as.character(response_date))
df <- mutate(df, response_date = as.character(response_date))

df <- left_join(df, community_space, by = c("response_date", "program_ID", "signal_number", "sociedad_class"))

Joining Value data set

value <- rename(value,
              response_date = resp_date,
              signal_number = signal,
              program_ID = SiteIDNumeric)

value$program_ID <- as.character(value$program_ID)

value$sociedad_class <- ifelse(value$eighth_math == 1, "8th Math",
                             ifelse(value$seventh_math == 1, "7th Math",
                                    ifelse(value$sixth_math == 1, "6th Math",
                                           ifelse(value$robotics == 1, "Robotics",
                                                  ifelse(value$dance == 1, "Dance", NA)))))

value$response_date <- format(as.Date(value$response_date, format = "%m/%d/%Y"), "%Y-%m-%d")

value <- mutate(value, response_date = as.character(response_date))

df <- left_join(df, value, by = c("response_date", "program_ID", "signal_number", "sociedad_class"))

Creating variables for value

df$all_value_sum <- df$V01.01.HighUtility_sum + df$V01.03.HighIntrinsic_sum + df$V01.05.HighAttainment_sum

1. Challenge

1A: Just youth activity

m <- lmer(challenge ~ 
              youth_activity_rc + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ youth_activity_rc + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7481
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0550 -0.6292 -0.0205  0.5705  3.3727 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.05620  0.2371  
##  participant_ID (Intercept) 0.47819  0.6915  
##  program_ID     (Intercept) 0.04243  0.2060  
##  Residual                   0.66391  0.8148  
## Number of obs: 2818, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                                         Estimate Std. Error        df
## (Intercept)                              2.19137    0.09430  10.43185
## youth_activity_rcBasic Skills Activity   0.10066    0.06422 212.71251
## youth_activity_rcCreating Product        0.37479    0.06479 219.23383
## youth_activity_rcField Trip Speaker     -0.07778    0.13021 142.99330
## youth_activity_rcLab Activity            0.20410    0.12490 158.92999
## youth_activity_rcProgram Staff Led      -0.10191    0.07475 188.19071
##                                        t value Pr(>|t|)    
## (Intercept)                             23.237 2.53e-10 ***
## youth_activity_rcBasic Skills Activity   1.567    0.119    
## youth_activity_rcCreating Product        5.785 2.49e-08 ***
## youth_activity_rcField Trip Speaker     -0.597    0.551    
## youth_activity_rcLab Activity            1.634    0.104    
## youth_activity_rcProgram Staff Led      -1.363    0.174    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y__BSA yt__CP y__FTS yt__LA
## yth_ctv_BSA -0.279                            
## yth_ctvt_CP -0.264  0.388                     
## yth_ctv_FTS -0.148  0.227  0.209              
## yth_ctvt_LA -0.142  0.196  0.191  0.125       
## yth_ctv_PSL -0.240  0.405  0.308  0.178  0.177

1B: Just STEM-SB as counts

m <- lmer(challenge ~ 
              active +
              ho_thinking +
              belonging +
              agency +
              sum_stem_sb + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ active + ho_thinking + belonging + agency + sum_stem_sb +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7435.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0283 -0.6295 -0.0361  0.5656  3.3976 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06419  0.2533  
##  participant_ID (Intercept) 0.47154  0.6867  
##  program_ID     (Intercept) 0.05074  0.2253  
##  Residual                   0.66270  0.8141  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   2.17033    0.11809  19.85696  18.379 6.21e-14 ***
## active        0.03449    0.05555 194.34404   0.621 0.535485    
## ho_thinking  -0.09565    0.02834 212.41407  -3.375 0.000878 ***
## belonging     0.04900    0.03968 191.98032   1.235 0.218352    
## agency        0.06775    0.02151 194.18601   3.150 0.001890 ** 
## sum_stem_sb   0.01720    0.01337 209.04682   1.287 0.199672    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) active h_thnk blngng agency
## active      -0.448                            
## ho_thinking -0.091 -0.237                     
## belonging   -0.081 -0.042 -0.100              
## agency      -0.146  0.122 -0.198 -0.423       
## sum_stem_sb  0.153 -0.423 -0.253 -0.151 -0.167

1C: Just STEM-SB as dummy codes (if count >= 1, then dummy code = 1)

m <- lmer(challenge ~ 
              active_dummy +
              ho_thinking_dummy +
              belonging_dummy +
              agency_dummy +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: challenge ~ active_dummy + ho_thinking_dummy + belonging_dummy +  
##     agency_dummy + stem_sb_dummy + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7433.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0383 -0.6399 -0.0410  0.5700  3.4131 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.07136  0.2671  
##  participant_ID (Intercept) 0.47012  0.6857  
##  program_ID     (Intercept) 0.04906  0.2215  
##  Residual                   0.66228  0.8138  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                    Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)         1.98108    0.21032 125.88537   9.419 2.86e-16 ***
## active_dummy        0.12492    0.19411 206.36013   0.644   0.5206    
## ho_thinking_dummy  -0.16206    0.07696 248.01322  -2.106   0.0362 *  
## belonging_dummy     0.11297    0.06528 199.80399   1.730   0.0851 .  
## agency_dummy        0.14195    0.07285 199.49786   1.949   0.0528 .  
## stem_sb_dummy       0.13613    0.07085 223.45257   1.922   0.0559 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actv_d h_thn_ blngn_ agncy_
## active_dmmy -0.812                            
## h_thnkng_dm -0.113 -0.018                     
## blngng_dmmy -0.009 -0.126 -0.074              
## agency_dmmy -0.104 -0.023 -0.215 -0.394       
## stm_sb_dmmy -0.012 -0.193 -0.348  0.067 -0.004

1D: Only select activities and STEM-SB dummy codes

m <- lmer(challenge ~ 
              youth_activity_three +
              agency_dummy +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ youth_activity_three + agency_dummy + stem_sb_dummy +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7410.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9558 -0.6374 -0.0259  0.5668  3.3248 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.05824  0.2413  
##  participant_ID (Intercept) 0.47183  0.6869  
##  program_ID     (Intercept) 0.04751  0.2180  
##  Residual                   0.66217  0.8137  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                                            Estimate Std. Error        df
## (Intercept)                                 2.08444    0.11401  19.36181
## youth_activity_threeBasic Skills Activity   0.12565    0.05911 204.54670
## youth_activity_threeCreating Product        0.35262    0.06339 220.32058
## agency_dummy                                0.08439    0.06248 194.33134
## stem_sb_dummy                               0.03685    0.06287 213.11308
##                                           t value Pr(>|t|)    
## (Intercept)                                18.283 1.12e-13 ***
## youth_activity_threeBasic Skills Activity   2.126   0.0347 *  
## youth_activity_threeCreating Product        5.563 7.66e-08 ***
## agency_dummy                                1.351   0.1783    
## stem_sb_dummy                               0.586   0.5585    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y__BSA yt__CP agncy_
## yth_ctv_BSA -0.057                     
## yth_ctvt_CP  0.016  0.282              
## agency_dmmy -0.392 -0.024 -0.221       
## stm_sb_dmmy -0.388 -0.175 -0.141 -0.069

2. Relevance

2A: Just youth activity

m <- lmer(relevance ~ 
              youth_activity_rc + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ youth_activity_rc + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6154.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9073 -0.5252  0.0208  0.5821  4.0864 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.006284 0.07927 
##  participant_ID (Intercept) 0.481129 0.69363 
##  program_ID     (Intercept) 0.014479 0.12033 
##  Residual                   0.418746 0.64711 
## Number of obs: 2818, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                                         Estimate Std. Error        df
## (Intercept)                              2.46261    0.06849   9.30629
## youth_activity_rcBasic Skills Activity   0.14917    0.03922 211.85422
## youth_activity_rcCreating Product        0.22967    0.03988 232.82941
## youth_activity_rcField Trip Speaker      0.28977    0.07411 122.97587
## youth_activity_rcLab Activity            0.10583    0.07249 141.05255
## youth_activity_rcProgram Staff Led       0.15383    0.04480 183.95916
##                                        t value Pr(>|t|)    
## (Intercept)                             35.954 2.64e-11 ***
## youth_activity_rcBasic Skills Activity   3.804 0.000186 ***
## youth_activity_rcCreating Product        5.759 2.66e-08 ***
## youth_activity_rcField Trip Speaker      3.910 0.000152 ***
## youth_activity_rcLab Activity            1.460 0.146546    
## youth_activity_rcProgram Staff Led       3.434 0.000735 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y__BSA yt__CP y__FTS yt__LA
## yth_ctv_BSA -0.231                            
## yth_ctvt_CP -0.218  0.376                     
## yth_ctv_FTS -0.131  0.242  0.216              
## yth_ctvt_LA -0.122  0.202  0.197  0.140       
## yth_ctv_PSL -0.200  0.411  0.306  0.188  0.184

2B: Just STEM-SB as counts

m <- lmer(relevance ~ 
              active +
              ho_thinking +
              belonging +
              agency +
              sum_stem_sb + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ active + ho_thinking + belonging + agency + sum_stem_sb +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6148
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8836 -0.5322  0.0417  0.5815  3.7321 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01077  0.1038  
##  participant_ID (Intercept) 0.47439  0.6888  
##  program_ID     (Intercept) 0.01329  0.1153  
##  Residual                   0.42152  0.6492  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   2.502094   0.078810  17.010005  31.749   <2e-16 ***
## active        0.020638   0.034393 196.450276   0.600   0.5492    
## ho_thinking   0.012931   0.017738 212.543615   0.729   0.4668    
## belonging    -0.037413   0.024490 189.232173  -1.528   0.1283    
## agency        0.006237   0.013302 192.973707   0.469   0.6397    
## sum_stem_sb   0.015976   0.008350 211.198562   1.913   0.0571 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) active h_thnk blngng agency
## active      -0.424                            
## ho_thinking -0.104 -0.218                     
## belonging   -0.079 -0.024 -0.101              
## agency      -0.137  0.126 -0.185 -0.424       
## sum_stem_sb  0.158 -0.438 -0.266 -0.159 -0.165

2C: Just STEM-SB as dummy codes (if count >= 1, then dummy code = 1)

m <- lmer(relevance ~ 
              active_dummy +
              ho_thinking_dummy +
              belonging_dummy +
              agency_dummy +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: relevance ~ active_dummy + ho_thinking_dummy + belonging_dummy +  
##     agency_dummy + stem_sb_dummy + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6132.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9025 -0.5202  0.0467  0.5861  3.6997 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.011035 0.10505 
##  participant_ID (Intercept) 0.476388 0.69021 
##  program_ID     (Intercept) 0.008036 0.08964 
##  Residual                   0.420800 0.64869 
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                    Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)         2.32209    0.12952 115.65614  17.928  < 2e-16 ***
## active_dummy        0.20731    0.11804 227.17709   1.756  0.08038 .  
## ho_thinking_dummy  -0.07754    0.04790 266.72439  -1.619  0.10671    
## belonging_dummy     0.01465    0.03934 202.40742   0.372  0.71004    
## agency_dummy       -0.00245    0.04386 198.33669  -0.056  0.95552    
## stem_sb_dummy       0.13278    0.04340 228.46293   3.059  0.00248 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actv_d h_thn_ blngn_ agncy_
## active_dmmy -0.804                            
## h_thnkng_dm -0.117 -0.019                     
## blngng_dmmy -0.017 -0.119 -0.072              
## agency_dmmy -0.092 -0.022 -0.227 -0.392       
## stm_sb_dmmy -0.002 -0.196 -0.355  0.076 -0.017

2D: Only select activities and STEM-SB dummy codes

m <- lmer(relevance ~ 
              youth_activity_three +
              agency_dummy +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ youth_activity_three + agency_dummy + stem_sb_dummy +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6121.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9648 -0.5272  0.0381  0.5776  3.8099 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.008987 0.09480 
##  participant_ID (Intercept) 0.475537 0.68959 
##  program_ID     (Intercept) 0.007308 0.08549 
##  Residual                   0.420807 0.64870 
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                                            Estimate Std. Error        df
## (Intercept)                                 2.48803    0.07223  17.02293
## youth_activity_threeBasic Skills Activity   0.05470    0.03684 206.16519
## youth_activity_threeCreating Product        0.15468    0.04001 238.48878
## agency_dummy                               -0.04141    0.03863 190.14562
## stem_sb_dummy                               0.09993    0.03943 218.14556
##                                           t value Pr(>|t|)    
## (Intercept)                                34.446  < 2e-16 ***
## youth_activity_threeBasic Skills Activity   1.485 0.139203    
## youth_activity_threeCreating Product        3.866 0.000143 ***
## agency_dummy                               -1.072 0.285157    
## stem_sb_dummy                               2.535 0.011959 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y__BSA yt__CP agncy_
## yth_ctv_BSA -0.054                     
## yth_ctvt_CP  0.017  0.268              
## agency_dmmy -0.373 -0.030 -0.217       
## stm_sb_dmmy -0.379 -0.164 -0.139 -0.085

3. Learning

3A: Just youth activity

m <- lmer(learning ~ 
              youth_activity_rc + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ youth_activity_rc + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7501.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1939 -0.5605  0.1330  0.5800  2.7928 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.012317 0.11098 
##  participant_ID (Intercept) 0.401844 0.63391 
##  program_ID     (Intercept) 0.002588 0.05087 
##  Residual                   0.707322 0.84102 
## Number of obs: 2817, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                                         Estimate Std. Error        df
## (Intercept)                              2.68252    0.05808  11.52849
## youth_activity_rcBasic Skills Activity   0.22074    0.05128 196.87122
## youth_activity_rcCreating Product        0.13631    0.05218 214.26151
## youth_activity_rcField Trip Speaker      0.09801    0.09704 114.32790
## youth_activity_rcLab Activity            0.15170    0.09513 131.15180
## youth_activity_rcProgram Staff Led       0.07220    0.05867 170.95870
##                                        t value Pr(>|t|)    
## (Intercept)                             46.184 1.91e-14 ***
## youth_activity_rcBasic Skills Activity   4.304 2.64e-05 ***
## youth_activity_rcCreating Product        2.612  0.00964 ** 
## youth_activity_rcField Trip Speaker      1.010  0.31460    
## youth_activity_rcLab Activity            1.595  0.11318    
## youth_activity_rcProgram Staff Led       1.231  0.22013    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y__BSA yt__CP y__FTS yt__LA
## yth_ctv_BSA -0.358                            
## yth_ctvt_CP -0.337  0.378                     
## yth_ctv_FTS -0.203  0.238  0.215              
## yth_ctvt_LA -0.192  0.203  0.198  0.137       
## yth_ctv_PSL -0.310  0.407  0.309  0.188  0.184

3B: Just STEM-SB as counts

m <- lmer(learning ~ 
              active +
              ho_thinking +
              belonging +
              agency +
              sum_stem_sb + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ active + ho_thinking + belonging + agency + sum_stem_sb +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7453.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2245 -0.5664  0.1133  0.5885  2.7252 
## 
## Random effects:
##  Groups         Name        Variance  Std.Dev. 
##  beep_ID_new    (Intercept) 1.406e-02 1.186e-01
##  participant_ID (Intercept) 3.975e-01 6.305e-01
##  program_ID     (Intercept) 1.924e-13 4.386e-07
##  Residual                   7.088e-01 8.419e-01
## Number of obs: 2791, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   2.63283    0.07507 352.02765  35.070   <2e-16 ***
## active        0.07971    0.04325 182.26279   1.843   0.0669 .  
## ho_thinking  -0.02628    0.02221 200.02024  -1.183   0.2380    
## belonging     0.03364    0.03078 175.51645   1.093   0.2758    
## agency        0.01007    0.01669 180.04797   0.603   0.5471    
## sum_stem_sb   0.00731    0.01048 197.61309   0.697   0.4864    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) active h_thnk blngng agency
## active      -0.561                            
## ho_thinking -0.142 -0.217                     
## belonging   -0.107 -0.020 -0.100              
## agency      -0.178  0.124 -0.183 -0.425       
## sum_stem_sb  0.212 -0.439 -0.268 -0.162 -0.165

3C: Just STEM-SB as dummy codes (if count >= 1, then dummy code = 1)

m <- lmer(learning ~ 
              active_dummy +
              ho_thinking_dummy +
              belonging_dummy +
              agency_dummy +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: learning ~ active_dummy + ho_thinking_dummy + belonging_dummy +  
##     agency_dummy + stem_sb_dummy + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7434.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1973 -0.5592  0.1158  0.5969  2.6502 
## 
## Random effects:
##  Groups         Name        Variance  Std.Dev. 
##  beep_ID_new    (Intercept) 1.289e-02 1.135e-01
##  participant_ID (Intercept) 3.976e-01 6.305e-01
##  program_ID     (Intercept) 1.355e-14 1.164e-07
##  Residual                   7.077e-01 8.413e-01
## Number of obs: 2791, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                    Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)         2.33353    0.15137 256.59473  15.416   <2e-16 ***
## active_dummy        0.34000    0.14712 214.74780   2.311   0.0218 *  
## ho_thinking_dummy  -0.09172    0.05952 252.35864  -1.541   0.1246    
## belonging_dummy     0.07660    0.04887 186.70720   1.567   0.1187    
## agency_dummy        0.02351    0.05445 182.57246   0.432   0.6664    
## stem_sb_dummy       0.13268    0.05390 212.02199   2.462   0.0146 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actv_d h_thn_ blngn_ agncy_
## active_dmmy -0.858                            
## h_thnkng_dm -0.126 -0.021                     
## blngng_dmmy -0.019 -0.117 -0.070              
## agency_dmmy -0.095 -0.022 -0.227 -0.395       
## stm_sb_dmmy -0.001 -0.196 -0.354  0.077 -0.019

3D: Only select activities and STEM-SB dummy codes

m <- lmer(learning ~ 
              youth_activity_three +
              agency_dummy +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: learning ~ youth_activity_three + agency_dummy + stem_sb_dummy +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7432.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2279 -0.5623  0.1253  0.5847  2.7105 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.011747 0.10838 
##  participant_ID (Intercept) 0.397673 0.63061 
##  program_ID     (Intercept) 0.001111 0.03334 
##  Residual                   0.708050 0.84146 
## Number of obs: 2791, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                                            Estimate Std. Error        df
## (Intercept)                                 2.62012    0.07270  31.22221
## youth_activity_threeBasic Skills Activity   0.15592    0.04643 190.07081
## youth_activity_threeCreating Product        0.06521    0.05047 221.50073
## agency_dummy                                0.03817    0.04867 173.59360
## stem_sb_dummy                               0.09673    0.04970 200.58196
##                                           t value Pr(>|t|)    
## (Intercept)                                36.038  < 2e-16 ***
## youth_activity_threeBasic Skills Activity   3.358 0.000948 ***
## youth_activity_threeCreating Product        1.292 0.197753    
## agency_dummy                                0.784 0.434012    
## stem_sb_dummy                               1.946 0.053040 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y__BSA yt__CP agncy_
## yth_ctv_BSA -0.070                     
## yth_ctvt_CP  0.021  0.268              
## agency_dmmy -0.466 -0.030 -0.217       
## stm_sb_dmmy -0.475 -0.162 -0.137 -0.085

4. Affect

4A: Just youth activity

m <- lmer(positive_affect ~ 
              youth_activity_rc + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: positive_affect ~ youth_activity_rc + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6932
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4855 -0.4501  0.0545  0.5451  3.4573 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02746  0.1657  
##  participant_ID (Intercept) 0.49524  0.7037  
##  program_ID     (Intercept) 0.10688  0.3269  
##  Residual                   0.54637  0.7392  
## Number of obs: 2818, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                                          Estimate Std. Error         df
## (Intercept)                              2.697317   0.124977   8.270227
## youth_activity_rcBasic Skills Activity   0.032646   0.052281 208.154491
## youth_activity_rcCreating Product        0.013239   0.052845 220.285317
## youth_activity_rcField Trip Speaker      0.009619   0.103361 131.744677
## youth_activity_rcLab Activity            0.065791   0.099763 148.613621
## youth_activity_rcProgram Staff Led      -0.053066   0.060406 182.362047
##                                        t value Pr(>|t|)    
## (Intercept)                             21.583 1.45e-08 ***
## youth_activity_rcBasic Skills Activity   0.624    0.533    
## youth_activity_rcCreating Product        0.251    0.802    
## youth_activity_rcField Trip Speaker      0.093    0.926    
## youth_activity_rcLab Activity            0.659    0.511    
## youth_activity_rcProgram Staff Led      -0.878    0.381    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y__BSA yt__CP y__FTS yt__LA
## yth_ctv_BSA -0.170                            
## yth_ctvt_CP -0.161  0.383                     
## yth_ctv_FTS -0.091  0.234  0.212              
## yth_ctvt_LA -0.086  0.198  0.193  0.131       
## yth_ctv_PSL -0.146  0.409  0.306  0.182  0.180

4B: Just STEM-SB as counts

m <- lmer(positive_affect ~ 
              active +
              ho_thinking +
              belonging +
              agency +
              sum_stem_sb + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: positive_affect ~ active + ho_thinking + belonging + agency +  
##     sum_stem_sb + (1 | program_ID) + (1 | participant_ID) + (1 |  
##     beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6847.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5758 -0.4436  0.0519  0.5440  3.4977 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02694  0.1641  
##  participant_ID (Intercept) 0.49574  0.7041  
##  program_ID     (Intercept) 0.10467  0.3235  
##  Residual                   0.53906  0.7342  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   2.633080   0.133626  11.193384  19.705 4.83e-10 ***
## active        0.051183   0.043145 192.264022   1.186    0.237    
## ho_thinking  -0.005364   0.022196 208.113317  -0.242    0.809    
## belonging     0.032648   0.030772 187.298545   1.061    0.290    
## agency        0.016242   0.016709 189.717523   0.972    0.332    
## sum_stem_sb  -0.018822   0.010444 206.329824  -1.802    0.073 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) active h_thnk blngng agency
## active      -0.311                            
## ho_thinking -0.067 -0.227                     
## belonging   -0.057 -0.033 -0.101              
## agency      -0.103  0.124 -0.192 -0.424       
## sum_stem_sb  0.111 -0.432 -0.260 -0.155 -0.166

4C: Just STEM-SB as dummy codes (if count >= 1, then dummy code = 1)

m <- lmer(positive_affect ~ 
              active_dummy +
              ho_thinking +
              belonging_dummy +
              agency_dummy +
              stem_sb_dummy +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: positive_affect ~ active_dummy + ho_thinking + belonging_dummy +  
##     agency_dummy + stem_sb_dummy + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6833.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6013 -0.4511  0.0584  0.5387  3.4621 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02628  0.1621  
##  participant_ID (Intercept) 0.49444  0.7032  
##  program_ID     (Intercept) 0.10796  0.3286  
##  Residual                   0.53862  0.7339  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                  Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)       2.61760    0.18713  38.67080  13.988   <2e-16 ***
## active_dummy     -0.00270    0.14656 209.30542  -0.018   0.9853    
## ho_thinking      -0.01545    0.02097 234.15215  -0.737   0.4620    
## belonging_dummy   0.04301    0.05030 196.73034   0.855   0.3936    
## agency_dummy      0.13097    0.05408 186.28140   2.422   0.0164 *  
## stem_sb_dummy    -0.02708    0.05516 225.39066  -0.491   0.6240    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actv_d h_thnk blngn_ agncy_
## active_dmmy -0.691                            
## ho_thinking  0.009 -0.042                     
## blngng_dmmy -0.021 -0.110 -0.235              
## agency_dmmy -0.107 -0.019 -0.167 -0.362       
## stm_sb_dmmy -0.043 -0.180 -0.409  0.141 -0.021

4D: Only select activities and STEM-SB dummy codes

m <- lmer(positive_affect ~ 
              youth_activity_three +
              agency_dummy +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(m)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## positive_affect ~ youth_activity_three + agency_dummy + stem_sb_dummy +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6829.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6010 -0.4506  0.0562  0.5362  3.4743 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02566  0.1602  
##  participant_ID (Intercept) 0.49480  0.7034  
##  program_ID     (Intercept) 0.10966  0.3312  
##  Residual                   0.53867  0.7339  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                                            Estimate Std. Error        df
## (Intercept)                                 2.62008    0.13448  10.73512
## youth_activity_threeBasic Skills Activity   0.03820    0.04678 197.82163
## youth_activity_threeCreating Product       -0.03089    0.05048 220.72075
## agency_dummy                                0.14815    0.04923 185.70187
## stem_sb_dummy                              -0.04785    0.04990 208.27850
##                                           t value Pr(>|t|)    
## (Intercept)                                19.483 1.01e-09 ***
## youth_activity_threeBasic Skills Activity   0.817  0.41513    
## youth_activity_threeCreating Product       -0.612  0.54116    
## agency_dummy                                3.009  0.00298 ** 
## stem_sb_dummy                              -0.959  0.33874    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) y__BSA yt__CP agncy_
## yth_ctv_BSA -0.037                     
## yth_ctvt_CP  0.011  0.275              
## agency_dmmy -0.259 -0.027 -0.219       
## stm_sb_dmmy -0.260 -0.170 -0.141 -0.076

Descriptives on class composite, stem sb dummy, and agency.

psych::describe(class_data$COMPOSIT)
##    vars   n mean   sd median trimmed  mad  min max range  skew kurtosis
## X1    1 236 3.77 1.11   3.83    3.78 1.24 1.17   6  4.83 -0.08    -0.75
##      se
## X1 0.07
psych::describe(pqa$stem_sb_dummy)
##    vars   n mean   sd median trimmed mad min max range  skew kurtosis   se
## X1    1 236 0.82 0.39      1    0.89   0   0   1     1 -1.64     0.68 0.03
psych::describe(pqa$agency)
##    vars   n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 236    2 1.4      2       2 1.48   0   4     4 0.11    -1.23 0.09

RQ1 challenge with quality predictors only

RQ1_challenge_quality3 <- lmer(challenge ~ 
              COMPOSIT +
              agency +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_challenge_quality3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ COMPOSIT + agency + stem_sb_dummy + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7427.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9426 -0.6398 -0.0370  0.5791  3.3700 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06431  0.2536  
##  participant_ID (Intercept) 0.46802  0.6841  
##  program_ID     (Intercept) 0.05857  0.2420  
##  Residual                   0.66351  0.8146  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     1.92375    0.13325  26.82127  14.437 3.64e-14 ***
## COMPOSIT        0.07123    0.02644 198.42857   2.694  0.00766 ** 
## agency          0.05108    0.01838 207.30441   2.778  0.00597 ** 
## stem_sb_dummy  -0.01117    0.06902 212.06624  -0.162  0.87163    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOS agency
## COMPOSIT    -0.525              
## agency      -0.040 -0.253       
## stm_sb_dmmy -0.132 -0.351 -0.120

With interaction term.

RQ1_challenge_quality31 <- lmer(challenge ~ 
              COMPOSIT +
              agency +
              stem_sb_dummy + 
              COMPOSIT*agency +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_challenge_quality31)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ COMPOSIT + agency + stem_sb_dummy + COMPOSIT * agency +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7432.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9437 -0.6423 -0.0365  0.5773  3.3783 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06387  0.2527  
##  participant_ID (Intercept) 0.46887  0.6847  
##  program_ID     (Intercept) 0.05700  0.2388  
##  Residual                   0.66356  0.8146  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                  Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)       2.06151    0.17573  71.31070  11.731   <2e-16 ***
## COMPOSIT          0.02728    0.04529 203.19303   0.602    0.548    
## agency           -0.01848    0.06116 204.06778  -0.302    0.763    
## stem_sb_dummy     0.01429    0.07214 217.03192   0.198    0.843    
## COMPOSIT:agency   0.01836    0.01540 196.04120   1.192    0.235    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOSIT agency stm_s_
## COMPOSIT    -0.766                       
## agency      -0.636  0.731                
## stm_sb_dmmy  0.099 -0.436   -0.317       
## COMPOSIT:gn  0.657 -0.813   -0.954  0.296

With variable where agency>=3 and class_comp is >=3

RQ1_challenge_agency_comp_three <- lmer(challenge ~ 
              agency_comp_three +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_challenge_agency_comp_three)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ agency_comp_three + stem_sb_dummy + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7428.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9467 -0.6376 -0.0396  0.5692  3.3943 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06955  0.2637  
##  participant_ID (Intercept) 0.46902  0.6849  
##  program_ID     (Intercept) 0.04708  0.2170  
##  Residual                   0.66332  0.8144  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                    Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)         2.17065    0.10586  14.35524  20.505  4.9e-12 ***
## agency_comp_three   0.17987    0.05487 201.73095   3.278  0.00123 ** 
## stem_sb_dummy       0.08031    0.06468 211.15985   1.242  0.21575    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) agnc__
## agncy_cmp_t -0.078       
## stm_sb_dmmy -0.487 -0.123

Next three models only two quality measures predicting challenge

RQ1_challenge_quality21 <- lmer(challenge ~ 
              #COMPOSIT +
              agency +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_challenge_quality21)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: challenge ~ agency + stem_sb_dummy + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7429.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9545 -0.6413 -0.0387  0.5754  3.4034 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06895  0.2626  
##  participant_ID (Intercept) 0.47080  0.6862  
##  program_ID     (Intercept) 0.05065  0.2251  
##  Residual                   0.66292  0.8142  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.11283    0.11009  15.17618  19.192 4.66e-12 ***
## agency          0.06346    0.01811 206.92073   3.504 0.000561 ***
## stem_sb_dummy   0.05372    0.06579 215.75678   0.817 0.415114    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) agency
## agency      -0.220       
## stm_sb_dmmy -0.417 -0.230
RQ1_challenge_quality22 <- lmer(challenge ~ 
              COMPOSIT +
              #agency +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_challenge_quality22)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: challenge ~ COMPOSIT + stem_sb_dummy + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7429.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9436 -0.6343 -0.0393  0.5713  3.3457 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06850  0.2617  
##  participant_ID (Intercept) 0.46592  0.6826  
##  program_ID     (Intercept) 0.06023  0.2454  
##  Residual                   0.66350  0.8146  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     1.93929    0.13491  26.90993  14.374 3.81e-14 ***
## COMPOSIT        0.08966    0.02602 198.07777   3.446 0.000695 ***
## stem_sb_dummy   0.01190    0.06966 214.03462   0.171 0.864521    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOS
## COMPOSIT    -0.556       
## stm_sb_dmmy -0.139 -0.397
RQ1_challenge_quality23 <- lmer(challenge ~ 
              COMPOSIT +
              agency +
              #stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_challenge_quality23)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ COMPOSIT + agency + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7424.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9394 -0.6407 -0.0365  0.5796  3.3693 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06375  0.2525  
##  participant_ID (Intercept) 0.46805  0.6841  
##  program_ID     (Intercept) 0.05855  0.2420  
##  Residual                   0.66351  0.8146  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   1.92078    0.13191  25.87703  14.561  5.6e-14 ***
## COMPOSIT      0.06976    0.02470 199.45153   2.824  0.00523 ** 
## agency        0.05072    0.01821 207.30166   2.785  0.00584 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr) COMPOS
## COMPOSIT -0.615       
## agency   -0.056 -0.317

Next three models only one quality measures predicting challenge

RQ1_challenge_quality11 <- lmer(challenge ~ 
              COMPOSIT +
              #agency +
              #stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_challenge_quality11)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: challenge ~ COMPOSIT + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7445.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9491 -0.6344 -0.0330  0.5702  3.3482 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06810  0.2610  
##  participant_ID (Intercept) 0.46759  0.6838  
##  program_ID     (Intercept) 0.05996  0.2449  
##  Residual                   0.66298  0.8142  
## Number of obs: 2800, groups:  
## beep_ID_new, 236; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   1.94720    0.13334  25.86714  14.604 5.27e-14 ***
## COMPOSIT      0.08940    0.02379 197.82789   3.758 0.000225 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## COMPOSIT -0.672
RQ1_challenge_quality12 <- lmer(challenge ~ 
              #COMPOSIT +
              agency +
              #stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_challenge_quality12)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: challenge ~ agency + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7426.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9715 -0.6428 -0.0411  0.5701  3.4092 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06877  0.2622  
##  participant_ID (Intercept) 0.47081  0.6862  
##  program_ID     (Intercept) 0.04987  0.2233  
##  Residual                   0.66294  0.8142  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   2.15028    0.09962  10.43990  21.586 5.31e-10 ***
## agency        0.06686    0.01761 204.51948   3.796 0.000194 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##        (Intr)
## agency -0.358
RQ1_challenge_quality13 <- lmer(challenge ~ 
              #COMPOSIT +
              #agency +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_challenge_quality13)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ stem_sb_dummy + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7435.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9593 -0.6417 -0.0410  0.5669  3.3822 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.07664  0.2768  
##  participant_ID (Intercept) 0.46901  0.6848  
##  program_ID     (Intercept) 0.04902  0.2214  
##  Residual                   0.66266  0.8140  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.19845    0.10742  14.22781  20.466  5.9e-12 ***
## stem_sb_dummy   0.10614    0.06588 217.05626   1.611    0.109    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## stm_sb_dmmy -0.506

Next models include pqa subject variable only predicting challenge.

RQ1_challenge_subject3 <- lmer(challenge ~ 
              science +
              mathematics +
              building + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_challenge_subject3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ science + mathematics + building + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7428.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0069 -0.6454 -0.0321  0.5691  3.4028 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.07210  0.2685  
##  participant_ID (Intercept) 0.47105  0.6863  
##  program_ID     (Intercept) 0.03779  0.1944  
##  Residual                   0.66207  0.8137  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   2.22597    0.10331  17.42503  21.547 5.28e-14 ***
## science       0.13101    0.08297 202.78573   1.579   0.1159    
## mathematics  -0.17602    0.09572 282.63969  -1.839   0.0670 .  
## building      0.24339    0.11050 176.25263   2.203   0.0289 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) scienc mthmtc
## science     -0.463              
## mathematics -0.400  0.374       
## building    -0.366  0.279  0.278

RQ1 relevance with quality predictors only

RQ1_relevance_quality3 <- lmer(relevance ~ 
              COMPOSIT +
              agency +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_relevance_quality3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ COMPOSIT + agency + stem_sb_dummy + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6129.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8807 -0.5239  0.0483  0.5834  3.7251 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.009414 0.09702 
##  participant_ID (Intercept) 0.475027 0.68922 
##  program_ID     (Intercept) 0.013513 0.11625 
##  Residual                   0.421480 0.64921 
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.36534    0.08490  22.42204  27.861   <2e-16 ***
## COMPOSIT        0.04151    0.01609 198.61358   2.579   0.0106 *  
## agency         -0.00452    0.01128 211.39833  -0.401   0.6892    
## stem_sb_dummy   0.08145    0.04254 219.18053   1.915   0.0568 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOS agency
## COMPOSIT    -0.504              
## agency      -0.026 -0.261       
## stm_sb_dmmy -0.128 -0.351 -0.125

With interaction

RQ1_relevance_quality31 <- lmer(relevance ~ 
              COMPOSIT +
              agency +
              stem_sb_dummy + 
              COMPOSIT*agency +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_relevance_quality31)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ COMPOSIT + agency + stem_sb_dummy + COMPOSIT * agency +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6135.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9056 -0.5270  0.0433  0.5829  3.7304 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.008737 0.09347 
##  participant_ID (Intercept) 0.475267 0.68940 
##  program_ID     (Intercept) 0.013238 0.11506 
##  Residual                   0.421852 0.64950 
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                  Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)       2.46292    0.10984  56.82064  22.422   <2e-16 ***
## COMPOSIT          0.01032    0.02755 198.83536   0.375    0.708    
## agency           -0.05441    0.03736 210.24428  -1.456    0.147    
## stem_sb_dummy     0.10099    0.04445 223.49085   2.272    0.024 *  
## COMPOSIT:agency   0.01304    0.00934 196.60355   1.396    0.164    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOSIT agency stm_s_
## COMPOSIT    -0.745                       
## agency      -0.616  0.732                
## stm_sb_dmmy  0.106 -0.448   -0.333       
## COMPOSIT:gn  0.640 -0.815   -0.954  0.312

With variable where agency>=3 and class_comp is >=3

RQ1_relevance_agency_comp_three <- lmer(relevance ~ 
              agency_comp_three +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_relevance_agency_comp_three)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ agency_comp_three + stem_sb_dummy + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6127.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9087 -0.5257  0.0426  0.5809  3.7093 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01122  0.1059  
##  participant_ID (Intercept) 0.47536  0.6895  
##  program_ID     (Intercept) 0.01018  0.1009  
##  Residual                   0.42106  0.6489  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                    Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)         2.47718    0.06982  12.51907  35.482  6.1e-14 ***
## agency_comp_three   0.01824    0.03353 214.72708   0.544  0.58699    
## stem_sb_dummy       0.11900    0.03974 219.73327   2.995  0.00306 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) agnc__
## agncy_cmp_t -0.068       
## stm_sb_dmmy -0.454 -0.126

Next three models only two quality measures predicting relevance

RQ1_relevance_quality21 <- lmer(relevance ~ 
              #COMPOSIT +
              agency +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_relevance_quality21)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: relevance ~ agency + stem_sb_dummy + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6129.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9089 -0.5240  0.0417  0.5836  3.7031 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01133  0.1064  
##  participant_ID (Intercept) 0.47554  0.6896  
##  program_ID     (Intercept) 0.01041  0.1020  
##  Residual                   0.42099  0.6488  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   2.476e+00  7.129e-02 1.335e+01  34.726 1.75e-14 ***
## agency        3.331e-03  1.112e-02 2.133e+02   0.299  0.76488    
## stem_sb_dummy 1.188e-01  4.065e-02 2.233e+02   2.922  0.00384 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) agency
## agency      -0.199       
## stm_sb_dmmy -0.396 -0.240
RQ1_relevance_quality22 <- lmer(relevance ~ 
              COMPOSIT +
              #agency +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_relevance_quality22)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: relevance ~ COMPOSIT + stem_sb_dummy + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6122.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8720 -0.5230  0.0461  0.5804  3.7280 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.009376 0.09683 
##  participant_ID (Intercept) 0.474861 0.68910 
##  program_ID     (Intercept) 0.013395 0.11574 
##  Residual                   0.421386 0.64914 
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.36444    0.08476  22.54710  27.894   <2e-16 ***
## COMPOSIT        0.03982    0.01552 197.70681   2.565   0.0111 *  
## stem_sb_dummy   0.07932    0.04218 221.37472   1.880   0.0614 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOS
## COMPOSIT    -0.530       
## stm_sb_dmmy -0.132 -0.401
RQ1_relevance_quality23 <- lmer(relevance ~ 
              COMPOSIT +
              agency +
              #stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_relevance_quality23)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ COMPOSIT + agency + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6128.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8657 -0.5225  0.0489  0.5790  3.7416 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01019  0.1010  
##  participant_ID (Intercept) 0.47496  0.6892  
##  program_ID     (Intercept) 0.01341  0.1158  
##  Residual                   0.42132  0.6491  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   2.386596   0.084476  21.878426  28.252  < 2e-16 ***
## COMPOSIT      0.052111   0.015200 199.410662   3.428 0.000738 ***
## agency       -0.001667   0.011293 213.132278  -0.148 0.882779    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr) COMPOS
## COMPOSIT -0.595       
## agency   -0.043 -0.328

Next three models only one quality measures predicting relevance

RQ1_relevance_quality11 <- lmer(relevance ~ 
              #COMPOSIT +
              agency +
              #stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_challenge_quality11)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: challenge ~ COMPOSIT + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7445.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9491 -0.6344 -0.0330  0.5702  3.3482 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06810  0.2610  
##  participant_ID (Intercept) 0.46759  0.6838  
##  program_ID     (Intercept) 0.05996  0.2449  
##  Residual                   0.66298  0.8142  
## Number of obs: 2800, groups:  
## beep_ID_new, 236; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   1.94720    0.13334  25.86714  14.604 5.27e-14 ***
## COMPOSIT      0.08940    0.02379 197.82789   3.758 0.000225 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## COMPOSIT -0.672
RQ1_relevance_quality12 <- lmer(relevance ~ 
              COMPOSIT +
              #agency +
              #stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_relevance_quality12)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: relevance ~ COMPOSIT + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6135.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8687 -0.5276  0.0476  0.5796  3.7463 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.009899 0.09949 
##  participant_ID (Intercept) 0.476599 0.69036 
##  program_ID     (Intercept) 0.013064 0.11430 
##  Residual                   0.420840 0.64872 
## Number of obs: 2800, groups:  
## beep_ID_new, 236; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   2.38498    0.08403  21.92795  28.384  < 2e-16 ***
## COMPOSIT      0.05144    0.01427 196.75516   3.603 0.000398 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## COMPOSIT -0.645
RQ1_relevance_quality13 <- lmer(relevance ~ 
              #COMPOSIT +
              #agency +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_relevance_quality13)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ stem_sb_dummy + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6122.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9187 -0.5231  0.0415  0.5878  3.7017 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01106  0.1052  
##  participant_ID (Intercept) 0.47568  0.6897  
##  program_ID     (Intercept) 0.01035  0.1017  
##  Residual                   0.42104  0.6489  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.47974    0.06977  12.34932  35.542 8.19e-14 ***
## stem_sb_dummy   0.12179    0.03935 220.57310   3.095  0.00222 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## stm_sb_dmmy -0.465

Next models include pqa subject variable only predicting challenge.

RQ1_relevance_subject3 <- lmer(relevance ~ 
              science +
              mathematics +
              building + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_relevance_subject3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ science + mathematics + building + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6113.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8501 -0.5243  0.0305  0.5819  3.8367 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.007758 0.08808 
##  participant_ID (Intercept) 0.475069 0.68925 
##  program_ID     (Intercept) 0.014910 0.12211 
##  Residual                   0.421105 0.64893 
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 2.451e+00  7.408e-02 1.291e+01  33.091 7.26e-14 ***
## science     2.115e-01  4.821e-02 1.924e+02   4.388 1.88e-05 ***
## mathematics 6.098e-03  6.035e-02 3.554e+02   0.101  0.91957    
## building    2.093e-01  6.486e-02 1.824e+02   3.228  0.00148 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) scienc mthmtc
## science     -0.377              
## mathematics -0.327  0.347       
## building    -0.290  0.254  0.259

RQ1 learning with quality predictors only

RQ1_learning_quality3 <- lmer(learning ~ 
              COMPOSIT +
              agency +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_learning_quality3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ COMPOSIT + agency + stem_sb_dummy + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7434.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2308 -0.5628  0.1146  0.5837  2.7613 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.011101 0.10536 
##  participant_ID (Intercept) 0.394830 0.62835 
##  program_ID     (Intercept) 0.003373 0.05808 
##  Residual                   0.709024 0.84204 
## Number of obs: 2791, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   2.489e+00  8.635e-02 4.946e+01  28.823  < 2e-16 ***
## COMPOSIT      6.098e-02  1.994e-02 1.866e+02   3.058  0.00256 ** 
## agency        3.327e-03  1.408e-02 1.957e+02   0.236  0.81339    
## stem_sb_dummy 6.190e-02  5.314e-02 2.028e+02   1.165  0.24547    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOS agency
## COMPOSIT    -0.618              
## agency      -0.032 -0.259       
## stm_sb_dmmy -0.157 -0.351 -0.127

With interaction

RQ1_learning_quality31 <- lmer(learning ~ 
              COMPOSIT +
              agency +
              stem_sb_dummy + 
              COMPOSIT*agency +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_learning_quality31)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ COMPOSIT + agency + stem_sb_dummy + COMPOSIT * agency +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7441.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2283 -0.5624  0.1145  0.5839  2.7587 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.011469 0.1071  
##  participant_ID (Intercept) 0.394888 0.6284  
##  program_ID     (Intercept) 0.003411 0.0584  
##  Residual                   0.708983 0.8420  
## Number of obs: 2791, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       2.480899   0.123948 123.936889  20.016   <2e-16 ***
## COMPOSIT          0.063486   0.034641 190.125804   1.833   0.0684 .  
## agency            0.007313   0.047195 200.344647   0.155   0.8770    
## stem_sb_dummy     0.060428   0.056051 213.188089   1.078   0.2822    
## COMPOSIT:agency  -0.001050   0.011789 186.786129  -0.089   0.9291    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOSIT agency stm_s_
## COMPOSIT    -0.834                       
## agency      -0.690  0.735                
## stm_sb_dmmy  0.118 -0.446   -0.332       
## COMPOSIT:gn  0.716 -0.817   -0.954  0.310

With variable where agency>=3 and class_comp is >=3

RQ1_learning_agency_comp_three <- lmer(learning ~ 
              agency_comp_three +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_learning_agency_comp_three)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ agency_comp_three + stem_sb_dummy + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7435.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2227 -0.5644  0.1104  0.5926  2.6851 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01425  0.1194  
##  participant_ID (Intercept) 0.39528  0.6287  
##  program_ID     (Intercept) 0.00000  0.0000  
##  Residual                   0.70883  0.8419  
## Number of obs: 2791, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                    Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)         2.66302    0.06357 341.92189  41.893   <2e-16 ***
## agency_comp_three   0.05006    0.04204 196.27695   1.191   0.2353    
## stem_sb_dummy       0.12375    0.04974 200.72841   2.488   0.0137 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) agnc__
## agncy_cmp_t -0.093       
## stm_sb_dmmy -0.623 -0.126

Next three models only two quality measures predicting learning

RQ1_learning_quality21 <- lmer(learning ~ 
              #COMPOSIT +
              agency +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_learning_quality21)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ agency + stem_sb_dummy + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7437.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2217 -0.5649  0.1147  0.5879  2.6524 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01442  0.1201  
##  participant_ID (Intercept) 0.39641  0.6296  
##  program_ID     (Intercept) 0.00000  0.0000  
##  Residual                   0.70866  0.8418  
## Number of obs: 2791, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.65221    0.06575 339.74045  40.340   <2e-16 ***
## agency          0.01417    0.01392 194.73666   1.018   0.3098    
## stem_sb_dummy   0.11874    0.05089 204.21560   2.333   0.0206 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) agency
## agency      -0.267       
## stm_sb_dmmy -0.537 -0.240
RQ1_learning_quality22 <- lmer(learning ~ 
              COMPOSIT +
              #agency +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_learning_quality22)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: learning ~ COMPOSIT + stem_sb_dummy + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7428.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2354 -0.5631  0.1162  0.5844  2.7679 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.010826 0.10405 
##  participant_ID (Intercept) 0.394902 0.62841 
##  program_ID     (Intercept) 0.003447 0.05871 
##  Residual                   0.708978 0.84201 
## Number of obs: 2791, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.48935    0.08623  49.10935  28.869  < 2e-16 ***
## COMPOSIT        0.06223    0.01922 184.26484   3.237  0.00143 ** 
## stem_sb_dummy   0.06345    0.05261 203.82552   1.206  0.22923    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOS
## COMPOSIT    -0.648       
## stm_sb_dmmy -0.162 -0.401
RQ1_learning_quality23 <- lmer(learning ~ 
              COMPOSIT +
              agency +
              #stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_learning_quality23)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ COMPOSIT + agency + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7432
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2132 -0.5641  0.1186  0.5829  2.7844 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.010990 0.10483 
##  participant_ID (Intercept) 0.394537 0.62812 
##  program_ID     (Intercept) 0.003433 0.05859 
##  Residual                   0.709244 0.84217 
## Number of obs: 2791, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 2.505e+00  8.526e-02 4.699e+01  29.375  < 2e-16 ***
## COMPOSIT    6.915e-02  1.866e-02 1.837e+02   3.707 0.000278 ***
## agency      5.413e-03  1.395e-02 1.943e+02   0.388 0.698493    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr) COMPOS
## COMPOSIT -0.728       
## agency   -0.053 -0.327

Next three models only one quality measures predicting learning

RQ1_learning_quality11 <- lmer(learning ~ 
              #COMPOSIT +
              agency +
              #stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_learning_quality11)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: learning ~ agency + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7439
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1806 -0.5629  0.1146  0.5898  2.6693 
## 
## Random effects:
##  Groups         Name        Variance  Std.Dev. 
##  beep_ID_new    (Intercept) 1.578e-02 1.256e-01
##  participant_ID (Intercept) 3.957e-01 6.291e-01
##  program_ID     (Intercept) 1.113e-14 1.055e-07
##  Residual                   7.089e-01 8.420e-01
## Number of obs: 2791, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   2.73480    0.05562 291.63044  49.173   <2e-16 ***
## agency        0.02188    0.01364 190.30435   1.604     0.11    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##        (Intr)
## agency -0.487
RQ1_learning_quality12 <- lmer(learning ~ 
              COMPOSIT +
              #agency +
              #stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_learning_quality12)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: learning ~ COMPOSIT + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7442.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2210 -0.5679  0.1165  0.5838  2.7990 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.010747 0.10367 
##  participant_ID (Intercept) 0.394590 0.62816 
##  program_ID     (Intercept) 0.003546 0.05955 
##  Residual                   0.708125 0.84150 
## Number of obs: 2799, groups:  
## beep_ID_new, 236; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   2.50307    0.08503  46.43376  29.438  < 2e-16 ***
## COMPOSIT      0.07224    0.01756 180.03083   4.114 5.92e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## COMPOSIT -0.788
RQ1_learning_quality13 <- lmer(learning ~ 
              #COMPOSIT +
              #agency +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_learning_quality13)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ stem_sb_dummy + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7432
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2334 -0.5611  0.1160  0.5866  2.6685 
## 
## Random effects:
##  Groups         Name        Variance  Std.Dev. 
##  beep_ID_new    (Intercept) 1.475e-02 1.214e-01
##  participant_ID (Intercept) 3.970e-01 6.301e-01
##  program_ID     (Intercept) 5.435e-13 7.372e-07
##  Residual                   7.083e-01 8.416e-01
## Number of obs: 2791, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.67005    0.06346 346.52162   42.08  < 2e-16 ***
## stem_sb_dummy   0.13121    0.04950 204.30906    2.65  0.00867 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## stm_sb_dmmy -0.643

Next models include pqa subject variable only predicting challenge.

RQ1_learning_subject3 <- lmer(learning ~ 
              science +
              mathematics +
              building + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_learning_subject3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: learning ~ science + mathematics + building + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7438.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2323 -0.5644  0.1150  0.5951  2.6924 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.015204 0.12330 
##  participant_ID (Intercept) 0.397740 0.63067 
##  program_ID     (Intercept) 0.002407 0.04906 
##  Residual                   0.708212 0.84155 
## Number of obs: 2791, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 2.698e+00  6.829e-02 2.337e+01  39.509   <2e-16 ***
## science     1.495e-01  6.178e-02 1.791e+02   2.420   0.0165 *  
## mathematics 5.199e-03  7.547e-02 2.349e+02   0.069   0.9451    
## building    8.573e-02  8.089e-02 1.481e+02   1.060   0.2909    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) scienc mthmtc
## science     -0.556              
## mathematics -0.479  0.402       
## building    -0.428  0.323  0.308

RQ1 affect with quality predictors only

RQ1_affect_quality3 <- lmer(positive_affect ~ 
              COMPOSIT +
              agency +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_affect_quality3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## positive_affect ~ COMPOSIT + agency + stem_sb_dummy + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6837.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5622 -0.4515  0.0535  0.5405  3.4848 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02709  0.1646  
##  participant_ID (Intercept) 0.49440  0.7031  
##  program_ID     (Intercept) 0.10445  0.3232  
##  Residual                   0.53932  0.7344  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.67155    0.13975  13.55752  19.116 3.39e-11 ***
## COMPOSIT        0.01313    0.02063 191.37756   0.636    0.525    
## agency          0.01522    0.01436 204.06107   1.060    0.290    
## stem_sb_dummy  -0.05688    0.05401 210.72039  -1.053    0.293    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOS agency
## COMPOSIT    -0.387              
## agency      -0.026 -0.260       
## stm_sb_dmmy -0.100 -0.351 -0.122

With interaction

RQ1_affect_quality31 <- lmer(positive_affect ~ 
              COMPOSIT +
              agency +
              stem_sb_dummy + 
              COMPOSIT*agency +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_affect_quality31)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: positive_affect ~ COMPOSIT + agency + stem_sb_dummy + COMPOSIT *  
##     agency + (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6844.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5644 -0.4526  0.0527  0.5395  3.4828 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02747  0.1657  
##  participant_ID (Intercept) 0.49441  0.7031  
##  program_ID     (Intercept) 0.10455  0.3233  
##  Residual                   0.53930  0.7344  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       2.656933   0.166550  26.580310  15.953 3.92e-15 ***
## COMPOSIT          0.017764   0.035519 198.997868   0.500    0.618    
## agency            0.022605   0.047946 205.398962   0.471    0.638    
## stem_sb_dummy    -0.059611   0.056837 218.511573  -1.049    0.295    
## COMPOSIT:agency  -0.001935   0.012032 194.873436  -0.161    0.872    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOSIT agency stm_s_
## COMPOSIT    -0.631                       
## agency      -0.524  0.730                
## stm_sb_dmmy  0.085 -0.442   -0.325       
## COMPOSIT:gn  0.543 -0.813   -0.954  0.304

With variable where agency>=3 and class_comp is >=3

RQ1_affect_agency_comp_three <- lmer(positive_affect ~ 
              agency_comp_three +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_affect_agency_comp_three)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## positive_affect ~ agency_comp_three + stem_sb_dummy + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6831.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5607 -0.4525  0.0476  0.5388  3.4698 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02715  0.1648  
##  participant_ID (Intercept) 0.49542  0.7039  
##  program_ID     (Intercept) 0.10675  0.3267  
##  Residual                   0.53939  0.7344  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         2.730045   0.128741   9.415637  21.206 2.89e-09 ***
## agency_comp_three  -0.007088   0.041877 201.132329  -0.169    0.866    
## stem_sb_dummy      -0.028647   0.049555 208.039268  -0.578    0.564    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) agnc__
## agncy_cmp_t -0.048       
## stm_sb_dmmy -0.307 -0.125

Next three models only two quality measures predicting affect

RQ1_affect_quality21 <- lmer(positive_affect ~ 
              #COMPOSIT +
              agency +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_affect_quality21)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: positive_affect ~ agency + stem_sb_dummy + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6832.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5797 -0.4510  0.0518  0.5411  3.4818 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02691  0.1640  
##  participant_ID (Intercept) 0.49458  0.7033  
##  program_ID     (Intercept) 0.10562  0.3250  
##  Residual                   0.53928  0.7344  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.70597    0.12935   9.75215  20.920 1.99e-09 ***
## agency          0.01758    0.01385 201.81254   1.269    0.206    
## stem_sb_dummy  -0.04483    0.05051 211.32091  -0.888    0.376    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) agency
## agency      -0.141       
## stm_sb_dmmy -0.271 -0.236
RQ1_affect_quality22 <- lmer(positive_affect ~ 
              COMPOSIT +
              #agency +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_affect_quality22)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: positive_affect ~ COMPOSIT + stem_sb_dummy + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6832.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5553 -0.4516  0.0504  0.5349  3.4806 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02686  0.1639  
##  participant_ID (Intercept) 0.49486  0.7035  
##  program_ID     (Intercept) 0.10464  0.3235  
##  Residual                   0.53946  0.7345  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.67539    0.13973  13.53202  19.146 3.42e-11 ***
## COMPOSIT        0.01880    0.01989 188.86149   0.945    0.346    
## stem_sb_dummy  -0.04995    0.05352 210.61363  -0.933    0.352    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOS
## COMPOSIT    -0.407       
## stm_sb_dmmy -0.103 -0.399
RQ1_affect_quality23 <- lmer(positive_affect ~ 
              COMPOSIT +
              agency +
              #stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_affect_quality23)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: positive_affect ~ COMPOSIT + agency + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6834.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5705 -0.4503  0.0504  0.5394  3.4751 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02728  0.1652  
##  participant_ID (Intercept) 0.49463  0.7033  
##  program_ID     (Intercept) 0.10556  0.3249  
##  Residual                   0.53920  0.7343  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 2.657e+00  1.396e-01 1.326e+01  19.038 5.14e-11 ***
## COMPOSIT    5.491e-03  1.934e-02 1.935e+02   0.284    0.777    
## agency      1.340e-02  1.427e-02 2.061e+02   0.938    0.349    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr) COMPOS
## COMPOSIT -0.452       
## agency   -0.038 -0.325

Next three models only one quality measures predicting affect

RQ1_affect_quality11 <- lmer(positive_affect ~ 
              #COMPOSIT +
              agency +
              #stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_affect_quality11)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## positive_affect ~ agency + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6828.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5785 -0.4483  0.0492  0.5413  3.4756 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02695  0.1642  
##  participant_ID (Intercept) 0.49467  0.7033  
##  program_ID     (Intercept) 0.10597  0.3255  
##  Residual                   0.53920  0.7343  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   2.67479    0.12465   8.37537  21.458 1.29e-08 ***
## agency        0.01469    0.01347 200.78955   1.091    0.277    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##        (Intr)
## agency -0.219
RQ1_affect_quality12 <- lmer(positive_affect ~ 
              COMPOSIT +
              #agency +
              #stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_affect_quality12)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## positive_affect ~ COMPOSIT + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6843.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5524 -0.4518  0.0476  0.5384  3.4755 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02687  0.1639  
##  participant_ID (Intercept) 0.49499  0.7036  
##  program_ID     (Intercept) 0.10738  0.3277  
##  Residual                   0.53854  0.7339  
## Number of obs: 2800, groups:  
## beep_ID_new, 236; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   2.66202    0.14003  13.08053  19.011 6.52e-11 ***
## COMPOSIT      0.01076    0.01819 189.60388   0.592    0.555    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## COMPOSIT -0.488
RQ1_affect_quality13 <- lmer(positive_affect ~ 
              #COMPOSIT +
              #agency +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_affect_quality13)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## positive_affect ~ stem_sb_dummy + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6827
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5595 -0.4521  0.0466  0.5384  3.4736 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02682  0.1638  
##  participant_ID (Intercept) 0.49528  0.7038  
##  program_ID     (Intercept) 0.10649  0.3263  
##  Residual                   0.53940  0.7344  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.72907    0.12844   9.37438  21.248 3.01e-09 ***
## stem_sb_dummy  -0.02974    0.04906 208.65830  -0.606    0.545    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## stm_sb_dmmy -0.315

Next models include pqa subject variable only predicting challenge.

RQ1_affect_subject3 <- lmer(positive_affect ~ 
              science +
              mathematics +
              building + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_affect_subject3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## positive_affect ~ science + mathematics + building + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6823.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5804 -0.4661  0.0467  0.5313  3.5760 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02527  0.1590  
##  participant_ID (Intercept) 0.49651  0.7046  
##  program_ID     (Intercept) 0.06542  0.2558  
##  Residual                   0.53930  0.7344  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   2.76465    0.11028   9.59210  25.069 4.56e-10 ***
## science       0.01600    0.06252 185.58293   0.256  0.79829    
## mathematics  -0.22451    0.07580 327.16423  -2.962  0.00328 ** 
## building     -0.05021    0.08479 180.32152  -0.592  0.55452    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) scienc mthmtc
## science     -0.317              
## mathematics -0.279  0.339       
## building    -0.251  0.237  0.249

RQ1 challenge with activity predictors only

RQ1_challenge_activity2 <- lmer(challenge ~
                                    creating_product +
                                    basic_skills +
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ1_challenge_activity2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: challenge ~ creating_product + basic_skills + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7470.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0384 -0.6353 -0.0181  0.5593  3.4064 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.0526   0.2293  
##  participant_ID (Intercept) 0.4782   0.6915  
##  program_ID     (Intercept) 0.0420   0.2049  
##  Residual                   0.6644   0.8151  
## Number of obs: 2818, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                   Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)        2.16943    0.09003   8.87980  24.097 2.13e-09 ***
## creating_product   0.44116    0.06172 224.41365   7.148 1.23e-11 ***
## basic_skills       0.12553    0.05616 204.38662   2.235   0.0265 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) crtng_
## crtng_prdct -0.172       
## basic_sklls -0.173  0.248
RQ1_challenge_activity11 <- lmer(challenge ~
                                    creating_product +
                                    #basic_skills +
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ1_challenge_activity11)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ creating_product + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7471.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0498 -0.6383 -0.0248  0.5596  3.3819 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.05535  0.2353  
##  participant_ID (Intercept) 0.47939  0.6924  
##  program_ID     (Intercept) 0.03814  0.1953  
##  Residual                   0.66407  0.8149  
## Number of obs: 2818, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                   Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)        2.20412    0.08630   8.36945  25.539 3.09e-09 ***
## creating_product   0.40721    0.06047 234.94902   6.734 1.25e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## crtng_prdct -0.140
RQ1_challenge_activity12 <- lmer(challenge ~
                                    #creating_product +
                                    basic_skills +
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ1_challenge_activity12)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ basic_skills + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7513.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0868 -0.6256 -0.0324  0.5617  3.3903 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.07845  0.2801  
##  participant_ID (Intercept) 0.47281  0.6876  
##  program_ID     (Intercept) 0.04938  0.2222  
##  Residual                   0.66462  0.8152  
## Number of obs: 2818, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    2.28210    0.09394   8.09602  24.294 7.46e-09 ***
## basic_skills   0.02149    0.06029 219.25777   0.356    0.722    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## basic_sklls -0.144

RQ1 relevance with activity predictors only

RQ1_relevance_activity2 <- lmer(relevance ~
                                    creating_product +
                                    basic_skills +
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ1_relevance_activity2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: relevance ~ creating_product + basic_skills + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6161.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9333 -0.5138  0.0372  0.5719  4.0151 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.010758 0.10372 
##  participant_ID (Intercept) 0.480631 0.69328 
##  program_ID     (Intercept) 0.004805 0.06932 
##  Residual                   0.418026 0.64655 
## Number of obs: 2818, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                   Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)        2.53000    0.05782   8.43945  43.753 3.01e-11 ***
## creating_product   0.18722    0.04061 258.05973   4.610 6.34e-06 ***
## basic_skills       0.06771    0.03653 221.86789   1.853   0.0651 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) crtng_
## crtng_prdct -0.170       
## basic_sklls -0.171  0.234
RQ1_relevance_activity11 <- lmer(relevance ~
                                    creating_product +
                                    #basic_skills +
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ1_relevance_activity11)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ creating_product + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6159.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9413 -0.5163  0.0426  0.5696  3.9954 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.011403 0.10679 
##  participant_ID (Intercept) 0.479939 0.69278 
##  program_ID     (Intercept) 0.004221 0.06497 
##  Residual                   0.418000 0.64653 
## Number of obs: 2818, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                   Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)        2.54813    0.05638   8.01971  45.199 6.05e-11 ***
## creating_product   0.16984    0.03975 270.07024   4.273 2.67e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## crtng_prdct -0.138
RQ1_relevance_activity12 <- lmer(relevance ~
                                    #creating_product +
                                    basic_skills +
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ1_relevance_activity12)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ basic_skills + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6177.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8501 -0.5151  0.0342  0.5886  3.8870 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.014199 0.11916 
##  participant_ID (Intercept) 0.481040 0.69357 
##  program_ID     (Intercept) 0.008234 0.09074 
##  Residual                   0.418517 0.64693 
## Number of obs: 2818, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    2.57602    0.06058   7.84151  42.522 1.48e-10 ***
## basic_skills   0.02742    0.03686 227.96139   0.744    0.458    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## basic_sklls -0.134

RQ1 learning with activity predictors only

RQ1_learning_activity2 <- lmer(learning ~
                                    creating_product +
                                    basic_skills +
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ1_learning_activity2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: learning ~ creating_product + basic_skills + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7494.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1815 -0.5629  0.1353  0.5832  2.8175 
## 
## Random effects:
##  Groups         Name        Variance  Std.Dev. 
##  beep_ID_new    (Intercept) 1.261e-02 1.123e-01
##  participant_ID (Intercept) 4.018e-01 6.339e-01
##  program_ID     (Intercept) 2.198e-17 4.689e-09
##  Residual                   7.074e-01 8.411e-01
## Number of obs: 2817, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                   Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)        2.72024    0.05109 239.76638  53.247  < 2e-16 ***
## creating_product   0.11122    0.05059 228.22925   2.198 0.028921 *  
## basic_skills       0.17895    0.04552 192.62252   3.931 0.000118 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) crtng_
## crtng_prdct -0.237       
## basic_sklls -0.241  0.233
RQ1_learning_activity11 <- lmer(learning ~
                                    creating_product +
                                    #basic_skills +
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ1_learning_activity11)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ creating_product + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7505.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1551 -0.5703  0.1203  0.5800  2.7977 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01758  0.1326  
##  participant_ID (Intercept) 0.39894  0.6316  
##  program_ID     (Intercept) 0.00000  0.0000  
##  Residual                   0.70764  0.8412  
## Number of obs: 2817, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                   Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)        2.76861    0.04975 224.26550  55.653   <2e-16 ***
## creating_product   0.06518    0.05077 240.00017   1.284      0.2    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## crtng_prdct -0.198
RQ1_learning_activity12 <- lmer(learning ~
                                    #creating_product +
                                    basic_skills +
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ1_learning_activity12)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ basic_skills + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7495.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2169 -0.5711  0.1363  0.5704  2.8080 
## 
## Random effects:
##  Groups         Name        Variance  Std.Dev.
##  beep_ID_new    (Intercept) 0.0135757 0.11651 
##  participant_ID (Intercept) 0.4037132 0.63538 
##  program_ID     (Intercept) 0.0005978 0.02445 
##  Residual                   0.7073974 0.84107 
## Number of obs: 2817, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    2.74694    0.05049   7.85306  54.403 2.09e-11 ***
## basic_skills   0.15582    0.04458 202.05260   3.495 0.000582 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## basic_sklls -0.195

RQ1 affect with activity predictors only

RQ1_affect_activity2 <- lmer(positive_affect ~
                                    creating_product +
                                    basic_skills +
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ1_affect_activity2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## positive_affect ~ creating_product + basic_skills + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6923.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4640 -0.4518  0.0506  0.5499  3.4745 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02638  0.1624  
##  participant_ID (Intercept) 0.49457  0.7033  
##  program_ID     (Intercept) 0.10906  0.3302  
##  Residual                   0.54655  0.7393  
## Number of obs: 2818, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                   Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)        2.68139    0.12405   7.81711  21.616 2.97e-08 ***
## creating_product   0.05184    0.05088 229.50599   1.019    0.309    
## basic_skills       0.05093    0.04597 203.89652   1.108    0.269    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) crtng_
## crtng_prdct -0.101       
## basic_sklls -0.102  0.240
RQ1_affect_activity11 <- lmer(positive_affect ~
                                    creating_product +
                                    #basic_skills +
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ1_affect_activity11)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: positive_affect ~ creating_product + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6920.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4777 -0.4494  0.0513  0.5510  3.4649 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02633  0.1623  
##  participant_ID (Intercept) 0.49431  0.7031  
##  program_ID     (Intercept) 0.10641  0.3262  
##  Residual                   0.54668  0.7394  
## Number of obs: 2818, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                   Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)        2.69550    0.12219   7.65005  22.059 3.34e-08 ***
## creating_product   0.03838    0.04937 237.71186   0.777    0.438    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## crtng_prdct -0.080
RQ1_affect_activity12 <- lmer(positive_affect ~
                                    #creating_product +
                                    basic_skills +
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ1_affect_activity12)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## positive_affect ~ basic_skills + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6920.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4933 -0.4485  0.0494  0.5471  3.4532 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02595  0.1611  
##  participant_ID (Intercept) 0.49497  0.7035  
##  program_ID     (Intercept) 0.11168  0.3342  
##  Residual                   0.54676  0.7394  
## Number of obs: 2818, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    2.69408    0.12459   7.66649  21.624 3.78e-08 ***
## basic_skills   0.03976    0.04450 210.84960   0.893    0.373    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## basic_sklls -0.079

Manova of class composite, agency, stem_sb by activity. Post hocs included.

fit<-manova(cbind(df$COMPOSIT, df$agency, df$stem_sb_dummy) ~ df$youth_activity_rc, data = df)
summary(fit, test="Pillai")
##                        Df  Pillai approx F num Df den Df    Pr(>F)    
## df$youth_activity_rc    5 0.51688    112.4     15   8100 < 2.2e-16 ***
## Residuals            2700                                             
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary.aov(fit)
##  Response 1 :
##                        Df  Sum Sq Mean Sq F value    Pr(>F)    
## df$youth_activity_rc    5  808.46 161.693  169.63 < 2.2e-16 ***
## Residuals            2700 2573.73   0.953                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response 2 :
##                        Df Sum Sq Mean Sq F value    Pr(>F)    
## df$youth_activity_rc    5 1249.4 249.890  166.14 < 2.2e-16 ***
## Residuals            2700 4060.9   1.504                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response 3 :
##                        Df Sum Sq Mean Sq F value    Pr(>F)    
## df$youth_activity_rc    5  68.31 13.6625  111.86 < 2.2e-16 ***
## Residuals            2700 329.76  0.1221                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 264 observations deleted due to missingness
TukeyHSD(aov(df$COMPOSIT ~ df$youth_activity_rc))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = df$COMPOSIT ~ df$youth_activity_rc)
## 
## $`df$youth_activity_rc`
##                                                diff        lwr        upr
## Basic Skills Activity-Not Focused         0.9393988  0.7941020  1.0846955
## Creating Product-Not Focused              1.3643686  1.2121864  1.5165509
## Field Trip Speaker-Not Focused            0.9957199  0.7383650  1.2530748
## Lab Activity-Not Focused                  1.5348462  1.2732479  1.7964444
## Program Staff Led-Not Focused             0.5656280  0.3982513  0.7330047
## Creating Product-Basic Skills Activity    0.4249699  0.2627470  0.5871927
## Field Trip Speaker-Basic Skills Activity  0.0563211 -0.2070956  0.3197378
## Lab Activity-Basic Skills Activity        0.5954474  0.3278835  0.8630113
## Program Staff Led-Basic Skills Activity  -0.3737707 -0.5503260 -0.1972155
## Field Trip Speaker-Creating Product      -0.3686488 -0.6359252 -0.1013724
## Lab Activity-Creating Product             0.1704775 -0.1008871  0.4418422
## Program Staff Led-Creating Product       -0.7987406 -0.9810043 -0.6164769
## Lab Activity-Field Trip Speaker           0.5391263  0.1974966  0.8807560
## Program Staff Led-Field Trip Speaker     -0.4300918 -0.7063022 -0.1538814
## Program Staff Led-Lab Activity           -0.9692181 -1.2493864 -0.6890498
##                                              p adj
## Basic Skills Activity-Not Focused        0.0000000
## Creating Product-Not Focused             0.0000000
## Field Trip Speaker-Not Focused           0.0000000
## Lab Activity-Not Focused                 0.0000000
## Program Staff Led-Not Focused            0.0000000
## Creating Product-Basic Skills Activity   0.0000000
## Field Trip Speaker-Basic Skills Activity 0.9903661
## Lab Activity-Basic Skills Activity       0.0000000
## Program Staff Led-Basic Skills Activity  0.0000000
## Field Trip Speaker-Creating Product      0.0012062
## Lab Activity-Creating Product            0.4713671
## Program Staff Led-Creating Product       0.0000000
## Lab Activity-Field Trip Speaker          0.0001032
## Program Staff Led-Field Trip Speaker     0.0001358
## Program Staff Led-Lab Activity           0.0000000
TukeyHSD(aov(df$agency ~ df$youth_activity_rc))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = df$agency ~ df$youth_activity_rc)
## 
## $`df$youth_activity_rc`
##                                                  diff        lwr
## Basic Skills Activity-Not Focused        -0.117682142 -0.3011287
## Creating Product-Not Focused              1.588144786  1.3967032
## Field Trip Speaker-Not Focused           -0.292657117 -0.6164033
## Lab Activity-Not Focused                  0.837827213  0.5087431
## Program Staff Led-Not Focused            -0.123673355 -0.3342291
## Creating Product-Basic Skills Activity    1.705826928  1.5011571
## Field Trip Speaker-Basic Skills Activity -0.174974975 -0.5067150
## Lab Activity-Basic Skills Activity        0.955509356  0.6185579
## Program Staff Led-Basic Skills Activity  -0.005991213 -0.2286425
## Field Trip Speaker-Creating Product      -1.880801903 -2.2170290
## Lab Activity-Creating Product            -0.750317572 -1.0916876
## Program Staff Led-Creating Product       -1.711818141 -1.9411014
## Lab Activity-Field Trip Speaker           1.130484330  0.7007226
## Program Staff Led-Field Trip Speaker      0.168983762 -0.1784821
## Program Staff Led-Lab Activity           -0.961500568 -1.3139454
##                                                  upr     p adj
## Basic Skills Activity-Not Focused         0.06576444 0.4468305
## Creating Product-Not Focused              1.77958635 0.0000000
## Field Trip Speaker-Not Focused            0.03108902 0.1030306
## Lab Activity-Not Focused                  1.16691136 0.0000000
## Program Staff Led-Not Focused             0.08688239 0.5485189
## Creating Product-Basic Skills Activity    1.91049678 0.0000000
## Field Trip Speaker-Basic Skills Activity  0.15676504 0.6616461
## Lab Activity-Basic Skills Activity        1.29246077 0.0000000
## Program Staff Led-Basic Skills Activity   0.21666008 0.9999996
## Field Trip Speaker-Creating Product      -1.54457481 0.0000000
## Lab Activity-Creating Product            -0.40894757 0.0000000
## Program Staff Led-Creating Product       -1.48253486 0.0000000
## Lab Activity-Field Trip Speaker           1.56024609 0.0000000
## Program Staff Led-Field Trip Speaker      0.51644961 0.7350207
## Program Staff Led-Lab Activity           -0.60905578 0.0000000
TukeyHSD(aov(df$stem_sb_dummy ~ df$youth_activity_rc))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = df$stem_sb_dummy ~ df$youth_activity_rc)
## 
## $`df$youth_activity_rc`
##                                                   diff          lwr
## Basic Skills Activity-Not Focused         3.166171e-01  0.264341825
## Creating Product-Not Focused              3.225884e-01  0.268034887
## Field Trip Speaker-Not Focused            4.088269e-01  0.316571671
## Lab Activity-Not Focused                  4.088269e-01  0.315050542
## Program Staff Led-Not Focused             3.398614e-01  0.279861088
## Creating Product-Basic Skills Activity    5.971325e-03 -0.052351758
## Field Trip Speaker-Basic Skills Activity  9.220986e-02 -0.002323367
## Lab Activity-Basic Skills Activity        9.220986e-02 -0.003808415
## Program Staff Led-Basic Skills Activity   2.324434e-02 -0.040202768
## Field Trip Speaker-Creating Product       8.623853e-02 -0.009573338
## Lab Activity-Creating Product             8.623853e-02 -0.011038868
## Program Staff Led-Creating Product        1.727301e-02 -0.048063955
## Lab Activity-Field Trip Speaker          -1.820766e-14 -0.122465673
## Program Staff Led-Field Trip Speaker     -6.896552e-02 -0.167980001
## Program Staff Led-Lab Activity           -6.896552e-02 -0.169398809
##                                                 upr     p adj
## Basic Skills Activity-Not Focused        0.36889235 0.0000000
## Creating Product-Not Focused             0.37714194 0.0000000
## Field Trip Speaker-Not Focused           0.50108222 0.0000000
## Lab Activity-Not Focused                 0.50260335 0.0000000
## Program Staff Led-Not Focused            0.39986177 0.0000000
## Creating Product-Basic Skills Activity   0.06429441 0.9997162
## Field Trip Speaker-Basic Skills Activity 0.18674308 0.0607078
## Lab Activity-Basic Skills Activity       0.18822813 0.0681796
## Program Staff Led-Basic Skills Activity  0.08669145 0.9027019
## Field Trip Speaker-Creating Product      0.18205040 0.1058781
## Lab Activity-Creating Product            0.18351593 0.1162908
## Program Staff Led-Creating Product       0.08260998 0.9749532
## Lab Activity-Field Trip Speaker          0.12246567 1.0000000
## Program Staff Led-Field Trip Speaker     0.03004897 0.3503920
## Program Staff Led-Lab Activity           0.03146777 0.3669051

Manova of quality measures by subject.

fit<-manova(cbind(df$COMPOSIT, df$agency, df$stem_sb_dummy) ~ df$subject, data = df)
summary(fit, test="Pillai")
##              Df  Pillai approx F num Df den Df    Pr(>F)    
## df$subject    2 0.15201   64.791      6   4726 < 2.2e-16 ***
## Residuals  2364                                             
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary.aov(fit)
##  Response 1 :
##               Df  Sum Sq Mean Sq F value    Pr(>F)    
## df$subject     2  314.11 157.054  151.53 < 2.2e-16 ***
## Residuals   2364 2450.23   1.036                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response 2 :
##               Df Sum Sq Mean Sq F value    Pr(>F)    
## df$subject     2  215.5 107.746  58.487 < 2.2e-16 ***
## Residuals   2364 4355.0   1.842                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response 3 :
##               Df  Sum Sq Mean Sq F value    Pr(>F)    
## df$subject     2   6.265 3.13257  39.139 < 2.2e-16 ***
## Residuals   2364 189.206 0.08004                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 603 observations deleted due to missingness
TukeyHSD(aov(df$COMPOSIT ~ df$subject))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = df$COMPOSIT ~ df$subject)
## 
## $`df$subject`
##                        diff        lwr        upr p adj
## Math-Building    -0.3298073 -0.4692741 -0.1903405 1e-07
## Science-Building  0.5011466  0.3744265  0.6278667 0e+00
## Science-Math      0.8309539  0.7162625  0.9456453 0e+00
TukeyHSD(aov(df$agency ~ df$subject))
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = df$agency ~ df$subject)
## 
## $`df$subject`
##                        diff        lwr         upr     p adj
## Math-Building    -0.7894505 -0.9753854 -0.60351556 0.0000000
## Science-Building -0.2180533 -0.3869945 -0.04911214 0.0070475
## Science-Math      0.5713972  0.4184924  0.72430190 0.0000000
#TukeyHSD(aov(df$stem_sb_dummy ~ df$subject))
chisq.test(df$stem_sb_dummy, df$subject)
## 
##  Pearson's Chi-squared test
## 
## data:  df$stem_sb_dummy and df$subject
## X-squared = 75.866, df = 2, p-value < 2.2e-16

Crosstabs of subject by quality measures

table1 <- table(df$stem_sb_dummy, df$subject)
prop.table(table1)
##    
##       Building       Math    Science
##   0 0.02746092 0.04393747 0.01943388
##   1 0.18800169 0.24714829 0.47401774
table2 <-table(df$agency, df$subject)
prop.table(table2)
##    
##       Building       Math    Science
##   0 0.03126320 0.07435572 0.08027038
##   1 0.04351500 0.07435572 0.04520490
##   2 0.04267005 0.07520068 0.20532319
##   3 0.01182932 0.03548796 0.04816223
##   4 0.08618504 0.03168568 0.11449092
table3 <-table(df$COMPOSIT, df$subject)
prop.table(table3)
##                   
##                       Building        Math     Science
##   1.16666666666667 0.000000000 0.000000000 0.000000000
##   1.33333333333333 0.000000000 0.005492184 0.000000000
##   1.5              0.005914660 0.003802281 0.000000000
##   1.66666666666667 0.002957330 0.000000000 0.000000000
##   1.83333333333333 0.000000000 0.000000000 0.005492184
##   2                0.003802281 0.008871990 0.000000000
##   2.16666666666667 0.002957330 0.019433883 0.000000000
##   2.33333333333333 0.003379806 0.017743980 0.013941698
##   2.5              0.015631601 0.001689903 0.015209125
##   2.66666666666667 0.013096747 0.002957330 0.000000000
##   2.83333333333333 0.000000000 0.016899028 0.021123785
##   3                0.024926067 0.012251796 0.008449514
##   3.16666666666667 0.010984368 0.026193494 0.006759611
##   3.33333333333333 0.008871990 0.010139417 0.020701310
##   3.5              0.013941698 0.020278834 0.019011407
##   3.66666666666667 0.004647233 0.005914660 0.024081115
##   3.83333333333333 0.011406844 0.028305872 0.008027038
##   4                0.005069708 0.021968737 0.034643008
##   4.16666666666667 0.000000000 0.024503591 0.026193494
##   4.33333333333333 0.020278834 0.013519223 0.034220532
##   4.5              0.008449514 0.012251796 0.032530629
##   4.66666666666667 0.003379806 0.016054077 0.027038445
##   4.83333333333333 0.000000000 0.009716941 0.029573300
##   5                0.000000000 0.005492184 0.042247571
##   5.16666666666667 0.021968737 0.005069708 0.042670046
##   5.33333333333333 0.004647233 0.000000000 0.016899028
##   5.5              0.000000000 0.002534854 0.019856358
##   5.66666666666667 0.011406844 0.000000000 0.028728348
##   5.83333333333333 0.012674271 0.000000000 0.004647233
##   6                0.005069708 0.000000000 0.011406844

RQ3 engagement with quality predictors only

RQ3_engagement_quality3 <- lmer(overall_engagement ~ 
                                    COMPOSIT + 
                                    agency + 
                                    stem_sb_dummy + 
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ3_engagement_quality3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: overall_engagement ~ COMPOSIT + agency + stem_sb_dummy + (1 |  
##     program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5851.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2157 -0.5058  0.0743  0.5729  3.8408 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02141  0.1463  
##  participant_ID (Intercept) 0.32527  0.5703  
##  program_ID     (Intercept) 0.01461  0.1209  
##  Residual                   0.38014  0.6166  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.69069    0.08498  30.94751  31.661   <2e-16 ***
## COMPOSIT        0.03917    0.01759 203.90317   2.226   0.0271 *  
## agency          0.02330    0.01230 213.74863   1.895   0.0595 .  
## stem_sb_dummy  -0.03017    0.04626 219.91354  -0.652   0.5150    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOS agency
## COMPOSIT    -0.551              
## agency      -0.035 -0.256       
## stm_sb_dmmy -0.139 -0.350 -0.123

With interaction

RQ1_engagement_quality31 <- lmer(overall_engagement ~ 
              COMPOSIT +
              agency +
              stem_sb_dummy + 
              COMPOSIT*agency +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_engagement_quality31)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## overall_engagement ~ COMPOSIT + agency + stem_sb_dummy + COMPOSIT *  
##     agency + (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5858.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2134 -0.5058  0.0715  0.5761  3.8464 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02137  0.1462  
##  participant_ID (Intercept) 0.32534  0.5704  
##  program_ID     (Intercept) 0.01424  0.1194  
##  Residual                   0.38024  0.6166  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       2.749343   0.114689  84.880990  23.972   <2e-16 ***
## COMPOSIT          0.020464   0.030283 208.393836   0.676    0.500    
## agency           -0.006346   0.040978 212.300989  -0.155    0.877    
## stem_sb_dummy    -0.019059   0.048508 226.457922  -0.393    0.695    
## COMPOSIT:agency   0.007803   0.010288 201.800055   0.758    0.449    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOSIT agency stm_s_
## COMPOSIT    -0.786                       
## agency      -0.651  0.732                
## stm_sb_dmmy  0.105 -0.440   -0.323       
## COMPOSIT:gn  0.674 -0.814   -0.954  0.302

With variable where agency>=3 and class_comp is >=3

RQ1_engagement_agency_comp_three <- lmer(overall_engagement ~ 
              agency_comp_three +
              stem_sb_dummy + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_engagement_agency_comp_three)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: overall_engagement ~ agency_comp_three + stem_sb_dummy + (1 |  
##     program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5849.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1616 -0.5094  0.0769  0.5772  3.8680 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02261  0.1504  
##  participant_ID (Intercept) 0.32584  0.5708  
##  program_ID     (Intercept) 0.01322  0.1150  
##  Residual                   0.38022  0.6166  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                    Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)         2.82260    0.06848  14.11372  41.215 4.11e-16 ***
## agency_comp_three   0.08251    0.03629 209.55611   2.274    0.024 *  
## stem_sb_dummy       0.01954    0.04290 217.90904   0.455    0.649    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) agnc__
## agncy_cmp_t -0.078       
## stm_sb_dmmy -0.499 -0.125

Next three models only two quality measures predicting affect

RQ3_engagement_quality21 <- lmer(overall_engagement ~ 
                                    #COMPOSIT + 
                                    agency + 
                                    stem_sb_dummy + 
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ3_engagement_quality21)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: overall_engagement ~ agency + stem_sb_dummy + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5850
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1735 -0.5113  0.0736  0.5814  3.8779 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.0227   0.1507  
##  participant_ID (Intercept) 0.3262   0.5712  
##  program_ID     (Intercept) 0.0139   0.1179  
##  Residual                   0.3799   0.6164  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   2.795e+00  7.064e-02 1.519e+01  39.567   <2e-16 ***
## agency        3.041e-02  1.203e-02 2.133e+02   2.529   0.0122 *  
## stem_sb_dummy 5.688e-03  4.382e-02 2.232e+02   0.130   0.8968    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) agency
## agency      -0.222       
## stm_sb_dmmy -0.432 -0.235
RQ3_engagement_quality22 <- lmer(overall_engagement ~
                                    COMPOSIT + 
                                    #agency + 
                                    stem_sb_dummy + 
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ3_engagement_quality22)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## overall_engagement ~ COMPOSIT + stem_sb_dummy + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5848
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2238 -0.5107  0.0714  0.5734  3.8184 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02161  0.1470  
##  participant_ID (Intercept) 0.32536  0.5704  
##  program_ID     (Intercept) 0.01525  0.1235  
##  Residual                   0.38038  0.6168  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.69633    0.08545  30.43575  31.553  < 2e-16 ***
## COMPOSIT        0.04771    0.01704 200.14305   2.799  0.00563 ** 
## stem_sb_dummy  -0.01938    0.04600 219.19099  -0.421  0.67400    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOS
## COMPOSIT    -0.578       
## stm_sb_dmmy -0.144 -0.398
RQ3_engagement_quality23 <- lmer(overall_engagement ~
                                    COMPOSIT + 
                                    agency + 
                                    #stem_sb_dummy + 
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ3_engagement_quality23)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: overall_engagement ~ COMPOSIT + agency + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5847.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2139 -0.5109  0.0731  0.5747  3.8374 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02124  0.1457  
##  participant_ID (Intercept) 0.32523  0.5703  
##  program_ID     (Intercept) 0.01467  0.1211  
##  Residual                   0.38016  0.6166  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   2.68298    0.08412  29.77935  31.894   <2e-16 ***
## COMPOSIT      0.03516    0.01645 204.53841   2.138   0.0337 *  
## agency        0.02229    0.01218 214.30044   1.830   0.0687 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr) COMPOS
## COMPOSIT -0.646       
## agency   -0.053 -0.322

Next three models only one quality measures predicting affect

RQ3_engagement_quality11 <- lmer(overall_engagement ~
                                    #COMPOSIT + 
                                    #agency + 
                                    stem_sb_dummy + 
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ3_engagement_quality11)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: overall_engagement ~ stem_sb_dummy + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5849.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1723 -0.5088  0.0743  0.5809  3.8595 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02361  0.1537  
##  participant_ID (Intercept) 0.32661  0.5715  
##  program_ID     (Intercept) 0.01437  0.1199  
##  Residual                   0.38015  0.6166  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.83468    0.06945  13.81022  40.815 8.48e-16 ***
## stem_sb_dummy   0.03159    0.04295 219.96488   0.736    0.463    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## stm_sb_dmmy -0.510
RQ3_engagement_quality12 <- lmer(overall_engagement ~
                                    COMPOSIT + 
                                    #agency + 
                                    #stem_sb_dummy + 
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ3_engagement_quality12)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## overall_engagement ~ COMPOSIT + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5857.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2260 -0.5119  0.0689  0.5737  3.8176 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02143  0.1464  
##  participant_ID (Intercept) 0.32508  0.5702  
##  program_ID     (Intercept) 0.01528  0.1236  
##  Residual                   0.38001  0.6164  
## Number of obs: 2800, groups:  
## beep_ID_new, 236; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   2.68665    0.08443  29.19140  31.820  < 2e-16 ***
## COMPOSIT      0.04599    0.01557 198.95203   2.954  0.00352 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## COMPOSIT -0.699
RQ3_engagement_quality13 <- lmer(overall_engagement ~
                                    #COMPOSIT + 
                                    agency + 
                                    #stem_sb_dummy + 
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ3_engagement_quality13)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## overall_engagement ~ agency + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5845.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1734 -0.5106  0.0740  0.5812  3.8781 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02247  0.1499  
##  participant_ID (Intercept) 0.32623  0.5712  
##  program_ID     (Intercept) 0.01388  0.1178  
##  Residual                   0.37991  0.6164  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   2.79896    0.06368  10.11194  43.956 6.99e-13 ***
## agency        0.03076    0.01166 210.78200   2.637  0.00898 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##        (Intr)
## agency -0.368

Next models include pqa subject variable only predicting challenge.

RQ1_engagement_subject3 <- lmer(overall_engagement ~ 
              science +
              mathematics +
              building + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_engagement_subject3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: overall_engagement ~ science + mathematics + building + (1 |  
##     program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5842.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1620 -0.5085  0.0738  0.5787  3.8696 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.022258 0.14919 
##  participant_ID (Intercept) 0.325427 0.57046 
##  program_ID     (Intercept) 0.003754 0.06127 
##  Residual                   0.379765 0.61625 
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   2.86463    0.06158  20.72098  46.516  < 2e-16 ***
## science       0.07439    0.05347 201.47087   1.391  0.16571    
## mathematics  -0.17227    0.06334 276.25314  -2.720  0.00695 ** 
## building      0.03196    0.07057 170.48382   0.453  0.65120    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) scienc mthmtc
## science     -0.522              
## mathematics -0.446  0.390       
## building    -0.401  0.304  0.294

RQ3 engagement with activity predictors only

RQ3_engagement_activity2 <- lmer(overall_engagement ~
                                    creating_product +
                                    basic_skills +
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ3_engagement_activity2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## overall_engagement ~ creating_product + basic_skills + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5912.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1384 -0.5088  0.0752  0.5829  3.8766 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02320  0.1523  
##  participant_ID (Intercept) 0.32431  0.5695  
##  program_ID     (Intercept) 0.01282  0.1132  
##  Residual                   0.38185  0.6179  
## Number of obs: 2818, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                   Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)        2.82111    0.05974   8.38313  47.224 1.81e-11 ***
## creating_product   0.14574    0.04422 240.59138   3.296  0.00113 ** 
## basic_skills       0.07300    0.04014 215.35996   1.819  0.07035 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) crtng_
## crtng_prdct -0.183       
## basic_sklls -0.185  0.244
RQ3_engagement_activity11 <- lmer(overall_engagement ~
                                    #creating_product +
                                    basic_skills +
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ3_engagement_activity11)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## overall_engagement ~ basic_skills + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5919.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1453 -0.5157  0.0714  0.5826  3.8717 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02509  0.1584  
##  participant_ID (Intercept) 0.32471  0.5698  
##  program_ID     (Intercept) 0.01437  0.1199  
##  Residual                   0.38214  0.6182  
## Number of obs: 2818, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    2.85698    0.06032   7.73147  47.366 8.29e-11 ***
## basic_skills   0.04060    0.03958 221.01633   1.026    0.306    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## basic_sklls -0.146
RQ3_engagement_activity12 <- lmer(overall_engagement ~
                                    creating_product +
                                    #basic_skills +
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ3_engagement_activity12)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: overall_engagement ~ creating_product + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5911.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1599 -0.5125  0.0728  0.5848  3.8554 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02395  0.1548  
##  participant_ID (Intercept) 0.32405  0.5693  
##  program_ID     (Intercept) 0.01072  0.1035  
##  Residual                   0.38186  0.6180  
## Number of obs: 2818, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                   Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)        2.84130    0.05665   7.77654  50.160 4.77e-11 ***
## creating_product   0.12658    0.04314 250.20545   2.934  0.00365 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## crtng_prdct -0.151

Feb 14, 2018

Predicting interest

RQ1_important_quality <- lmer(important ~
                                    COMPOSIT + 
                                    agency + 
                                    stem_sb_dummy + 
                                    (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
                                data = df)

summary(RQ1_important_quality)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## important ~ COMPOSIT + agency + stem_sb_dummy + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7372.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2171 -0.5720  0.0631  0.6205  3.1347 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.007692 0.08770 
##  participant_ID (Intercept) 0.473832 0.68835 
##  program_ID     (Intercept) 0.007806 0.08835 
##  Residual                   0.686290 0.82843 
## Number of obs: 2791, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     2.466108   0.089334  32.822607  27.605   <2e-16 ***
## COMPOSIT        0.031903   0.019237 191.512734   1.658   0.0989 .  
## agency         -0.007449   0.013555 202.627748  -0.550   0.5832    
## stem_sb_dummy   0.096265   0.051172 210.209953   1.881   0.0613 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOS agency
## COMPOSIT    -0.574              
## agency      -0.028 -0.261       
## stm_sb_dmmy -0.146 -0.352 -0.126

Models with science, building, and other predicting all outcomes (comparing to math)

RQ1_challenge_subject <- lmer(challenge ~ 
              science +
              building +
              subject_other + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_challenge_subject)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ science + building + subject_other + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7428.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0069 -0.6454 -0.0321  0.5691  3.4028 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.07210  0.2685  
##  participant_ID (Intercept) 0.47105  0.6863  
##  program_ID     (Intercept) 0.03779  0.1944  
##  Residual                   0.66207  0.8137  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.04995    0.10917  18.56068  18.777 1.58e-13 ***
## science         0.30702    0.10055 182.61582   3.054 0.002600 ** 
## building        0.41941    0.12444 156.61451   3.370 0.000946 ***
## subject_other   0.17602    0.09572 282.63969   1.839 0.066995 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) scienc buldng
## science     -0.565              
## building    -0.474  0.464       
## subject_thr -0.498  0.644  0.522
RQ1_relevance_subject <- lmer(relevance ~ 
              science +
              building +
              subject_other + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_relevance_subject)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ science + building + subject_other + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6113.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8501 -0.5243  0.0305  0.5819  3.8367 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.007758 0.08808 
##  participant_ID (Intercept) 0.475069 0.68925 
##  program_ID     (Intercept) 0.014910 0.12211 
##  Residual                   0.421105 0.64893 
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     2.457475   0.078785  15.453598  31.192 2.24e-15 ***
## science         0.205451   0.062841 257.851136   3.269  0.00122 ** 
## building        0.203250   0.076275 213.954161   2.665  0.00829 ** 
## subject_other  -0.006098   0.060348 355.378147  -0.101  0.91957    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) scienc buldng
## science     -0.509              
## building    -0.426  0.503       
## subject_thr -0.459  0.694  0.571
RQ1_learning_subject <- lmer(learning ~ 
              science +
              building +
              subject_other + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_learning_subject)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ science + building + subject_other + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7438.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2323 -0.5644  0.1150  0.5951  2.6924 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.015204 0.12330 
##  participant_ID (Intercept) 0.397740 0.63067 
##  program_ID     (Intercept) 0.002407 0.04906 
##  Residual                   0.708212 0.84155 
## Number of obs: 2791, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     2.703488   0.073601  21.385091  36.732   <2e-16 ***
## science         0.144330   0.075932 112.713586   1.901   0.0599 .  
## building        0.080534   0.092095 110.590658   0.874   0.3838    
## subject_other  -0.005199   0.075470 234.870489  -0.069   0.9451    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) scienc buldng
## science     -0.662              
## building    -0.547  0.509       
## subject_thr -0.580  0.667  0.549
RQ1_affect_subject <- lmer(positive_affect ~ 
              science +
              building +
              subject_other + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_affect_subject)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## positive_affect ~ science + building + subject_other + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6823.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5804 -0.4661  0.0467  0.5313  3.5760 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02527  0.1590  
##  participant_ID (Intercept) 0.49651  0.7046  
##  program_ID     (Intercept) 0.06542  0.2558  
##  Residual                   0.53930  0.7344  
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.54014    0.11510  11.04919  22.068 1.73e-10 ***
## science         0.24051    0.08027 258.05012   2.996  0.00300 ** 
## building        0.17430    0.09867 213.00995   1.766  0.07875 .  
## subject_other   0.22451    0.07580 327.16424   2.962  0.00328 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) scienc buldng
## science     -0.432              
## building    -0.367  0.479       
## subject_thr -0.392  0.680  0.554
RQ3_engagement_subject <- lmer(overall_engagement ~ 
              science +
              building +
              subject_other + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ3_engagement_subject)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: overall_engagement ~ science + building + subject_other + (1 |  
##     program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5842.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1620 -0.5085  0.0738  0.5787  3.8696 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.022258 0.14919 
##  participant_ID (Intercept) 0.325427 0.57046 
##  program_ID     (Intercept) 0.003754 0.06127 
##  Residual                   0.379765 0.61625 
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     2.69235    0.06579  20.47920  40.926  < 2e-16 ***
## science         0.24666    0.06504 146.57355   3.792 0.000218 ***
## building        0.20424    0.07979 137.08846   2.560 0.011564 *  
## subject_other   0.17227    0.06334 276.25315   2.720 0.006948 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) scienc buldng
## science     -0.624              
## building    -0.515  0.487       
## subject_thr -0.546  0.653  0.534

Community space variable predicting outcomes

RQ1_space_challenge <- lmer(challenge ~ 
              Community_Space_Content +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_space_challenge)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: challenge ~ Community_Space_Content + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7489
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9657 -0.6298 -0.0402  0.5636  3.3832 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.07725  0.2779  
##  participant_ID (Intercept) 0.46548  0.6823  
##  program_ID     (Intercept) 0.04392  0.2096  
##  Residual                   0.66562  0.8159  
## Number of obs: 2809, groups:  
## beep_ID_new, 237; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                          Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)               2.26276    0.09053   8.29651  24.995 4.19e-09
## Community_Space_Content   0.12801    0.06819 198.79065   1.877   0.0619
##                            
## (Intercept)             ***
## Community_Space_Content .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Cmmnty_Sp_C -0.159
RQ1_space_relevance <- lmer(relevance ~ 
              Community_Space_Content +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_space_relevance)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: relevance ~ Community_Space_Content + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6156.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9125 -0.5148  0.0342  0.5924  3.7226 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.011998 0.10953 
##  participant_ID (Intercept) 0.475229 0.68937 
##  program_ID     (Intercept) 0.009382 0.09686 
##  Residual                   0.420234 0.64825 
## Number of obs: 2809, groups:  
## beep_ID_new, 237; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                          Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)               2.55551    0.06147   8.07539  41.575 1.04e-10
## Community_Space_Content   0.11174    0.04030 202.35486   2.773  0.00607
##                            
## (Intercept)             ***
## Community_Space_Content ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Cmmnty_Sp_C -0.142
RQ1_space_learning <- lmer(learning ~ 
              Community_Space_Content +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_space_learning)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: learning ~ Community_Space_Content + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7480.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2521 -0.5567  0.1164  0.5875  2.7170 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01633  0.1278  
##  participant_ID (Intercept) 0.39879  0.6315  
##  program_ID     (Intercept) 0.00000  0.0000  
##  Residual                   0.70828  0.8416  
## Number of obs: 2808, groups:  
## beep_ID_new, 237; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                          Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)               2.75465    0.04994 226.74998  55.155   <2e-16
## Community_Space_Content   0.10127    0.05030 187.02698   2.014   0.0455
##                            
## (Intercept)             ***
## Community_Space_Content *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Cmmnty_Sp_C -0.218
RQ1_space_affect <- lmer(positive_affect ~ 
              Community_Space_Content +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_space_affect)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: positive_affect ~ Community_Space_Content + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6860.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5350 -0.4428  0.0523  0.5432  3.4767 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02573  0.1604  
##  participant_ID (Intercept) 0.49594  0.7042  
##  program_ID     (Intercept) 0.09889  0.3145  
##  Residual                   0.53896  0.7341  
## Number of obs: 2809, groups:  
## beep_ID_new, 237; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                         Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)               2.6829     0.1188   7.6933  22.583 2.61e-08 ***
## Community_Space_Content   0.1116     0.0498 189.1983   2.241   0.0262 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Cmmnty_Sp_C -0.088
RQ3_space_engagement <- lmer(overall_engagement ~ 
              Community_Space_Content +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ3_space_engagement)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## overall_engagement ~ Community_Space_Content + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5886.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1669 -0.5091  0.0729  0.5731  3.8627 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02370  0.1539  
##  participant_ID (Intercept) 0.32702  0.5719  
##  program_ID     (Intercept) 0.01394  0.1181  
##  Residual                   0.38060  0.6169  
## Number of obs: 2809, groups:  
## beep_ID_new, 237; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                          Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)               2.85207    0.06006   8.01637  47.487 4.11e-11
## Community_Space_Content   0.03386    0.04394 198.45322   0.771    0.442
##                            
## (Intercept)             ***
## Community_Space_Content    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Cmmnty_Sp_C -0.156

Value on engagement models

RQ3_value_engagement <- lmer(overall_engagement ~ 
              all_value_sum +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ3_value_engagement)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: overall_engagement ~ all_value_sum + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5888.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1652 -0.5103  0.0709  0.5772  3.8586 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02276  0.1509  
##  participant_ID (Intercept) 0.32715  0.5720  
##  program_ID     (Intercept) 0.01261  0.1123  
##  Residual                   0.38082  0.6171  
## Number of obs: 2809, groups:  
## beep_ID_new, 237; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   2.841e+00  5.896e-02 8.083e+00  48.191 3.12e-11 ***
## all_value_sum 7.121e-03  4.094e-03 1.729e+02   1.739   0.0838 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## all_valu_sm -0.179
RQ3_high_utility_engagement <- lmer(overall_engagement ~ 
              V01.01.HighUtility_sum +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ3_high_utility_engagement)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: overall_engagement ~ V01.01.HighUtility_sum + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5890.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1658 -0.5104  0.0714  0.5732  3.8611 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02333  0.1528  
##  participant_ID (Intercept) 0.32713  0.5720  
##  program_ID     (Intercept) 0.01412  0.1188  
##  Residual                   0.38073  0.6170  
## Number of obs: 2809, groups:  
## beep_ID_new, 237; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                         Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)            2.851e+00  6.012e-02 7.977e+00  47.412 4.57e-11 ***
## V01.01.HighUtility_sum 5.529e-03  5.533e-03 1.641e+02   0.999    0.319    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## V01.01.HgU_ -0.145
RQ3_high_intrinsic_engagement <- lmer(overall_engagement ~ 
              V01.03.HighIntrinsic_sum +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ3_high_intrinsic_engagement)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## overall_engagement ~ V01.03.HighIntrinsic_sum + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5885.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1662 -0.5069  0.0758  0.5718  3.8574 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02248  0.1499  
##  participant_ID (Intercept) 0.32718  0.5720  
##  program_ID     (Intercept) 0.01176  0.1084  
##  Residual                   0.38076  0.6171  
## Number of obs: 2809, groups:  
## beep_ID_new, 237; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                           Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)              2.844e+00  5.760e-02 7.720e+00  49.371 6.19e-11
## V01.03.HighIntrinsic_sum 1.653e-02  7.577e-03 1.922e+02   2.182   0.0303
##                             
## (Intercept)              ***
## V01.03.HighIntrinsic_sum *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## V01.03.HgI_ -0.125

Predicting relevance and importance using high utility

RQ1_high_utility_relevance <- lmer(relevance ~ 
              V01.01.HighUtility_sum +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_high_utility_relevance)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: relevance ~ V01.01.HighUtility_sum + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6158
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0044 -0.5268  0.0400  0.5843  3.6052 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.010284 0.10141 
##  participant_ID (Intercept) 0.475507 0.68957 
##  program_ID     (Intercept) 0.008634 0.09292 
##  Residual                   0.421068 0.64890 
## Number of obs: 2809, groups:  
## beep_ID_new, 237; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                         Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)            2.553e+00  6.060e-02 7.827e+00  42.130 1.64e-10 ***
## V01.01.HighUtility_sum 1.626e-02  4.911e-03 1.533e+02   3.311  0.00116 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## V01.01.HgU_ -0.131
RQ1_high_utility_importance <- lmer(important ~ 
              V01.01.HighUtility_sum +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_high_utility_importance)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: important ~ V01.01.HighUtility_sum + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7411.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2541 -0.5658  0.0710  0.6250  3.1078 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.008372 0.09150 
##  participant_ID (Intercept) 0.473830 0.68835 
##  program_ID     (Intercept) 0.003870 0.06221 
##  Residual                   0.686520 0.82857 
## Number of obs: 2808, groups:  
## beep_ID_new, 237; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                         Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)            2.626e+00  5.699e-02 7.346e+00   46.08 2.57e-10 ***
## V01.01.HighUtility_sum 1.364e-02  5.805e-03 1.409e+02    2.35   0.0201 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## V01.01.HgU_ -0.167

Predicting relevance and importance using high intrinsic

RQ1_high_intrinsic_relevance <- lmer(relevance ~ 
              V01.03.HighIntrinsic_sum +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_high_intrinsic_relevance)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: relevance ~ V01.03.HighIntrinsic_sum + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6164.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9089 -0.5115  0.0415  0.5878  3.7188 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.012427 0.11148 
##  participant_ID (Intercept) 0.475927 0.68987 
##  program_ID     (Intercept) 0.008639 0.09295 
##  Residual                   0.420595 0.64853 
## Number of obs: 2809, groups:  
## beep_ID_new, 237; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                           Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)              2.567e+00  6.057e-02 7.744e+00  42.375  1.9e-10
## V01.03.HighIntrinsic_sum 1.301e-02  7.058e-03 1.998e+02   1.844   0.0667
##                             
## (Intercept)              ***
## V01.03.HighIntrinsic_sum .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## V01.03.HgI_ -0.113
RQ3_high_intrinsic_importance <- lmer(important ~ 
              V01.03.HighIntrinsic_sum +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ3_high_intrinsic_importance)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: important ~ V01.03.HighIntrinsic_sum + (1 | program_ID) + (1 |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7413.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2432 -0.5723  0.0769  0.6226  3.1189 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.010104 0.10052 
##  participant_ID (Intercept) 0.473529 0.68813 
##  program_ID     (Intercept) 0.002993 0.05471 
##  Residual                   0.685920 0.82820 
## Number of obs: 2808, groups:  
## beep_ID_new, 237; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                           Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)              2.636e+00  5.592e-02 7.089e+00  47.137 4.07e-10
## V01.03.HighIntrinsic_sum 1.292e-02  8.313e-03 1.923e+02   1.555    0.122
##                             
## (Intercept)              ***
## V01.03.HighIntrinsic_sum    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## V01.03.HgI_ -0.144

Feb 21, 2018

Frequencies of Utility Value Variables

count(value, V06.01.RealLifeNoGoal_sum)
## # A tibble: 11 x 2
##    V06.01.RealLifeNoGoal_sum     n
##                        <int> <int>
##  1                         0   195
##  2                         1    17
##  3                         2     6
##  4                         3     8
##  5                         4     2
##  6                         5     2
##  7                         7     2
##  8                         8     1
##  9                         9     3
## 10                        13     1
## 11                        NA    21
count(value, V06.02.ImpactsForPassiveOutcome_sum)
## # A tibble: 7 x 2
##   V06.02.ImpactsForPassiveOutcome_sum     n
##                                 <int> <int>
## 1                                   0   219
## 2                                   1     8
## 3                                   2     4
## 4                                   4     1
## 5                                   5     3
## 6                                   8     2
## 7                                  NA    21
count(value, V06.03.UsefulForSpecificGoal_sum)
## # A tibble: 10 x 2
##    V06.03.UsefulForSpecificGoal_sum     n
##                               <int> <int>
##  1                                0   183
##  2                                1    19
##  3                                2    15
##  4                                3     6
##  5                                4     8
##  6                                5     1
##  7                                6     2
##  8                                7     2
##  9                               16     1
## 10                               NA    21

Frequencies of Utility Value Variables by program

table(value$Site, value$V06.01.RealLifeNoGoal_sum)
##                                             
##                                               0  1  2  3  4  5  7  8  9 13
##   001. BASB Dorchester House - ESM Signaling 21  1  0  0  0  0  0  0  0  0
##   002. BASB MathPOWER - ESM Signaling        23  1  0  0  0  0  0  0  0  0
##   004. BASB Sociedad Latina - ESM Signaling  50  2  0  0  0  0  1  0  0  0
##   005. BASB Thompson Island - ESM Signaling  14  3  3  3  2  1  0  0  0  0
##   006. PASA Biomes - ESM Signaling           19  1  0  0  0  0  0  0  0  1
##   007. PASA DownCity Design - ESM Signaling  21  3  0  0  0  0  0  0  0  0
##   008. PASA Crazy Machines - ESM Signaling   14  3  0  1  0  0  0  1  1  0
##   009. PASA Explore the Bay - ESM Signaling  15  1  2  2  0  1  1  0  2  0
##   010. PASA RWP Zoo - ESM Signaling          18  2  1  2  0  0  0  0  0  0
table(value$Site, value$V06.02.ImpactsForPassiveOutcome_sum)
##                                             
##                                               0  1  2  4  5  8
##   001. BASB Dorchester House - ESM Signaling 21  0  0  1  0  0
##   002. BASB MathPOWER - ESM Signaling        23  0  1  0  0  0
##   004. BASB Sociedad Latina - ESM Signaling  42  4  2  0  3  2
##   005. BASB Thompson Island - ESM Signaling  25  1  0  0  0  0
##   006. PASA Biomes - ESM Signaling           21  0  0  0  0  0
##   007. PASA DownCity Design - ESM Signaling  24  0  0  0  0  0
##   008. PASA Crazy Machines - ESM Signaling   18  1  1  0  0  0
##   009. PASA Explore the Bay - ESM Signaling  24  0  0  0  0  0
##   010. PASA RWP Zoo - ESM Signaling          21  2  0  0  0  0
table(value$Site, value$V06.03.UsefulForSpecificGoal_sum)
##                                             
##                                               0  1  2  3  4  5  6  7 16
##   001. BASB Dorchester House - ESM Signaling 18  2  1  0  0  0  1  0  0
##   002. BASB MathPOWER - ESM Signaling        24  0  0  0  0  0  0  0  0
##   004. BASB Sociedad Latina - ESM Signaling  52  1  0  0  0  0  0  0  0
##   005. BASB Thompson Island - ESM Signaling  19  4  1  0  1  0  1  0  0
##   006. PASA Biomes - ESM Signaling           17  3  1  0  0  0  0  0  0
##   007. PASA DownCity Design - ESM Signaling  15  1  0  5  3  0  0  0  0
##   008. PASA Crazy Machines - ESM Signaling   13  3  3  0  0  0  0  1  0
##   009. PASA Explore the Bay - ESM Signaling  11  2  5  1  2  1  0  1  1
##   010. PASA RWP Zoo - ESM Signaling          14  3  4  0  2  0  0  0  0

Predicting engagement, relevance, and importance with Useful for specific goal

RQ3_goals_engagement <- lmer(overall_engagement ~ 
              V06.03.UsefulForSpecificGoal_sum +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ3_goals_engagement)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: overall_engagement ~ V06.03.UsefulForSpecificGoal_sum + (1 |  
##     program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5889
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1668 -0.5104  0.0728  0.5771  3.8613 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02346  0.1532  
##  participant_ID (Intercept) 0.32698  0.5718  
##  program_ID     (Intercept) 0.01377  0.1173  
##  Residual                   0.38066  0.6170  
## Number of obs: 2809, groups:  
## beep_ID_new, 237; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                                   Estimate Std. Error        df t value
## (Intercept)                      2.852e+00  5.954e-02 7.804e+00  47.903
## V06.03.UsefulForSpecificGoal_sum 1.018e-02  9.664e-03 1.601e+02   1.053
##                                  Pr(>|t|)    
## (Intercept)                      6.39e-11 ***
## V06.03.UsefulForSpecificGoal_sum    0.294    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## V06.03.UFSG -0.115
RQ1_goals_relevance <- lmer(relevance ~ 
              V06.03.UsefulForSpecificGoal_sum +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_goals_relevance)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ V06.03.UsefulForSpecificGoal_sum + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6159.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9138 -0.5200  0.0465  0.5793  3.7232 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.011327 0.10643 
##  participant_ID (Intercept) 0.475740 0.68974 
##  program_ID     (Intercept) 0.007194 0.08482 
##  Residual                   0.420811 0.64870 
## Number of obs: 2809, groups:  
## beep_ID_new, 237; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                                   Estimate Std. Error        df t value
## (Intercept)                      2.562e+00  5.904e-02 7.762e+00  43.394
## V06.03.UsefulForSpecificGoal_sum 2.399e-02  8.653e-03 1.504e+02   2.772
##                                  Pr(>|t|)    
## (Intercept)                      1.52e-10 ***
## V06.03.UsefulForSpecificGoal_sum  0.00627 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## V06.03.UFSG -0.103
RQ1_goals_importance <- lmer(important ~ 
              V06.03.UsefulForSpecificGoal_sum +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ1_goals_importance)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## important ~ V06.03.UsefulForSpecificGoal_sum + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7411.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1921 -0.5673  0.0777  0.6252  3.1096 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.009099 0.09539 
##  participant_ID (Intercept) 0.473954 0.68844 
##  program_ID     (Intercept) 0.002383 0.04882 
##  Residual                   0.686402 0.82849 
## Number of obs: 2808, groups:  
## beep_ID_new, 237; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                                   Estimate Std. Error        df t value
## (Intercept)                        2.63398    0.05512   7.06892  47.783
## V06.03.UsefulForSpecificGoal_sum   0.02007    0.01014 136.48260   1.979
##                                  Pr(>|t|)    
## (Intercept)                      3.88e-10 ***
## V06.03.UsefulForSpecificGoal_sum   0.0498 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## V06.03.UFSG -0.129

Feb 26 Analysis RQ2

Correlations

df %>% 
    #select(COMPOSIT, agency, stem_sb_dummy, challenge, relevance, learning, positive_affect, Community_Space_Content, overall_pre_interest, overall_pre_competence_beliefs, basic_skills, creating_product, motivation_to_attend) %>% 
    select(overall_pre_interest, overall_pre_competence_beliefs, motivation_to_attend) %>%
    correlate() %>% 
    shave() %>% 
    fashion() %>% 
    knitr::kable()
rowname overall_pre_interest overall_pre_competence_beliefs motivation_to_attend
overall_pre_interest
overall_pre_competence_beliefs .73
motivation_to_attend .25 .16

RQ 2 Models

Chose to retain perceived competence as pre-interest was never significant alone

RQ2_challenge_interest <- lmer(challenge ~ 
                              overall_pre_interest + 
                              #overall_pre_competence_beliefs + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ2_challenge_interest)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ overall_pre_interest + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7240.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9286 -0.6439 -0.0477  0.5572  3.4005 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.08578  0.2929  
##  participant_ID (Intercept) 0.47899  0.6921  
##  program_ID     (Intercept) 0.04229  0.2056  
##  Residual                   0.65499  0.8093  
## Number of obs: 2730, groups:  
## beep_ID_new, 248; participant_ID, 181; program_ID, 9
## 
## Fixed effects:
##                       Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)            2.25442    0.22592  73.52639   9.979 2.59e-15 ***
## overall_pre_interest   0.01061    0.06834 140.34540   0.155    0.877    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## ovrll_pr_nt -0.917
RQ2_challenge_competence <- lmer(challenge ~ 
                              #overall_pre_interest + 
                              overall_pre_competence_beliefs + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ2_challenge_competence)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: challenge ~ overall_pre_competence_beliefs + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7237.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9434 -0.6418 -0.0480  0.5566  3.4071 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.08594  0.2931  
##  participant_ID (Intercept) 0.47370  0.6883  
##  program_ID     (Intercept) 0.02841  0.1686  
##  Residual                   0.65502  0.8093  
## Number of obs: 2730, groups:  
## beep_ID_new, 248; participant_ID, 181; program_ID, 9
## 
## Fixed effects:
##                                 Estimate Std. Error        df t value
## (Intercept)                      2.66831    0.22889  96.33921  11.658
## overall_pre_competence_beliefs  -0.12386    0.06906 157.19221  -1.793
##                                Pr(>|t|)    
## (Intercept)                      <2e-16 ***
## overall_pre_competence_beliefs   0.0748 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## ovrll_pr_c_ -0.935
RQ2_relevance_interest <- lmer(relevance ~ 
                              overall_pre_interest + 
                              #overall_pre_competence_beliefs + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ2_relevance_interest)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ overall_pre_interest + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5964.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9044 -0.5192  0.0364  0.5917  3.7074 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.019010 0.13788 
##  participant_ID (Intercept) 0.481323 0.69377 
##  program_ID     (Intercept) 0.007357 0.08577 
##  Residual                   0.416193 0.64513 
## Number of obs: 2730, groups:  
## beep_ID_new, 248; participant_ID, 181; program_ID, 9
## 
## Fixed effects:
##                      Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)           2.28158    0.19905 61.29508  11.463   <2e-16 ***
## overall_pre_interest  0.09915    0.06228 80.14418   1.592    0.115    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## ovrll_pr_nt -0.951
RQ2_relevance_competence <- lmer(relevance ~ 
                              #overall_pre_interest + 
                              overall_pre_competence_beliefs + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ2_relevance_competence)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: relevance ~ overall_pre_competence_beliefs + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5966.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9004 -0.5166  0.0376  0.5912  3.7136 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.018978 0.13776 
##  participant_ID (Intercept) 0.489415 0.69958 
##  program_ID     (Intercept) 0.003635 0.06029 
##  Residual                   0.416230 0.64516 
## Number of obs: 2730, groups:  
## beep_ID_new, 248; participant_ID, 181; program_ID, 9
## 
## Fixed effects:
##                                 Estimate Std. Error        df t value
## (Intercept)                      2.44870    0.21112  83.94647  11.599
## overall_pre_competence_beliefs   0.04273    0.06533 107.32604   0.654
##                                Pr(>|t|)    
## (Intercept)                      <2e-16 ***
## overall_pre_competence_beliefs    0.514    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## ovrll_pr_c_ -0.961
RQ2_learning_interest <- lmer(learning ~ 
                              overall_pre_interest + 
                              #overall_pre_competence_beliefs + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ2_learning_interest)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ overall_pre_interest + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7260.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1357 -0.5689  0.1208  0.5835  2.6668 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02319  0.1523  
##  participant_ID (Intercept) 0.38829  0.6231  
##  program_ID     (Intercept) 0.00000  0.0000  
##  Residual                   0.70641  0.8405  
## Number of obs: 2729, groups:  
## beep_ID_new, 248; participant_ID, 181; program_ID, 9
## 
## Fixed effects:
##                       Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)            2.51912    0.17835 187.62834  14.125   <2e-16 ***
## overall_pre_interest   0.07885    0.05610 186.81955   1.406    0.162    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## ovrll_pr_nt -0.959
RQ2_learning_competence <- lmer(learning ~ 
                              #overall_pre_interest + 
                              overall_pre_competence_beliefs + 
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ2_learning_competence)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: learning ~ overall_pre_competence_beliefs + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7260.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1355 -0.5668  0.1209  0.5843  2.6671 
## 
## Random effects:
##  Groups         Name        Variance  Std.Dev. 
##  beep_ID_new    (Intercept) 2.319e-02 1.523e-01
##  participant_ID (Intercept) 3.882e-01 6.231e-01
##  program_ID     (Intercept) 2.419e-16 1.555e-08
##  Residual                   7.064e-01 8.405e-01
## Number of obs: 2729, groups:  
## beep_ID_new, 248; participant_ID, 181; program_ID, 9
## 
## Fixed effects:
##                                 Estimate Std. Error        df t value
## (Intercept)                      2.50483    0.19228 185.77514  13.027
## overall_pre_competence_beliefs   0.08187    0.05964 184.70780   1.373
##                                Pr(>|t|)    
## (Intercept)                      <2e-16 ***
## overall_pre_competence_beliefs    0.171    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## ovrll_pr_c_ -0.964

Model building looking at challenge

RQ2_challenge_all <- lmer(challenge ~ COMPOSIT + 
                              agency + 
                              V06.03.UsefulForSpecificGoal_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              basic_skills + 
                              creating_product + 
                              motivation_to_attend +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ2_challenge_all)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ COMPOSIT + agency + V06.03.UsefulForSpecificGoal_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     basic_skills + creating_product + motivation_to_attend +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6487.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8501 -0.6319 -0.0441  0.5631  3.3967 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.05169  0.2274  
##  participant_ID (Intercept) 0.46709  0.6834  
##  program_ID     (Intercept) 0.03366  0.1835  
##  Residual                   0.66342  0.8145  
## Number of obs: 2441, groups:  
## beep_ID_new, 227; participant_ID, 176; program_ID, 9
## 
## Fixed effects:
##                                   Estimate Std. Error        df t value
## (Intercept)                        2.35161    0.28457 132.30947   8.264
## COMPOSIT                           0.02405    0.02670 182.89579   0.901
## agency                             0.02271    0.02041 184.18951   1.113
## V06.03.UsefulForSpecificGoal_sum  -0.03032    0.01464 136.24553  -2.072
## Community_Space_Content            0.18913    0.07030 174.08305   2.690
## overall_pre_competence_beliefs    -0.16107    0.07150 158.58445  -2.253
## basic_skills                       0.11897    0.06042 177.40070   1.969
## creating_product                   0.37814    0.07735 213.45932   4.888
## motivation_to_attend               0.21995    0.18566 177.18835   1.185
##                                  Pr(>|t|)    
## (Intercept)                      1.29e-13 ***
## COMPOSIT                          0.36895    
## agency                            0.26731    
## V06.03.UsefulForSpecificGoal_sum  0.04018 *  
## Community_Space_Content           0.00784 ** 
## overall_pre_competence_beliefs    0.02565 *  
## basic_skills                      0.05050 .  
## creating_product                 2.00e-06 ***
## motivation_to_attend              0.23772    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOS agency V06.03 Cm_S_C ovr___ bsc_sk crtng_
## COMPOSIT    -0.273                                                 
## agency      -0.053 -0.229                                          
## V06.03.UFSG  0.033 -0.207  0.040                                   
## Cmmnty_Sp_C -0.005 -0.153  0.190 -0.118                            
## ovrll_pr_c_ -0.694 -0.012  0.001  0.013  0.004                     
## basic_sklls  0.012 -0.195  0.043 -0.051 -0.120 -0.015              
## crtng_prdct  0.090 -0.293 -0.364  0.092  0.093 -0.001  0.234       
## mtvtn_t_ttn -0.470  0.001 -0.009 -0.015 -0.026 -0.140  0.018 -0.008

Removing agency from challenge model (agency is not significant in any model)

RQ2_challenge_minus_agency<- lmer(challenge ~ COMPOSIT + 
                              V06.03.UsefulForSpecificGoal_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              basic_skills + 
                              creating_product + 
                              motivation_to_attend +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ2_challenge_minus_agency)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ COMPOSIT + V06.03.UsefulForSpecificGoal_sum + Community_Space_Content +  
##     overall_pre_competence_beliefs + basic_skills + creating_product +  
##     motivation_to_attend + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6482.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8602 -0.6330 -0.0359  0.5705  3.3843 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.05219  0.2285  
##  participant_ID (Intercept) 0.46681  0.6832  
##  program_ID     (Intercept) 0.03331  0.1825  
##  Residual                   0.66326  0.8144  
## Number of obs: 2441, groups:  
## beep_ID_new, 227; participant_ID, 176; program_ID, 9
## 
## Fixed effects:
##                                   Estimate Std. Error        df t value
## (Intercept)                        2.36879    0.28404 131.98123   8.340
## COMPOSIT                           0.03080    0.02604 181.13106   1.183
## V06.03.UsefulForSpecificGoal_sum  -0.03097    0.01466 138.25982  -2.113
## Community_Space_Content            0.17452    0.06918 173.30637   2.523
## overall_pre_competence_beliefs    -0.16137    0.07146 158.36144  -2.258
## basic_skills                       0.11597    0.06049 180.15636   1.917
## creating_product                   0.40950    0.07220 223.30311   5.672
## motivation_to_attend               0.22222    0.18557 177.11776   1.198
##                                  Pr(>|t|)    
## (Intercept)                      8.61e-14 ***
## COMPOSIT                           0.2385    
## V06.03.UsefulForSpecificGoal_sum   0.0364 *  
## Community_Space_Content            0.0125 *  
## overall_pre_competence_beliefs     0.0253 *  
## basic_skills                       0.0568 .  
## creating_product                 4.34e-08 ***
## motivation_to_attend               0.2327    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOS V06.03 Cm_S_C ovr___ bsc_sk crtng_
## COMPOSIT    -0.293                                          
## V06.03.UFSG  0.035 -0.203                                   
## Cmmnty_Sp_C  0.005 -0.114 -0.128                            
## ovrll_pr_c_ -0.695 -0.012  0.013  0.004                     
## basic_sklls  0.014 -0.190 -0.053 -0.131 -0.015              
## crtng_prdct  0.077 -0.415  0.115  0.176  0.000  0.269       
## mtvtn_t_ttn -0.472 -0.002 -0.015 -0.025 -0.140  0.018 -0.012

Examining interactions for challenge (without agency)

RQ2_challenge_product_value <- lmer(challenge ~ COMPOSIT + 
                              V06.03.UsefulForSpecificGoal_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              basic_skills + 
                              creating_product + 
                              motivation_to_attend + 
                              V06.03.UsefulForSpecificGoal_sum*creating_product +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ2_challenge_product_value)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ COMPOSIT + V06.03.UsefulForSpecificGoal_sum + Community_Space_Content +  
##     overall_pre_competence_beliefs + basic_skills + creating_product +  
##     motivation_to_attend + V06.03.UsefulForSpecificGoal_sum *  
##     creating_product + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6483.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8544 -0.6288 -0.0336  0.5571  3.3822 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.05026  0.2242  
##  participant_ID (Intercept) 0.46662  0.6831  
##  program_ID     (Intercept) 0.03936  0.1984  
##  Residual                   0.66338  0.8145  
## Number of obs: 2441, groups:  
## beep_ID_new, 227; participant_ID, 176; program_ID, 9
## 
## Fixed effects:
##                                                    Estimate Std. Error
## (Intercept)                                         2.36332    0.28597
## COMPOSIT                                            0.03336    0.02587
## V06.03.UsefulForSpecificGoal_sum                   -0.02359    0.01509
## Community_Space_Content                             0.15707    0.06916
## overall_pre_competence_beliefs                     -0.16009    0.07177
## basic_skills                                        0.11600    0.05999
## creating_product                                    0.44447    0.07426
## motivation_to_attend                                0.21648    0.18602
## V06.03.UsefulForSpecificGoal_sum:creating_product  -0.09788    0.05298
##                                                          df t value
## (Intercept)                                       131.82635   8.264
## COMPOSIT                                          179.38604   1.290
## V06.03.UsefulForSpecificGoal_sum                  131.34669  -1.563
## Community_Space_Content                           169.72172   2.271
## overall_pre_competence_beliefs                    161.95719  -2.231
## basic_skills                                      178.51587   1.934
## creating_product                                  217.70491   5.985
## motivation_to_attend                              177.81623   1.164
## V06.03.UsefulForSpecificGoal_sum:creating_product 241.67888  -1.847
##                                                   Pr(>|t|)    
## (Intercept)                                       1.31e-13 ***
## COMPOSIT                                            0.1989    
## V06.03.UsefulForSpecificGoal_sum                    0.1205    
## Community_Space_Content                             0.0244 *  
## overall_pre_competence_beliefs                      0.0271 *  
## basic_skills                                        0.0547 .  
## creating_product                                  8.81e-09 ***
## motivation_to_attend                                0.2461    
## V06.03.UsefulForSpecificGoal_sum:creating_product   0.0659 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##               (Intr) COMPOS V06.03.UsFSG_ Cm_S_C ovr___ bsc_sk crtng_
## COMPOSIT      -0.290                                                 
## V06.03.UsFSG_  0.033 -0.184                                          
## Cmmnty_Sp_C    0.003 -0.119 -0.156                                   
## ovrll_pr_c_   -0.694 -0.010  0.008         0.006                     
## basic_sklls    0.015 -0.190 -0.053        -0.129 -0.014              
## crtng_prdct    0.073 -0.390  0.178         0.137 -0.005  0.257       
## mtvtn_t_ttn   -0.470 -0.001 -0.012        -0.023 -0.139  0.017 -0.011
## V06.03.UFSG_:  0.000 -0.041 -0.272         0.124  0.015  0.006 -0.261
##               mtvt__
## COMPOSIT            
## V06.03.UsFSG_       
## Cmmnty_Sp_C         
## ovrll_pr_c_         
## basic_sklls         
## crtng_prdct         
## mtvtn_t_ttn         
## V06.03.UFSG_: -0.001

Model building looking at learning

RQ2_learning_all <- lmer(learning ~ COMPOSIT + 
                              agency + 
                              V06.03.UsefulForSpecificGoal_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              basic_skills + 
                              creating_product + 
                              motivation_to_attend +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ2_learning_all)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ COMPOSIT + agency + V06.03.UsefulForSpecificGoal_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     basic_skills + creating_product + motivation_to_attend +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6507.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0814 -0.5692  0.1197  0.5802  2.8384 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.008055 0.08975 
##  participant_ID (Intercept) 0.396414 0.62961 
##  program_ID     (Intercept) 0.000000 0.00000 
##  Residual                   0.709076 0.84207 
## Number of obs: 2440, groups:  
## beep_ID_new, 227; participant_ID, 176; program_ID, 9
## 
## Fixed effects:
##                                    Estimate Std. Error         df t value
## (Intercept)                        2.013705   0.242193 198.759258   8.314
## COMPOSIT                           0.057876   0.021107 167.314337   2.742
## agency                             0.013285   0.016279 167.377223   0.816
## V06.03.UsefulForSpecificGoal_sum  -0.003747   0.011083 109.748579  -0.338
## Community_Space_Content            0.087988   0.055240 158.785279   1.593
## overall_pre_competence_beliefs     0.057748   0.062684 178.009446   0.921
## basic_skills                       0.133851   0.047934 156.773150   2.792
## creating_product                  -0.004875   0.063013 215.646445  -0.077
## motivation_to_attend               0.322400   0.167287 183.157142   1.927
##                                  Pr(>|t|)    
## (Intercept)                      1.44e-14 ***
## COMPOSIT                          0.00677 ** 
## agency                            0.41560    
## V06.03.UsefulForSpecificGoal_sum  0.73594    
## Community_Space_Content           0.11319    
## overall_pre_competence_beliefs    0.35817    
## basic_skills                      0.00588 ** 
## creating_product                  0.93840    
## motivation_to_attend              0.05550 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOS agency V06.03 Cm_S_C ovr___ bsc_sk crtng_
## COMPOSIT    -0.244                                                 
## agency      -0.035 -0.241                                          
## V06.03.UFSG  0.033 -0.198  0.034                                   
## Cmmnty_Sp_C  0.019 -0.172  0.202 -0.121                            
## ovrll_pr_c_ -0.707 -0.026 -0.005  0.020 -0.006                     
## basic_sklls  0.001 -0.191  0.037 -0.060 -0.095 -0.013              
## crtng_prdct  0.084 -0.291 -0.354  0.097  0.105  0.001  0.224       
## mtvtn_t_ttn -0.495  0.000 -0.016 -0.027 -0.046 -0.144  0.033 -0.009

Model building looking at relevance

RQ2_relevance_all <- lmer(relevance ~ COMPOSIT + 
                              agency + 
                              V06.03.UsefulForSpecificGoal_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              basic_skills + 
                              creating_product + 
                              motivation_to_attend +
              (1|program_ID) + (1|participant_ID) + (1|beep_ID_new),
          data = df)

summary(RQ2_relevance_all)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ COMPOSIT + agency + V06.03.UsefulForSpecificGoal_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     basic_skills + creating_product + motivation_to_attend +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5305.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9528 -0.5372  0.0213  0.5683  4.1141 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.007623 0.08731 
##  participant_ID (Intercept) 0.483705 0.69549 
##  program_ID     (Intercept) 0.005162 0.07185 
##  Residual                   0.409592 0.63999 
## Number of obs: 2441, groups:  
## beep_ID_new, 227; participant_ID, 176; program_ID, 9
## 
## Fixed effects:
##                                   Estimate Std. Error        df t value
## (Intercept)                        2.00146    0.25825 107.26453   7.750
## COMPOSIT                           0.02659    0.01684 189.04059   1.579
## agency                            -0.01562    0.01289 194.58606  -1.211
## V06.03.UsefulForSpecificGoal_sum   0.01647    0.00886 129.55579   1.859
## Community_Space_Content            0.15384    0.04412 182.45907   3.487
## overall_pre_competence_beliefs     0.01597    0.06764 114.82646   0.236
## basic_skills                       0.02465    0.03798 183.04212   0.649
## creating_product                   0.20406    0.04985 243.35153   4.094
## motivation_to_attend               0.41995    0.17825 160.55630   2.356
##                                  Pr(>|t|)    
## (Intercept)                      5.55e-12 ***
## COMPOSIT                         0.116062    
## agency                           0.227258    
## V06.03.UsefulForSpecificGoal_sum 0.065339 .  
## Community_Space_Content          0.000612 ***
## overall_pre_competence_beliefs   0.813786    
## basic_skills                     0.517161    
## creating_product                 5.78e-05 ***
## motivation_to_attend             0.019686 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOS agency V06.03 Cm_S_C ovr___ bsc_sk crtng_
## COMPOSIT    -0.185                                                 
## agency      -0.027 -0.241                                          
## V06.03.UFSG  0.024 -0.200  0.036                                   
## Cmmnty_Sp_C  0.010 -0.170  0.201 -0.117                            
## ovrll_pr_c_ -0.727 -0.015 -0.002  0.013 -0.002                     
## basic_sklls  0.004 -0.191  0.036 -0.059 -0.104 -0.010              
## crtng_prdct  0.064 -0.295 -0.354  0.099  0.106  0.000  0.224       
## mtvtn_t_ttn -0.503  0.000 -0.012 -0.017 -0.031 -0.135  0.021 -0.007

March 13 Analysis

Checking Variance components of agency, class, and value on challenge, relevance, learning

RQ2_challenge_variance <- lmer(challenge ~ 
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              (1|program_ID) + 
                              (COMPOSIT + agency + V01.01.HighUtility_sum|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_variance)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: challenge ~ COMPOSIT + agency + V01.01.HighUtility_sum + (1 |  
##     program_ID) + (COMPOSIT + agency + V01.01.HighUtility_sum |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7398.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9702 -0.6003 -0.0220  0.5385  3.4017 
## 
## Random effects:
##  Groups         Name                   Variance  Std.Dev. Corr       
##  beep_ID_new    (Intercept)            0.0633582 0.25171             
##  participant_ID (Intercept)            0.7418361 0.86130             
##                 COMPOSIT               0.0049723 0.07051  -0.76      
##                 agency                 0.0082975 0.09109  -0.28  0.35
##                 V01.01.HighUtility_sum 0.0005789 0.02406   0.47 -0.14
##  program_ID     (Intercept)            0.0639964 0.25298             
##  Residual                              0.6323820 0.79522             
##       
##       
##       
##       
##       
##  -0.83
##       
##       
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)              1.925123   0.139353  27.885364  13.815 5.38e-14
## COMPOSIT                 0.082224   0.025857 179.616278   3.180  0.00174
## agency                   0.038414   0.019962 182.711614   1.924  0.05586
## V01.01.HighUtility_sum  -0.019803   0.008991 150.737414  -2.203  0.02915
##                           
## (Intercept)            ***
## COMPOSIT               ** 
## agency                 .  
## V01.01.HighUtility_sum *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOS agency
## COMPOSIT    -0.620              
## agency      -0.095 -0.299       
## V01.01.HgU_  0.047 -0.234  0.141
RQ2_relevance_variance <- lmer(relevance ~ 
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              (1|program_ID) + 
                              (COMPOSIT + agency + V01.01.HighUtility_sum|participant_ID) +  
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_variance)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: relevance ~ COMPOSIT + agency + V01.01.HighUtility_sum + (1 |  
##     program_ID) + (COMPOSIT + agency + V01.01.HighUtility_sum |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6111.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9564 -0.5084  0.0474  0.5605  3.2914 
## 
## Random effects:
##  Groups         Name                   Variance  Std.Dev. Corr       
##  beep_ID_new    (Intercept)            0.0084302 0.09182             
##  participant_ID (Intercept)            0.6048486 0.77772             
##                 COMPOSIT               0.0106961 0.10342  -0.46      
##                 agency                 0.0036364 0.06030   0.33 -0.66
##                 V01.01.HighUtility_sum 0.0007402 0.02721  -0.03 -0.14
##  program_ID     (Intercept)            0.0097882 0.09894             
##  Residual                              0.4009903 0.63324             
##       
##       
##       
##       
##       
##  -0.56
##       
##       
## Number of obs: 2792, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                         Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)            2.381e+00  8.541e-02 2.718e+01  27.880   <2e-16 ***
## COMPOSIT               4.357e-02  1.724e-02 1.159e+02   2.526   0.0129 *  
## agency                 5.149e-03  1.232e-02 1.216e+02   0.418   0.6769    
## V01.01.HighUtility_sum 1.296e-02  5.732e-03 8.387e+01   2.260   0.0264 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOS agency
## COMPOSIT    -0.640              
## agency       0.055 -0.424       
## V01.01.HgU_  0.010 -0.226  0.105
RQ2_learning_variance <- lmer(learning ~ 
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              (1|program_ID) + 
                              (COMPOSIT + agency + V01.01.HighUtility_sum|participant_ID) +  
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_variance)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: learning ~ COMPOSIT + agency + V01.01.HighUtility_sum + (1 |  
##     program_ID) + (COMPOSIT + agency + V01.01.HighUtility_sum |  
##     participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7427.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2262 -0.5588  0.1131  0.5910  2.7598 
## 
## Random effects:
##  Groups         Name                   Variance  Std.Dev. Corr       
##  beep_ID_new    (Intercept)            0.0119405 0.10927             
##  participant_ID (Intercept)            0.4694002 0.68513             
##                 COMPOSIT               0.0021906 0.04680  -0.47      
##                 agency                 0.0033244 0.05766   0.21 -0.55
##                 V01.01.HighUtility_sum 0.0009079 0.03013  -0.18  0.37
##  program_ID     (Intercept)            0.0037415 0.06117             
##  Residual                              0.6905731 0.83101             
##       
##       
##       
##       
##       
##  -0.98
##       
##       
## Number of obs: 2791, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)              2.505139   0.088003  43.823449  28.467  < 2e-16
## COMPOSIT                 0.069383   0.019708  98.210474   3.521 0.000655
## agency                   0.006224   0.015158 152.262621   0.411 0.681932
## V01.01.HighUtility_sum  -0.001491   0.007071  89.501399  -0.211 0.833469
##                           
## (Intercept)            ***
## COMPOSIT               ***
## agency                    
## V01.01.HighUtility_sum    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) COMPOS agency
## COMPOSIT    -0.725              
## agency      -0.005 -0.379       
## V01.01.HgU_ -0.009 -0.210  0.098

Full models below, no moderators

RQ2_challenge_full <- lmer(challenge ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_full)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6640.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8650 -0.6428 -0.0526  0.5635  3.3815 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06037  0.2457  
##  participant_ID (Intercept) 0.45936  0.6778  
##  program_ID     (Intercept) 0.04392  0.2096  
##  Residual                   0.66099  0.8130  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                      2.368904   0.293140 138.015695   8.081
## gender_female                   -0.228032   0.113935 168.755303  -2.001
## COMPOSIT                         0.071639   0.026009 196.731171   2.754
## agency                           0.045995   0.019447 208.515260   2.365
## V01.01.HighUtility_sum          -0.028798   0.009112 160.537555  -3.160
## Community_Space_Content          0.196679   0.073106 190.679289   2.690
## overall_pre_competence_beliefs  -0.148285   0.071825 162.518285  -2.065
## motivation_to_attend             0.168243   0.187253 177.252256   0.898
##                                Pr(>|t|)    
## (Intercept)                    2.89e-13 ***
## gender_female                   0.04695 *  
## COMPOSIT                        0.00643 ** 
## agency                          0.01894 *  
## V01.01.HighUtility_sum          0.00188 ** 
## Community_Space_Content         0.00777 ** 
## overall_pre_competence_beliefs  0.04056 *  
## motivation_to_attend            0.37015    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___
## gender_feml -0.223                                          
## COMPOSIT    -0.259  0.002                                   
## agency      -0.022  0.000 -0.373                            
## V01.01.HgU_  0.007  0.002 -0.191  0.151                     
## Cmmnty_Sp_C -0.011  0.000 -0.130  0.218 -0.312              
## ovrll_pr_c_ -0.653 -0.081 -0.015  0.004  0.015 -0.002       
## mtvtn_t_ttn -0.479  0.145  0.003 -0.016 -0.014 -0.017 -0.153
RQ2_relevance_full <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_full)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5441.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9830 -0.5461  0.0375  0.5849  3.7036 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01037  0.1018  
##  participant_ID (Intercept) 0.47080  0.6862  
##  program_ID     (Intercept) 0.01422  0.1193  
##  Residual                   0.41183  0.6417  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                      2.059236   0.269647 125.048284   7.637
## gender_female                   -0.215550   0.111126 169.333988  -1.940
## COMPOSIT                         0.039353   0.016403 194.118332   2.399
## agency                           0.002512   0.012361 211.534281   0.203
## V01.01.HighUtility_sum           0.011171   0.005591 150.740781   1.998
## Community_Space_Content          0.094878   0.046004 193.866820   2.062
## overall_pre_competence_beliefs   0.035509   0.068555 133.062118   0.518
## motivation_to_attend             0.375999   0.180341 167.572154   2.085
##                                Pr(>|t|)    
## (Intercept)                    5.01e-12 ***
## gender_female                    0.0541 .  
## COMPOSIT                         0.0174 *  
## agency                           0.8391    
## V01.01.HighUtility_sum           0.0475 *  
## Community_Space_Content          0.0405 *  
## overall_pre_competence_beliefs   0.6053    
## motivation_to_attend             0.0386 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___
## gender_feml -0.244                                          
## COMPOSIT    -0.174  0.001                                   
## agency      -0.005 -0.003 -0.384                            
## V01.01.HgU_  0.005  0.002 -0.192  0.157                     
## Cmmnty_Sp_C  0.001  0.002 -0.137  0.223 -0.320              
## ovrll_pr_c_ -0.686 -0.068 -0.015  0.000  0.013 -0.005       
## mtvtn_t_ttn -0.509  0.142  0.002 -0.017 -0.013 -0.019 -0.145
RQ2_learning_full <- lmer(learning ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_full)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6658
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1326 -0.5728  0.1019  0.5893  2.8558 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.00815  0.09028 
##  participant_ID (Intercept) 0.39417  0.62783 
##  program_ID     (Intercept) 0.00274  0.05234 
##  Residual                   0.70995  0.84258 
## Number of obs: 2499, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                      2.054806   0.251000 106.675024   8.186
## gender_female                   -0.055606   0.104235 161.712110  -0.533
## COMPOSIT                         0.069506   0.019970 179.996768   3.480
## agency                           0.001904   0.015142 195.067132   0.126
## V01.01.HighUtility_sum          -0.006243   0.006770 134.632442  -0.922
## Community_Space_Content          0.116676   0.055902 177.833597   2.087
## overall_pre_competence_beliefs   0.064883   0.063350 100.896933   1.024
## motivation_to_attend             0.295305   0.169546 150.689740   1.742
##                                Pr(>|t|)    
## (Intercept)                    6.24e-13 ***
## gender_female                  0.594443    
## COMPOSIT                       0.000628 ***
## agency                         0.900052    
## V01.01.HighUtility_sum         0.358076    
## Community_Space_Content        0.038299 *  
## overall_pre_competence_beliefs 0.308192    
## motivation_to_attend           0.083594 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___
## gender_feml -0.246                                          
## COMPOSIT    -0.223  0.003                                   
## agency      -0.002 -0.006 -0.386                            
## V01.01.HgU_  0.009  0.003 -0.198  0.160                     
## Cmmnty_Sp_C  0.008  0.003 -0.138  0.223 -0.320              
## ovrll_pr_c_ -0.671 -0.066 -0.027 -0.003  0.017 -0.010       
## mtvtn_t_ttn -0.507  0.140  0.003 -0.024 -0.020 -0.032 -0.153

Moderation models for challenge and gender

RQ2_challenge_composite_gender <- lmer(challenge ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              COMPOSIT*gender_female + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_composite_gender)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + COMPOSIT * gender_female + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6642.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8449 -0.6367 -0.0565  0.5596  3.3953 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06143  0.2479  
##  participant_ID (Intercept) 0.46132  0.6792  
##  program_ID     (Intercept) 0.04235  0.2058  
##  Residual                   0.65985  0.8123  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     2.475e+00  3.003e-01  1.521e+02   8.243
## gender_female                  -4.367e-01  1.723e-01  7.437e+02  -2.534
## COMPOSIT                        4.259e-02  3.164e-02  3.986e+02   1.346
## agency                          4.569e-02  1.952e-02  2.086e+02   2.341
## V01.01.HighUtility_sum         -2.915e-02  9.153e-03  1.609e+02  -3.185
## Community_Space_Content         1.977e-01  7.338e-02  1.908e+02   2.694
## overall_pre_competence_beliefs -1.476e-01  7.188e-02  1.618e+02  -2.053
## motivation_to_attend            1.712e-01  1.875e-01  1.772e+02   0.913
## gender_female:COMPOSIT          5.488e-02  3.393e-02  2.409e+03   1.617
##                                Pr(>|t|)    
## (Intercept)                    7.26e-14 ***
## gender_female                   0.01148 *  
## COMPOSIT                        0.17913    
## agency                          0.02018 *  
## V01.01.HighUtility_sum          0.00174 ** 
## Community_Space_Content         0.00769 ** 
## overall_pre_competence_beliefs  0.04164 *  
## motivation_to_attend            0.36245    
## gender_female:COMPOSIT          0.10595    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.307                                                 
## COMPOSIT    -0.331  0.425                                          
## agency      -0.023  0.007 -0.301                                   
## V01.01.HgU_  0.002  0.018 -0.145  0.151                            
## Cmmnty_Sp_C -0.009 -0.003 -0.110  0.217 -0.312                     
## ovrll_pr_c_ -0.635 -0.064 -0.021  0.004  0.015 -0.002              
## mtvtn_t_ttn -0.467  0.093  0.000 -0.016 -0.015 -0.018 -0.153       
## g_:COMPOSIT  0.216 -0.749 -0.565 -0.010 -0.022  0.005  0.014  0.004
RQ2_challenge_agency_gender <- lmer(challenge ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              agency*gender_female + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_agency_gender)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + agency * gender_female + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6645.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8627 -0.6436 -0.0533  0.5617  3.3852 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06036  0.2457  
##  participant_ID (Intercept) 0.45938  0.6778  
##  program_ID     (Intercept) 0.04382  0.2093  
##  Residual                   0.66129  0.8132  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     2.372e+00  2.944e-01  1.406e+02   8.055
## gender_female                  -2.328e-01  1.241e-01  2.360e+02  -1.876
## COMPOSIT                        7.162e-02  2.601e-02  1.967e+02   2.753
## agency                          4.470e-02  2.360e-02  4.186e+02   1.894
## V01.01.HighUtility_sum         -2.882e-02  9.117e-03  1.608e+02  -3.161
## Community_Space_Content         1.969e-01  7.315e-02  1.909e+02   2.692
## overall_pre_competence_beliefs -1.484e-01  7.183e-02  1.624e+02  -2.066
## motivation_to_attend            1.683e-01  1.873e-01  1.772e+02   0.899
## gender_female:agency            2.469e-03  2.553e-02  2.374e+03   0.097
##                                Pr(>|t|)    
## (Intercept)                    3.07e-13 ***
## gender_female                   0.06189 .  
## COMPOSIT                        0.00645 ** 
## agency                          0.05894 .  
## V01.01.HighUtility_sum          0.00188 ** 
## Community_Space_Content         0.00774 ** 
## overall_pre_competence_beliefs  0.04041 *  
## motivation_to_attend            0.36998    
## gender_female:agency            0.92299    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.241                                                 
## COMPOSIT    -0.258  0.004                                          
## agency      -0.072  0.224 -0.304                                   
## V01.01.HgU_  0.004  0.014 -0.191  0.141                            
## Cmmnty_Sp_C -0.008 -0.012 -0.131  0.162 -0.312                     
## ovrll_pr_c_ -0.651 -0.071 -0.015  0.008  0.016 -0.002              
## mtvtn_t_ttn -0.477  0.133  0.003 -0.012 -0.014 -0.017 -0.153       
## gndr_fml:gn  0.095 -0.396 -0.006 -0.567 -0.029  0.031 -0.008 -0.002
RQ2_challenge_value_gender <- lmer(challenge ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              V01.01.HighUtility_sum*gender_female + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_value_gender)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + V01.01.HighUtility_sum * gender_female +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6647.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8662 -0.6425 -0.0533  0.5627  3.3905 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.0604   0.2458  
##  participant_ID (Intercept) 0.4592   0.6776  
##  program_ID     (Intercept) 0.0440   0.2098  
##  Residual                   0.6613   0.8132  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                        Estimate Std. Error         df
## (Intercept)                           2.367e+00  2.935e-01  1.388e+02
## gender_female                        -2.262e-01  1.156e-01  1.785e+02
## COMPOSIT                              7.171e-02  2.602e-02  1.968e+02
## agency                                4.599e-02  1.945e-02  2.084e+02
## V01.01.HighUtility_sum               -2.826e-02  1.079e-02  3.080e+02
## Community_Space_Content               1.964e-01  7.317e-02  1.912e+02
## overall_pre_competence_beliefs       -1.483e-01  7.182e-02  1.624e+02
## motivation_to_attend                  1.684e-01  1.873e-01  1.771e+02
## gender_female:V01.01.HighUtility_sum -1.058e-03  1.127e-02  2.360e+03
##                                      t value Pr(>|t|)    
## (Intercept)                            8.067 3.06e-13 ***
## gender_female                         -1.957  0.05192 .  
## COMPOSIT                               2.755  0.00641 ** 
## agency                                 2.364  0.01897 *  
## V01.01.HighUtility_sum                -2.619  0.00925 ** 
## Community_Space_Content                2.685  0.00790 ** 
## overall_pre_competence_beliefs        -2.064  0.04057 *  
## motivation_to_attend                   0.899  0.36963    
## gender_female:V01.01.HighUtility_sum  -0.094  0.92525    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.228                                                 
## COMPOSIT    -0.260  0.006                                          
## agency      -0.022  0.000 -0.373                                   
## V01.01.HgU_ -0.021  0.093 -0.147  0.128                            
## Cmmnty_Sp_C -0.009 -0.006 -0.131  0.217 -0.282                     
## ovrll_pr_c_ -0.652 -0.080 -0.015  0.004  0.011 -0.002              
## mtvtn_t_ttn -0.479  0.145  0.003 -0.016 -0.004 -0.018 -0.153       
## g_:V01.01.H  0.050 -0.169 -0.027  0.000 -0.535  0.035  0.003 -0.016

Moderation models for challenge and competence

RQ2_challenge_composite_competence <- lmer(challenge ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              COMPOSIT*overall_pre_competence_beliefs + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_composite_competence)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + COMPOSIT * overall_pre_competence_beliefs +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6645.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8623 -0.6423 -0.0531  0.5599  3.3823 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06046  0.2459  
##  participant_ID (Intercept) 0.45950  0.6779  
##  program_ID     (Intercept) 0.04390  0.2095  
##  Residual                   0.66123  0.8132  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                           Estimate Std. Error         df
## (Intercept)                              2.342e+00  3.864e-01  3.971e+02
## gender_female                           -2.282e-01  1.140e-01  1.688e+02
## COMPOSIT                                 7.917e-02  7.411e-02  1.852e+03
## agency                                   4.596e-02  1.946e-02  2.084e+02
## V01.01.HighUtility_sum                  -2.883e-02  9.122e-03  1.607e+02
## Community_Space_Content                  1.967e-01  7.314e-02  1.906e+02
## overall_pre_competence_beliefs          -1.394e-01  1.087e-01  7.341e+02
## motivation_to_attend                     1.679e-01  1.873e-01  1.773e+02
## COMPOSIT:overall_pre_competence_beliefs -2.380e-03  2.191e-02  2.370e+03
##                                         t value Pr(>|t|)    
## (Intercept)                               6.061 3.16e-09 ***
## gender_female                            -2.003  0.04682 *  
## COMPOSIT                                  1.068  0.28551    
## agency                                    2.362  0.01912 *  
## V01.01.HighUtility_sum                   -3.161  0.00188 ** 
## Community_Space_Content                   2.689  0.00779 ** 
## overall_pre_competence_beliefs           -1.283  0.20000    
## motivation_to_attend                      0.896  0.37129    
## COMPOSIT:overall_pre_competence_beliefs  -0.109  0.91351    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.158                                                   
## COMPOSIT    -0.679 -0.015                                            
## agency      -0.004  0.000 -0.148                                     
## V01.01.HgU_  0.027  0.003 -0.099    0.151                            
## Cmmnty_Sp_C -0.008  0.000 -0.046    0.217 -0.311                     
## ovrll_pr_c_ -0.816 -0.066  0.699   -0.011 -0.015 -0.001              
## mtvtn_t_ttn -0.352  0.145 -0.016   -0.016 -0.014 -0.017 -0.115       
## COMPOSIT:__  0.651  0.016 -0.936    0.019  0.034  0.000 -0.751  0.018
RQ2_challenge_agency_competence <- lmer(challenge ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              agency*overall_pre_competence_beliefs + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_agency_competence)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + agency * overall_pre_competence_beliefs +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6646.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8509 -0.6471 -0.0508  0.5686  3.3571 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06053  0.2460  
##  participant_ID (Intercept) 0.45947  0.6778  
##  program_ID     (Intercept) 0.04398  0.2097  
##  Residual                   0.66111  0.8131  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                         Estimate Std. Error         df
## (Intercept)                            2.319e+00  3.085e-01  1.668e+02
## gender_female                         -2.275e-01  1.140e-01  1.687e+02
## COMPOSIT                               7.146e-02  2.603e-02  1.967e+02
## agency                                 7.167e-02  5.321e-02  1.882e+03
## V01.01.HighUtility_sum                -2.876e-02  9.120e-03  1.606e+02
## Community_Space_Content                1.981e-01  7.321e-02  1.910e+02
## overall_pre_competence_beliefs        -1.327e-01  7.788e-02  2.226e+02
## motivation_to_attend                   1.695e-01  1.873e-01  1.772e+02
## agency:overall_pre_competence_beliefs -8.167e-03  1.575e-02  2.379e+03
##                                       t value Pr(>|t|)    
## (Intercept)                             7.519 3.23e-12 ***
## gender_female                          -1.996  0.04750 *  
## COMPOSIT                                2.745  0.00661 ** 
## agency                                  1.347  0.17815    
## V01.01.HighUtility_sum                 -3.154  0.00193 ** 
## Community_Space_Content                 2.706  0.00743 ** 
## overall_pre_competence_beliefs         -1.703  0.08990 .  
## motivation_to_attend                    0.905  0.36682    
## agency:overall_pre_competence_beliefs  -0.519  0.60415    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.215                                                 
## COMPOSIT    -0.242  0.002                                          
## agency      -0.297  0.008 -0.149                                   
## V01.01.HgU_  0.004  0.002 -0.191  0.063                            
## Cmmnty_Sp_C -0.022  0.001 -0.131  0.114 -0.311                     
## ovrll_pr_c_ -0.693 -0.071 -0.019  0.361  0.018  0.013              
## mtvtn_t_ttn -0.459  0.145  0.002  0.006 -0.014 -0.017 -0.136       
## agncy:vr___  0.310 -0.009  0.013 -0.931 -0.009 -0.037 -0.386 -0.013
RQ2_challenge_value_motivation <- lmer(challenge ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              V01.01.HighUtility_sum*overall_pre_competence_beliefs + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_value_motivation)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + V01.01.HighUtility_sum * overall_pre_competence_beliefs +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6645.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8183 -0.6410 -0.0520  0.5684  3.5657 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06008  0.2451  
##  participant_ID (Intercept) 0.45904  0.6775  
##  program_ID     (Intercept) 0.04397  0.2097  
##  Residual                   0.66065  0.8128  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                                         Estimate
## (Intercept)                                            2.313e+00
## gender_female                                         -2.289e-01
## COMPOSIT                                               7.033e-02
## agency                                                 4.682e-02
## V01.01.HighUtility_sum                                 8.022e-03
## Community_Space_Content                                1.994e-01
## overall_pre_competence_beliefs                        -1.273e-01
## motivation_to_attend                                   1.610e-01
## V01.01.HighUtility_sum:overall_pre_competence_beliefs -1.189e-02
##                                                       Std. Error
## (Intercept)                                            2.950e-01
## gender_female                                          1.139e-01
## COMPOSIT                                               2.599e-02
## agency                                                 1.943e-02
## V01.01.HighUtility_sum                                 2.395e-02
## Community_Space_Content                                7.303e-02
## overall_pre_competence_beliefs                         7.290e-02
## motivation_to_attend                                   1.872e-01
## V01.01.HighUtility_sum:overall_pre_competence_beliefs  7.156e-03
##                                                               df t value
## (Intercept)                                            1.413e+02   7.841
## gender_female                                          1.687e+02  -2.009
## COMPOSIT                                               1.963e+02   2.706
## agency                                                 2.081e+02   2.410
## V01.01.HighUtility_sum                                 1.872e+03   0.335
## Community_Space_Content                                1.903e+02   2.730
## overall_pre_competence_beliefs                         1.722e+02  -1.746
## motivation_to_attend                                   1.774e+02   0.860
## V01.01.HighUtility_sum:overall_pre_competence_beliefs  2.377e+03  -1.662
##                                                       Pr(>|t|)    
## (Intercept)                                           9.86e-13 ***
## gender_female                                          0.04609 *  
## COMPOSIT                                               0.00740 ** 
## agency                                                 0.01683 *  
## V01.01.HighUtility_sum                                 0.73770    
## Community_Space_Content                                0.00693 ** 
## overall_pre_competence_beliefs                         0.08251 .  
## motivation_to_attend                                   0.39089    
## V01.01.HighUtility_sum:overall_pre_competence_beliefs  0.09670 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01.HgU_ Cm_S_C ovr___ mtvt__
## gender_feml -0.221                                                      
## COMPOSIT    -0.253  0.002                                               
## agency      -0.025  0.000 -0.373                                        
## V01.01.HgU_ -0.103 -0.003 -0.101  0.081                                 
## Cmmnty_Sp_C -0.013  0.000 -0.131  0.218 -0.097                          
## ovrll_pr_c_ -0.659 -0.080 -0.020  0.008  0.166       0.002              
## mtvtn_t_ttn -0.473  0.145  0.003 -0.016 -0.027      -0.018 -0.155       
## V01.01.HU_:  0.114  0.004  0.031 -0.026 -0.925      -0.023 -0.173  0.023

Moderation models for challenge and motivation to attend

RQ2_challenge_composite_motivation <- lmer(challenge ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              COMPOSIT*motivation_to_attend + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_composite_motivation)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + COMPOSIT * motivation_to_attend +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6637.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8786 -0.6403 -0.0544  0.5635  3.4114 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06287  0.2507  
##  participant_ID (Intercept) 0.46132  0.6792  
##  program_ID     (Intercept) 0.04154  0.2038  
##  Residual                   0.65799  0.8112  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     1.893e+00  3.467e-01  2.626e+02   5.460
## gender_female                  -2.302e-01  1.141e-01  1.691e+02  -2.018
## COMPOSIT                        2.023e-01  5.713e-02  1.657e+03   3.541
## agency                          4.900e-02  1.965e-02  2.106e+02   2.494
## V01.01.HighUtility_sum         -2.791e-02  9.211e-03  1.622e+02  -3.031
## Community_Space_Content         2.008e-01  7.376e-02  1.919e+02   2.722
## overall_pre_competence_beliefs -1.521e-01  7.184e-02  1.616e+02  -2.117
## motivation_to_attend            7.146e-01  2.822e-01  7.578e+02   2.533
## COMPOSIT:motivation_to_attend  -1.478e-01  5.733e-02  2.439e+03  -2.578
##                                Pr(>|t|)    
## (Intercept)                     1.1e-07 ***
## gender_female                   0.04516 *  
## COMPOSIT                        0.00041 ***
## agency                          0.01339 *  
## V01.01.HighUtility_sum          0.00284 ** 
## Community_Space_Content         0.00708 ** 
## overall_pre_competence_beliefs  0.03576 *  
## motivation_to_attend            0.01152 *  
## COMPOSIT:motivation_to_attend   0.00999 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.184                                                   
## COMPOSIT    -0.576 -0.007                                            
## agency      -0.050 -0.001 -0.118                                     
## V01.01.HgU_ -0.015  0.002 -0.052    0.153                            
## Cmmnty_Sp_C -0.018  0.000 -0.045    0.218 -0.310                     
## ovrll_pr_c_ -0.545 -0.080 -0.019    0.003  0.015 -0.002              
## mtvtn_t_ttn -0.669  0.089  0.665    0.034  0.021  0.000 -0.111       
## COMPOSIT:__  0.535  0.009 -0.888   -0.059 -0.040 -0.017  0.013 -0.748
sjPlot::sjp.int(RQ2_challenge_composite_motivation, type = "eff", swap.pred = TRUE)
## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

RQ2_challenge_agency_motivation <- lmer(challenge ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              agency*motivation_to_attend + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_agency_motivation)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + agency * motivation_to_attend + (1 |  
##     program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6644
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8679 -0.6472 -0.0528  0.5626  3.3745 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06071  0.2464  
##  participant_ID (Intercept) 0.45957  0.6779  
##  program_ID     (Intercept) 0.04385  0.2094  
##  Residual                   0.66096  0.8130  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     2.315e+00  3.040e-01  1.588e+02   7.615
## gender_female                  -2.280e-01  1.140e-01  1.688e+02  -2.000
## COMPOSIT                        7.254e-02  2.608e-02  1.973e+02   2.781
## agency                          7.321e-02  4.488e-02  1.768e+03   1.631
## V01.01.HighUtility_sum         -2.890e-02  9.127e-03  1.606e+02  -3.167
## Community_Space_Content         1.950e-01  7.325e-02  1.911e+02   2.663
## overall_pre_competence_beliefs -1.475e-01  7.185e-02  1.625e+02  -2.053
## motivation_to_attend            2.232e-01  2.043e-01  2.518e+02   1.093
## agency:motivation_to_attend    -3.037e-02  4.512e-02  2.390e+03  -0.673
##                                Pr(>|t|)    
## (Intercept)                    2.22e-12 ***
## gender_female                   0.04706 *  
## COMPOSIT                        0.00594 ** 
## agency                          0.10298    
## V01.01.HighUtility_sum          0.00185 ** 
## Community_Space_Content         0.00841 ** 
## overall_pre_competence_beliefs  0.04166 *  
## motivation_to_attend            0.27554    
## agency:motivation_to_attend     0.50088    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.215                                                 
## COMPOSIT    -0.263  0.002                                          
## agency      -0.247  0.000 -0.115                                   
## V01.01.HgU_  0.011  0.002 -0.192  0.052                            
## Cmmnty_Sp_C -0.001  0.000 -0.132  0.063 -0.311                     
## ovrll_pr_c_ -0.634 -0.081 -0.014  0.017  0.015 -0.002              
## mtvtn_t_ttn -0.529  0.133  0.023  0.353 -0.019 -0.030 -0.133       
## agncy:mtv__  0.264  0.000 -0.052 -0.901  0.015  0.035 -0.017 -0.399
RQ2_challenge_value_motivation <- lmer(challenge ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              V01.01.HighUtility_sum*motivation_to_attend + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_value_motivation)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + V01.01.HighUtility_sum * motivation_to_attend +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6645.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8628 -0.6432 -0.0523  0.5654  3.3734 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06028  0.2455  
##  participant_ID (Intercept) 0.45895  0.6775  
##  program_ID     (Intercept) 0.04404  0.2099  
##  Residual                   0.66133  0.8132  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                               Estimate Std. Error
## (Intercept)                                  2.377e+00  2.941e-01
## gender_female                               -2.285e-01  1.139e-01
## COMPOSIT                                     7.152e-02  2.601e-02
## agency                                       4.601e-02  1.944e-02
## V01.01.HighUtility_sum                      -3.783e-02  2.847e-02
## Community_Space_Content                      1.970e-01  7.310e-02
## overall_pre_competence_beliefs              -1.479e-01  7.181e-02
## motivation_to_attend                         1.588e-01  1.892e-01
## V01.01.HighUtility_sum:motivation_to_attend  9.429e-03  2.816e-02
##                                                     df t value Pr(>|t|)
## (Intercept)                                  1.393e+02   8.083 2.74e-13
## gender_female                                1.687e+02  -2.006  0.04646
## COMPOSIT                                     1.967e+02   2.750  0.00651
## agency                                       2.084e+02   2.366  0.01889
## V01.01.HighUtility_sum                       2.330e+03  -1.329  0.18412
## Community_Space_Content                      1.907e+02   2.695  0.00767
## overall_pre_competence_beliefs               1.626e+02  -2.059  0.04107
## motivation_to_attend                         1.844e+02   0.839  0.40244
## V01.01.HighUtility_sum:motivation_to_attend  2.333e+03   0.335  0.73776
##                                                
## (Intercept)                                 ***
## gender_female                               *  
## COMPOSIT                                    ** 
## agency                                      *  
## V01.01.HighUtility_sum                         
## Community_Space_Content                     ** 
## overall_pre_competence_beliefs              *  
## motivation_to_attend                           
## V01.01.HighUtility_sum:motivation_to_attend    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01.HgU_ Cm_S_C ovr___ mtvt__
## gender_feml -0.223                                                      
## COMPOSIT    -0.259  0.002                                               
## agency      -0.022  0.000 -0.373                                        
## V01.01.HgU_ -0.075  0.012 -0.047  0.046                                 
## Cmmnty_Sp_C -0.010  0.000 -0.131  0.218 -0.113                          
## ovrll_pr_c_ -0.650 -0.081 -0.015  0.004 -0.008      -0.001              
## mtvtn_t_ttn -0.484  0.145  0.005 -0.016  0.134      -0.019 -0.153       
## V01.01.HU_:  0.081 -0.011 -0.015  0.002 -0.947       0.014  0.014 -0.146

Moderation models for relevance and gender

RQ2_relevance_composite_gender <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              COMPOSIT*gender_female + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_composite_gender)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + COMPOSIT * gender_female + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5446.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9968 -0.5384  0.0357  0.5856  3.7073 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01038  0.1019  
##  participant_ID (Intercept) 0.47118  0.6864  
##  program_ID     (Intercept) 0.01403  0.1185  
##  Residual                   0.41191  0.6418  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     2.094e+00  2.744e-01  1.345e+02   7.629
## gender_female                  -2.820e-01  1.500e-01  5.246e+02  -1.880
## COMPOSIT                        3.012e-02  2.155e-02  4.930e+02   1.398
## agency                          2.388e-03  1.236e-02  2.115e+02   0.193
## V01.01.HighUtility_sum          1.107e-02  5.594e-03  1.507e+02   1.980
## Community_Space_Content         9.508e-02  4.602e-02  1.937e+02   2.066
## overall_pre_competence_beliefs  3.585e-02  6.856e-02  1.328e+02   0.523
## motivation_to_attend            3.760e-01  1.804e-01  1.674e+02   2.084
## gender_female:COMPOSIT          1.744e-02  2.641e-02  2.379e+03   0.660
##                                Pr(>|t|)    
## (Intercept)                    3.88e-12 ***
## gender_female                    0.0607 .  
## COMPOSIT                         0.1628    
## agency                           0.8470    
## V01.01.HighUtility_sum           0.0496 *  
## Community_Space_Content          0.0401 *  
## overall_pre_competence_beliefs   0.6019    
## motivation_to_attend             0.0386 *  
## gender_female:COMPOSIT           0.5091    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.303                                                 
## COMPOSIT    -0.251  0.436                                          
## agency      -0.008  0.008 -0.283                                   
## V01.01.HgU_  0.000  0.019 -0.129  0.158                            
## Cmmnty_Sp_C  0.002 -0.003 -0.108  0.223 -0.320                     
## ovrll_pr_c_ -0.672 -0.058 -0.020  0.000  0.012 -0.005              
## mtvtn_t_ttn -0.500  0.105  0.002 -0.017 -0.013 -0.019 -0.145       
## g_:COMPOSIT  0.187 -0.672 -0.648 -0.015 -0.026  0.007  0.012  0.000
RQ2_relevance_agency_gender <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              agency*gender_female + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_agency_gender)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + agency * gender_female + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5447.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0031 -0.5368  0.0338  0.5863  3.7104 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01034  0.1017  
##  participant_ID (Intercept) 0.47118  0.6864  
##  program_ID     (Intercept) 0.01413  0.1189  
##  Residual                   0.41193  0.6418  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     2.075e+00  2.706e-01  1.269e+02   7.669
## gender_female                  -2.426e-01  1.176e-01  2.120e+02  -2.063
## COMPOSIT                        3.923e-02  1.640e-02  1.945e+02   2.392
## agency                         -4.825e-03  1.615e-02  5.210e+02  -0.299
## V01.01.HighUtility_sum          1.102e-02  5.593e-03  1.513e+02   1.971
## Community_Space_Content         9.604e-02  4.602e-02  1.945e+02   2.087
## overall_pre_competence_beliefs  3.519e-02  6.857e-02  1.329e+02   0.513
## motivation_to_attend            3.754e-01  1.804e-01  1.675e+02   2.081
## gender_female:agency            1.394e-02  1.976e-02  2.332e+03   0.705
##                                Pr(>|t|)    
## (Intercept)                    3.97e-12 ***
## gender_female                    0.0403 *  
## COMPOSIT                         0.0177 *  
## agency                           0.7653    
## V01.01.HighUtility_sum           0.0506 .  
## Community_Space_Content          0.0382 *  
## overall_pre_competence_beliefs   0.6086    
## motivation_to_attend             0.0389 *  
## gender_female:agency             0.4807    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.256                                                 
## COMPOSIT    -0.174  0.005                                          
## agency      -0.057  0.208 -0.287                                   
## V01.01.HgU_  0.002  0.014 -0.192  0.145                            
## Cmmnty_Sp_C  0.004 -0.010 -0.137  0.147 -0.321                     
## ovrll_pr_c_ -0.684 -0.063 -0.015  0.003  0.013 -0.005              
## mtvtn_t_ttn -0.507  0.135  0.002 -0.010 -0.013 -0.019 -0.145       
## gndr_fml:gn  0.081 -0.326 -0.011 -0.644 -0.038  0.037 -0.004 -0.004
RQ2_relevance_value_gender <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              V01.01.HighUtility_sum*gender_female + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_value_gender)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + V01.01.HighUtility_sum * gender_female +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5447.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9476 -0.5314  0.0452  0.5888  3.6470 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01043  0.1021  
##  participant_ID (Intercept) 0.47174  0.6868  
##  program_ID     (Intercept) 0.01397  0.1182  
##  Residual                   0.41162  0.6416  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                        Estimate Std. Error         df
## (Intercept)                           2.075e+00  2.700e-01  1.254e+02
## gender_female                        -2.347e-01  1.122e-01  1.754e+02
## COMPOSIT                              3.869e-02  1.642e-02  1.946e+02
## agency                                2.491e-03  1.237e-02  2.118e+02
## V01.01.HighUtility_sum                5.391e-03  7.194e-03  3.797e+02
## Community_Space_Content               9.772e-02  4.608e-02  1.954e+02
## overall_pre_competence_beliefs        3.537e-02  6.858e-02  1.325e+02
## motivation_to_attend                  3.728e-01  1.805e-01  1.674e+02
## gender_female:V01.01.HighUtility_sum  1.121e-02  8.774e-03  2.364e+03
##                                      t value Pr(>|t|)    
## (Intercept)                            7.685 3.83e-12 ***
## gender_female                         -2.092   0.0379 *  
## COMPOSIT                               2.356   0.0195 *  
## agency                                 0.201   0.8405    
## V01.01.HighUtility_sum                 0.749   0.4541    
## Community_Space_Content                2.121   0.0352 *  
## overall_pre_competence_beliefs         0.516   0.6069    
## motivation_to_attend                   2.066   0.0404 *  
## gender_female:V01.01.HighUtility_sum   1.277   0.2016    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.247                                                 
## COMPOSIT    -0.175  0.005                                          
## agency      -0.006 -0.003 -0.384                                   
## V01.01.HgU_ -0.023  0.086 -0.131  0.123                            
## Cmmnty_Sp_C  0.003 -0.005 -0.138  0.223 -0.278                     
## ovrll_pr_c_ -0.685 -0.067 -0.015  0.000  0.009 -0.005              
## mtvtn_t_ttn -0.509  0.142  0.002 -0.017 -0.002 -0.020 -0.145       
## g_:V01.01.H  0.043 -0.135 -0.030 -0.002 -0.629  0.047  0.002 -0.014

Moderation models for relevance and competence

RQ2_relevance_composite_competence <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              COMPOSIT*overall_pre_competence_beliefs + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_composite_competence)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + COMPOSIT * overall_pre_competence_beliefs +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5447.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9954 -0.5416  0.0353  0.5868  3.7039 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01037  0.1018  
##  participant_ID (Intercept) 0.47112  0.6864  
##  program_ID     (Intercept) 0.01380  0.1175  
##  Residual                   0.41192  0.6418  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                           Estimate Std. Error         df
## (Intercept)                              1.933e+00  3.313e-01  2.821e+02
## gender_female                           -2.165e-01  1.111e-01  1.693e+02
## COMPOSIT                                 7.447e-02  5.554e-02  1.706e+03
## agency                                   2.366e-03  1.236e-02  2.113e+02
## V01.01.HighUtility_sum                   1.103e-02  5.596e-03  1.509e+02
## Community_Space_Content                  9.499e-02  4.601e-02  1.938e+02
## overall_pre_competence_beliefs           7.643e-02  9.274e-02  4.282e+02
## motivation_to_attend                     3.743e-01  1.803e-01  1.672e+02
## COMPOSIT:overall_pre_competence_beliefs -1.111e-02  1.677e-02  2.109e+03
##                                         t value Pr(>|t|)    
## (Intercept)                               5.834 1.48e-08 ***
## gender_female                            -1.948   0.0531 .  
## COMPOSIT                                  1.341   0.1801    
## agency                                    0.191   0.8484    
## V01.01.HighUtility_sum                    1.971   0.0506 .  
## Community_Space_Content                   2.065   0.0403 *  
## overall_pre_competence_beliefs            0.824   0.4104    
## motivation_to_attend                      2.076   0.0394 *  
## COMPOSIT:overall_pre_competence_beliefs  -0.662   0.5078    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.190                                                   
## COMPOSIT    -0.598 -0.013                                            
## agency       0.006 -0.003 -0.130                                     
## V01.01.HgU_  0.027  0.003 -0.094    0.158                            
## Cmmnty_Sp_C -0.002  0.002 -0.036    0.223 -0.320                     
## ovrll_pr_c_ -0.804 -0.059  0.641   -0.012 -0.017  0.000              
## mtvtn_t_ttn -0.406  0.142 -0.012   -0.016 -0.012 -0.019 -0.116       
## COMPOSIT:__  0.582  0.014 -0.955    0.018  0.039 -0.005 -0.674  0.014
RQ2_relevance_agency_competence <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              agency*overall_pre_competence_beliefs + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_agency_competence)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + agency * overall_pre_competence_beliefs +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5446.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9438 -0.5449  0.0367  0.5803  3.7072 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.009969 0.09985 
##  participant_ID (Intercept) 0.471091 0.68636 
##  program_ID     (Intercept) 0.014227 0.11928 
##  Residual                   0.411923 0.64181 
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                         Estimate Std. Error         df
## (Intercept)                            2.165e+00  2.794e-01  1.425e+02
## gender_female                         -2.166e-01  1.112e-01  1.694e+02
## COMPOSIT                               3.970e-02  1.633e-02  1.937e+02
## agency                                -5.271e-02  3.996e-02  1.853e+03
## V01.01.HighUtility_sum                 1.112e-02  5.564e-03  1.503e+02
## Community_Space_Content                9.164e-02  4.585e-02  1.942e+02
## overall_pre_competence_beliefs         2.320e-03  7.227e-02  1.621e+02
## motivation_to_attend                   3.730e-01  1.804e-01  1.676e+02
## agency:overall_pre_competence_beliefs  1.758e-02  1.212e-02  2.262e+03
##                                       t value Pr(>|t|)    
## (Intercept)                             7.750 1.58e-12 ***
## gender_female                          -1.948   0.0530 .  
## COMPOSIT                                2.430   0.0160 *  
## agency                                 -1.319   0.1874    
## V01.01.HighUtility_sum                  1.998   0.0475 *  
## Community_Space_Content                 1.999   0.0470 *  
## overall_pre_competence_beliefs          0.032   0.9744    
## motivation_to_attend                    2.068   0.0402 *  
## agency:overall_pre_competence_beliefs   1.451   0.1469    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.237                                                 
## COMPOSIT    -0.164  0.001                                          
## agency      -0.250  0.005 -0.128                                   
## V01.01.HgU_  0.003  0.002 -0.193  0.057                            
## Cmmnty_Sp_C -0.011  0.002 -0.137  0.110 -0.319                     
## ovrll_pr_c_ -0.711 -0.062 -0.017  0.301  0.015  0.009              
## mtvtn_t_ttn -0.494  0.142  0.002  0.006 -0.013 -0.019 -0.134       
## agncy:vr___  0.261 -0.006  0.010 -0.951 -0.009 -0.043 -0.316 -0.011
RQ2_relevance_value_competence <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              V01.01.HighUtility_sum*overall_pre_competence_beliefs + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_value_competence)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + V01.01.HighUtility_sum * overall_pre_competence_beliefs +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5447.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9395 -0.5424  0.0329  0.5819  3.7332 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01033  0.1017  
##  participant_ID (Intercept) 0.47120  0.6864  
##  program_ID     (Intercept) 0.01395  0.1181  
##  Residual                   0.41155  0.6415  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                                         Estimate
## (Intercept)                                            2.018e+00
## gender_female                                         -2.159e-01
## COMPOSIT                                               3.836e-02
## agency                                                 3.207e-03
## V01.01.HighUtility_sum                                 3.901e-02
## Community_Space_Content                                9.718e-02
## overall_pre_competence_beliefs                         5.098e-02
## motivation_to_attend                                   3.703e-01
## V01.01.HighUtility_sum:overall_pre_competence_beliefs -8.989e-03
##                                                       Std. Error
## (Intercept)                                            2.708e-01
## gender_female                                          1.111e-01
## COMPOSIT                                               1.640e-02
## agency                                                 1.236e-02
## V01.01.HighUtility_sum                                 1.801e-02
## Community_Space_Content                                4.600e-02
## overall_pre_competence_beliefs                         6.923e-02
## motivation_to_attend                                   1.804e-01
## V01.01.HighUtility_sum:overall_pre_competence_beliefs  5.531e-03
##                                                               df t value
## (Intercept)                                            1.268e+02   7.452
## gender_female                                          1.693e+02  -1.943
## COMPOSIT                                               1.960e+02   2.338
## agency                                                 2.139e+02   0.259
## V01.01.HighUtility_sum                                 1.897e+03   2.165
## Community_Space_Content                                1.958e+02   2.113
## overall_pre_competence_beliefs                         1.374e+02   0.736
## motivation_to_attend                                   1.675e+02   2.053
## V01.01.HighUtility_sum:overall_pre_competence_beliefs  2.308e+03  -1.625
##                                                       Pr(>|t|)    
## (Intercept)                                           1.26e-11 ***
## gender_female                                           0.0537 .  
## COMPOSIT                                                0.0204 *  
## agency                                                  0.7955    
## V01.01.HighUtility_sum                                  0.0305 *  
## Community_Space_Content                                 0.0359 *  
## overall_pre_competence_beliefs                          0.4627    
## motivation_to_attend                                    0.0417 *  
## V01.01.HighUtility_sum:overall_pre_competence_beliefs   0.1042    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01.HgU_ Cm_S_C ovr___ mtvt__
## gender_feml -0.242                                                      
## COMPOSIT    -0.169  0.001                                               
## agency      -0.009 -0.003 -0.385                                        
## V01.01.HgU_ -0.089 -0.002 -0.095  0.082                                 
## Cmmnty_Sp_C -0.002  0.002 -0.138  0.224 -0.069                          
## ovrll_pr_c_ -0.690 -0.067 -0.020  0.005  0.137       0.000              
## mtvtn_t_ttn -0.505  0.141  0.003 -0.017 -0.022      -0.020 -0.146       
## V01.01.HU_:  0.096  0.003  0.037 -0.035 -0.951      -0.031 -0.140  0.019

Moderation models for relevance and motivation to attend

RQ2_relevance_composite_motivation <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              COMPOSIT*motivation_to_attend + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_composite_motivation)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + COMPOSIT * motivation_to_attend +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5443
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9960 -0.5403  0.0452  0.5856  3.7283 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01055  0.1027  
##  participant_ID (Intercept) 0.47179  0.6869  
##  program_ID     (Intercept) 0.01390  0.1179  
##  Residual                   0.41124  0.6413  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     1.803e+00  3.056e-01  2.027e+02   5.899
## gender_female                  -2.163e-01  1.112e-01  1.692e+02  -1.945
## COMPOSIT                        1.100e-01  4.268e-02  1.710e+03   2.576
## agency                          4.102e-03  1.241e-02  2.138e+02   0.331
## V01.01.HighUtility_sum          1.164e-02  5.607e-03  1.518e+02   2.076
## Community_Space_Content         9.685e-02  4.608e-02  1.947e+02   2.102
## overall_pre_competence_beliefs  3.392e-02  6.858e-02  1.324e+02   0.495
## motivation_to_attend            6.682e-01  2.431e-01  5.045e+02   2.748
## COMPOSIT:motivation_to_attend  -7.965e-02  4.440e-02  2.319e+03  -1.794
##                                Pr(>|t|)    
## (Intercept)                    1.51e-08 ***
## gender_female                    0.0535 .  
## COMPOSIT                         0.0101 *  
## agency                           0.7413    
## V01.01.HighUtility_sum           0.0396 *  
## Community_Space_Content          0.0369 *  
## overall_pre_competence_beliefs   0.6217    
## motivation_to_attend             0.0062 ** 
## COMPOSIT:motivation_to_attend    0.0729 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.213                                                   
## COMPOSIT    -0.493 -0.003                                            
## agency      -0.038 -0.003 -0.083                                     
## V01.01.HgU_ -0.018  0.002 -0.030    0.160                            
## Cmmnty_Sp_C -0.010  0.002 -0.032    0.224 -0.318                     
## ovrll_pr_c_ -0.601 -0.067 -0.015    0.000  0.012 -0.005              
## mtvtn_t_ttn -0.648  0.102  0.619    0.035  0.022  0.000 -0.114       
## COMPOSIT:__  0.470  0.004 -0.923   -0.070 -0.047 -0.022  0.010 -0.670
sjPlot::sjp.int(RQ2_relevance_composite_motivation, type = "eff", swap.pred = TRUE)
## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

RQ2_relevance_agency_motivation <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              agency*motivation_to_attend + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_agency_motivation)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + agency * motivation_to_attend + (1 |  
##     program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5445.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9898 -0.5434  0.0399  0.5869  3.7236 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01048  0.1024  
##  participant_ID (Intercept) 0.47112  0.6864  
##  program_ID     (Intercept) 0.01434  0.1198  
##  Residual                   0.41176  0.6417  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     2.004e+00  2.767e-01  1.381e+02   7.242
## gender_female                  -2.154e-01  1.112e-01  1.693e+02  -1.938
## COMPOSIT                        4.021e-02  1.645e-02  1.951e+02   2.444
## agency                          3.043e-02  3.364e-02  1.812e+03   0.904
## V01.01.HighUtility_sum          1.107e-02  5.599e-03  1.510e+02   1.978
## Community_Space_Content         9.316e-02  4.610e-02  1.948e+02   2.021
## overall_pre_competence_beliefs  3.655e-02  6.860e-02  1.333e+02   0.533
## motivation_to_attend            4.314e-01  1.908e-01  2.098e+02   2.261
## agency:motivation_to_attend    -3.106e-02  3.483e-02  2.298e+03  -0.892
##                                Pr(>|t|)    
## (Intercept)                    2.81e-11 ***
## gender_female                    0.0543 .  
## COMPOSIT                         0.0154 *  
## agency                           0.3659    
## V01.01.HighUtility_sum           0.0498 *  
## Community_Space_Content          0.0447 *  
## overall_pre_competence_beliefs   0.5950    
## motivation_to_attend             0.0248 *  
## agency:motivation_to_attend      0.3726    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.238                                                 
## COMPOSIT    -0.183  0.001                                          
## agency      -0.209  0.001 -0.085                                   
## V01.01.HgU_  0.009  0.002 -0.193  0.040                            
## Cmmnty_Sp_C  0.010  0.002 -0.139  0.041 -0.318                     
## ovrll_pr_c_ -0.672 -0.068 -0.014  0.014  0.012 -0.005              
## mtvtn_t_ttn -0.541  0.134  0.022  0.297 -0.018 -0.033 -0.132       
## agncy:mtv__  0.222 -0.002 -0.060 -0.930  0.019  0.045 -0.015 -0.326
RQ2_relevance_value_motivation <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              V01.01.HighUtility_sum*motivation_to_attend + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_value_motivation)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + V01.01.HighUtility_sum * motivation_to_attend +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5443.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9766 -0.5443  0.0371  0.5860  3.3731 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01018  0.1009  
##  participant_ID (Intercept) 0.47298  0.6877  
##  program_ID     (Intercept) 0.01472  0.1213  
##  Residual                   0.41130  0.6413  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                               Estimate Std. Error
## (Intercept)                                  2.021e+00  2.710e-01
## gender_female                               -2.133e-01  1.114e-01
## COMPOSIT                                     3.998e-02  1.637e-02
## agency                                       2.417e-03  1.233e-02
## V01.01.HighUtility_sum                       5.344e-02  2.191e-02
## Community_Space_Content                      9.305e-02  4.590e-02
## overall_pre_competence_beliefs               3.428e-02  6.876e-02
## motivation_to_attend                         4.184e-01  1.820e-01
## V01.01.HighUtility_sum:motivation_to_attend -4.404e-02  2.208e-02
##                                                     df t value Pr(>|t|)
## (Intercept)                                  1.261e+02   7.458 1.24e-11
## gender_female                                1.693e+02  -1.915   0.0572
## COMPOSIT                                     1.931e+02   2.443   0.0155
## agency                                       2.105e+02   0.196   0.8448
## V01.01.HighUtility_sum                       2.350e+03   2.439   0.0148
## Community_Space_Content                      1.931e+02   2.027   0.0440
## overall_pre_competence_beliefs               1.339e+02   0.499   0.6189
## motivation_to_attend                         1.719e+02   2.298   0.0227
## V01.01.HighUtility_sum:motivation_to_attend  2.364e+03  -1.995   0.0462
##                                                
## (Intercept)                                 ***
## gender_female                               .  
## COMPOSIT                                    *  
## agency                                         
## V01.01.HighUtility_sum                      *  
## Community_Space_Content                     *  
## overall_pre_competence_beliefs                 
## motivation_to_attend                        *  
## V01.01.HighUtility_sum:motivation_to_attend *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01.HgU_ Cm_S_C ovr___ mtvt__
## gender_feml -0.244                                                      
## COMPOSIT    -0.174  0.001                                               
## agency      -0.005 -0.003 -0.385                                        
## V01.01.HgU_ -0.064  0.011 -0.033  0.037                                 
## Cmmnty_Sp_C  0.002  0.001 -0.137  0.223 -0.100                          
## ovrll_pr_c_ -0.684 -0.068 -0.015  0.000 -0.009      -0.004              
## mtvtn_t_ttn -0.512  0.142  0.004 -0.017  0.110      -0.021 -0.145       
## V01.01.HU_:  0.067 -0.011 -0.017  0.003 -0.967       0.019  0.013 -0.117
sjPlot::sjp.int(RQ2_relevance_value_motivation, type = "eff", swap.pred = TRUE)
## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

Moderation models for learning and gender

RQ2_learning_composite_gender <- lmer(learning ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              COMPOSIT*gender_female + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_composite_gender)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + COMPOSIT * gender_female + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6662.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1569 -0.5726  0.1084  0.5837  2.8772 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.008359 0.09143 
##  participant_ID (Intercept) 0.394786 0.62832 
##  program_ID     (Intercept) 0.002574 0.05073 
##  Residual                   0.709805 0.84250 
## Number of obs: 2499, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     2.111e+00  2.597e-01  1.229e+02   8.131
## gender_female                  -1.645e-01  1.671e-01  8.654e+02  -0.984
## COMPOSIT                        5.442e-02  2.693e-02  4.935e+02   2.021
## agency                          1.652e-03  1.516e-02  1.957e+02   0.109
## V01.01.HighUtility_sum         -6.397e-03  6.783e-03  1.351e+02  -0.943
## Community_Space_Content         1.169e-01  5.598e-02  1.782e+02   2.089
## overall_pre_competence_beliefs  6.552e-02  6.336e-02  1.005e+02   1.034
## motivation_to_attend            2.948e-01  1.696e-01  1.503e+02   1.738
## gender_female:COMPOSIT          2.855e-02  3.416e-02  2.401e+03   0.836
##                                Pr(>|t|)    
## (Intercept)                    3.91e-13 ***
## gender_female                    0.3252    
## COMPOSIT                         0.0438 *  
## agency                           0.9134    
## V01.01.HighUtility_sum           0.3473    
## Community_Space_Content          0.0381 *  
## overall_pre_competence_beliefs   0.3036    
## motivation_to_attend             0.0842 .  
## gender_female:COMPOSIT           0.4035    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.349                                                 
## COMPOSIT    -0.332  0.525                                          
## agency      -0.006  0.010 -0.274                                   
## V01.01.HgU_  0.002  0.023 -0.129  0.161                            
## Cmmnty_Sp_C  0.010 -0.002 -0.106  0.223 -0.320                     
## ovrll_pr_c_ -0.644 -0.055 -0.033 -0.003  0.016 -0.010              
## mtvtn_t_ttn -0.491  0.089  0.004 -0.024 -0.020 -0.032 -0.153       
## g_:COMPOSIT  0.256 -0.781 -0.670 -0.018 -0.026  0.006  0.018 -0.002
RQ2_learning_agency_gender <- lmer(learning ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              agency*gender_female + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_agency_gender)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + agency * gender_female + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6663.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1316 -0.5714  0.1002  0.5871  2.8441 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.008121 0.09012 
##  participant_ID (Intercept) 0.394776 0.62831 
##  program_ID     (Intercept) 0.002710 0.05206 
##  Residual                   0.710139 0.84270 
## Number of obs: 2499, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     2.069e+00  2.528e-01  1.100e+02   8.187
## gender_female                  -8.049e-02  1.157e-01  2.468e+02  -0.696
## COMPOSIT                        6.939e-02  1.997e-02  1.802e+02   3.475
## agency                         -4.816e-03  2.030e-02  5.146e+02  -0.237
## V01.01.HighUtility_sum         -6.376e-03  6.774e-03  1.351e+02  -0.941
## Community_Space_Content         1.176e-01  5.593e-02  1.782e+02   2.103
## overall_pre_competence_beliefs  6.470e-02  6.338e-02  1.009e+02   1.021
## motivation_to_attend            2.945e-01  1.697e-01  1.508e+02   1.736
## gender_female:agency            1.275e-02  2.564e-02  2.323e+03   0.497
##                                Pr(>|t|)    
## (Intercept)                    5.25e-13 ***
## gender_female                  0.487373    
## COMPOSIT                       0.000641 ***
## agency                         0.812545    
## V01.01.HighUtility_sum         0.348276    
## Community_Space_Content        0.036842 *  
## overall_pre_competence_beliefs 0.309788    
## motivation_to_attend           0.084635 .  
## gender_female:agency           0.619028    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.270                                                 
## COMPOSIT    -0.223  0.008                                          
## agency      -0.077  0.284 -0.280                                   
## V01.01.HgU_  0.005  0.020 -0.197  0.146                            
## Cmmnty_Sp_C  0.012 -0.012 -0.138  0.143 -0.321                     
## ovrll_pr_c_ -0.667 -0.058 -0.027  0.000  0.017 -0.010              
## mtvtn_t_ttn -0.505  0.130  0.003 -0.012 -0.020 -0.032 -0.153       
## gndr_fml:gn  0.114 -0.433 -0.012 -0.666 -0.040  0.035 -0.003 -0.009
RQ2_learning_value_gender <- lmer(learning ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              V01.01.HighUtility_sum*gender_female + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_value_gender)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + V01.01.HighUtility_sum * gender_female +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6661
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1458 -0.5713  0.1023  0.5927  2.8890 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.007938 0.08910 
##  participant_ID (Intercept) 0.395305 0.62873 
##  program_ID     (Intercept) 0.002810 0.05301 
##  Residual                   0.709057 0.84206 
## Number of obs: 2499, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                        Estimate Std. Error         df
## (Intercept)                           2.085e+00  2.518e-01  1.081e+02
## gender_female                        -9.508e-02  1.062e-01  1.725e+02
## COMPOSIT                              6.831e-02  1.994e-02  1.793e+02
## agency                                1.829e-03  1.511e-02  1.943e+02
## V01.01.HighUtility_sum               -1.811e-02  8.952e-03  3.697e+02
## Community_Space_Content               1.225e-01  5.586e-02  1.785e+02
## overall_pre_competence_beliefs        6.506e-02  6.344e-02  1.013e+02
## motivation_to_attend                  2.887e-01  1.698e-01  1.511e+02
## gender_female:V01.01.HighUtility_sum  2.302e-02  1.138e-02  2.383e+03
##                                      t value Pr(>|t|)    
## (Intercept)                            8.283 3.53e-13 ***
## gender_female                         -0.896 0.371745    
## COMPOSIT                               3.426 0.000759 ***
## agency                                 0.121 0.903808    
## V01.01.HighUtility_sum                -2.024 0.043735 *  
## Community_Space_Content                2.193 0.029629 *  
## overall_pre_competence_beliefs         1.026 0.307496    
## motivation_to_attend                   1.701 0.091080 .  
## gender_female:V01.01.HighUtility_sum   2.022 0.043332 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.253                                                 
## COMPOSIT    -0.224  0.008                                          
## agency      -0.002 -0.006 -0.385                                   
## V01.01.HgU_ -0.032  0.123 -0.129  0.123                            
## Cmmnty_Sp_C  0.011 -0.006 -0.139  0.222 -0.275                     
## ovrll_pr_c_ -0.670 -0.065 -0.027 -0.003  0.012 -0.010              
## mtvtn_t_ttn -0.507  0.141  0.004 -0.024 -0.002 -0.033 -0.153       
## g_:V01.01.H  0.060 -0.184 -0.030 -0.003 -0.656  0.051  0.001 -0.019
sjPlot::sjp.int(RQ2_learning_value_gender, type = "eff")
## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

Moderation models for learning and competence

RQ2_learning_composite_competence <- lmer(learning ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              COMPOSIT*overall_pre_competence_beliefs + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_composite_competence)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + COMPOSIT * overall_pre_competence_beliefs +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6663.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1428 -0.5695  0.1058  0.6010  2.8330 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.008018 0.08954 
##  participant_ID (Intercept) 0.393877 0.62760 
##  program_ID     (Intercept) 0.003274 0.05722 
##  Residual                   0.710240 0.84276 
## Number of obs: 2499, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                           Estimate Std. Error         df
## (Intercept)                              2.206e+00  3.536e-01  4.047e+02
## gender_female                           -5.486e-02  1.043e-01  1.625e+02
## COMPOSIT                                 2.698e-02  7.122e-02  1.601e+03
## agency                                   2.093e-03  1.513e-02  1.946e+02
## V01.01.HighUtility_sum                  -6.056e-03  6.771e-03  1.346e+02
## Community_Space_Content                  1.164e-01  5.588e-02  1.779e+02
## overall_pre_competence_beliefs           1.571e-02  1.025e-01  6.292e+02
## motivation_to_attend                     2.978e-01  1.697e-01  1.520e+02
## COMPOSIT:overall_pre_competence_beliefs  1.346e-02  2.159e-02  1.988e+03
##                                         t value Pr(>|t|)    
## (Intercept)                               6.240 1.11e-09 ***
## gender_female                            -0.526   0.5996    
## COMPOSIT                                  0.379   0.7049    
## agency                                    0.138   0.8902    
## V01.01.HighUtility_sum                   -0.894   0.3727    
## Community_Space_Content                   2.083   0.0387 *  
## overall_pre_competence_beliefs            0.153   0.8783    
## motivation_to_attend                      1.754   0.0814 .  
## COMPOSIT:overall_pre_competence_beliefs   0.623   0.5331    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.161                                                   
## COMPOSIT    -0.719 -0.018                                            
## agency       0.011 -0.006 -0.125                                     
## V01.01.HgU_  0.037  0.004 -0.097    0.161                            
## Cmmnty_Sp_C -0.003  0.003 -0.027    0.223 -0.321                     
## ovrll_pr_c_ -0.848 -0.056  0.749   -0.016 -0.024  0.004              
## mtvtn_t_ttn -0.347  0.140 -0.017   -0.024 -0.019 -0.032 -0.109       
## COMPOSIT:__  0.703  0.019 -0.960    0.018  0.044 -0.012 -0.786  0.019
RQ2_learning_agency_competence <- lmer(learning ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              agency*overall_pre_competence_beliefs + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_agency_competence)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + agency * overall_pre_competence_beliefs +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6664.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1309 -0.5710  0.1014  0.5911  2.8462 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.008289 0.09104 
##  participant_ID (Intercept) 0.394006 0.62770 
##  program_ID     (Intercept) 0.002754 0.05248 
##  Residual                   0.710126 0.84269 
## Number of obs: 2499, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                         Estimate Std. Error         df
## (Intercept)                            2.027e+00  2.680e-01  1.341e+02
## gender_female                         -5.538e-02  1.042e-01  1.617e+02
## COMPOSIT                               6.945e-02  1.999e-02  1.795e+02
## agency                                 1.636e-02  5.147e-02  1.804e+03
## V01.01.HighUtility_sum                -6.230e-03  6.779e-03  1.344e+02
## Community_Space_Content                1.175e-01  5.602e-02  1.780e+02
## overall_pre_competence_beliefs         7.360e-02  6.986e-02  1.425e+02
## motivation_to_attend                   2.960e-01  1.695e-01  1.507e+02
## agency:overall_pre_competence_beliefs -4.615e-03  1.569e-02  2.225e+03
##                                       t value Pr(>|t|)    
## (Intercept)                             7.565 5.55e-12 ***
## gender_female                          -0.531 0.595939    
## COMPOSIT                                3.474 0.000644 ***
## agency                                  0.318 0.750656    
## V01.01.HighUtility_sum                 -0.919 0.359669    
## Community_Space_Content                 2.097 0.037422 *  
## overall_pre_competence_beliefs          1.054 0.293883    
## motivation_to_attend                    1.746 0.082833 .  
## agency:overall_pre_competence_beliefs  -0.294 0.768681    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.233                                                 
## COMPOSIT    -0.206  0.003                                          
## agency      -0.335  0.005 -0.123                                   
## V01.01.HgU_  0.006  0.003 -0.198  0.055                            
## Cmmnty_Sp_C -0.008  0.003 -0.138  0.109 -0.320                     
## ovrll_pr_c_ -0.718 -0.056 -0.029  0.402  0.019  0.011              
## mtvtn_t_ttn -0.480  0.140  0.003  0.006 -0.020 -0.031 -0.133       
## agncy:vr___  0.350 -0.008  0.010 -0.956 -0.008 -0.046 -0.422 -0.014
RQ2_learning_value_motivation <- lmer(learning ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              V01.01.HighUtility_sum*overall_pre_competence_beliefs + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_value_motivation)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + V01.01.HighUtility_sum * overall_pre_competence_beliefs +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6665.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1301 -0.5714  0.1004  0.5942  2.8468 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.008272 0.09095 
##  participant_ID (Intercept) 0.394026 0.62772 
##  program_ID     (Intercept) 0.002847 0.05336 
##  Residual                   0.710093 0.84267 
## Number of obs: 2499, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                                         Estimate
## (Intercept)                                            2.069e+00
## gender_female                                         -5.561e-02
## COMPOSIT                                               6.987e-02
## agency                                                 1.632e-03
## V01.01.HighUtility_sum                                -1.637e-02
## Community_Space_Content                                1.158e-01
## overall_pre_competence_beliefs                         5.939e-02
## motivation_to_attend                                   2.976e-01
## V01.01.HighUtility_sum:overall_pre_competence_beliefs  3.270e-03
##                                                       Std. Error
## (Intercept)                                            2.533e-01
## gender_female                                          1.042e-01
## COMPOSIT                                               2.000e-02
## agency                                                 1.517e-02
## V01.01.HighUtility_sum                                 2.322e-02
## Community_Space_Content                                5.600e-02
## overall_pre_competence_beliefs                         6.460e-02
## motivation_to_attend                                   1.696e-01
## V01.01.HighUtility_sum:overall_pre_competence_beliefs  7.174e-03
##                                                               df t value
## (Intercept)                                            1.103e+02   8.169
## gender_female                                          1.618e+02  -0.533
## COMPOSIT                                               1.802e+02   3.493
## agency                                                 1.957e+02   0.108
## V01.01.HighUtility_sum                                 1.848e+03  -0.705
## Community_Space_Content                                1.782e+02   2.069
## overall_pre_competence_beliefs                         1.087e+02   0.919
## motivation_to_attend                                   1.513e+02   1.754
## V01.01.HighUtility_sum:overall_pre_competence_beliefs  2.280e+03   0.456
##                                                       Pr(>|t|)    
## (Intercept)                                           5.66e-13 ***
## gender_female                                         0.594454    
## COMPOSIT                                              0.000601 ***
## agency                                                0.914451    
## V01.01.HighUtility_sum                                0.480915    
## Community_Space_Content                               0.040007 *  
## overall_pre_competence_beliefs                        0.359936    
## motivation_to_attend                                  0.081437 .  
## V01.01.HighUtility_sum:overall_pre_competence_beliefs 0.648540    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01.HgU_ Cm_S_C ovr___ mtvt__
## gender_feml -0.244                                                      
## COMPOSIT    -0.216  0.003                                               
## agency      -0.007 -0.006 -0.386                                        
## V01.01.HgU_ -0.124 -0.001 -0.094  0.083                                 
## Cmmnty_Sp_C  0.003  0.003 -0.139  0.224 -0.060                          
## ovrll_pr_c_ -0.678 -0.065 -0.034  0.005  0.191      -0.003              
## mtvtn_t_ttn -0.499  0.140  0.004 -0.025 -0.032      -0.033 -0.155       
## V01.01.HU_:  0.132  0.002  0.038 -0.038 -0.956      -0.036 -0.194  0.027

Moderation models for learning and motivation to attend

RQ2_learning_composite_motivation <- lmer(learning ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              COMPOSIT*motivation_to_attend + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_composite_motivation)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + COMPOSIT * motivation_to_attend +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6661.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1329 -0.5725  0.1021  0.5898  2.8493 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.008171 0.09040 
##  participant_ID (Intercept) 0.394173 0.62783 
##  program_ID     (Intercept) 0.002754 0.05248 
##  Residual                   0.710233 0.84275 
## Number of obs: 2499, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     2.069e+00  3.120e-01  2.431e+02   6.630
## gender_female                  -5.559e-02  1.042e-01  1.617e+02  -0.533
## COMPOSIT                        6.564e-02  5.460e-02  1.671e+03   1.202
## agency                          1.819e-03  1.519e-02  1.966e+02   0.120
## V01.01.HighUtility_sum         -6.269e-03  6.780e-03  1.350e+02  -0.925
## Community_Space_Content         1.166e-01  5.593e-02  1.779e+02   2.084
## overall_pre_competence_beliefs  6.498e-02  6.336e-02  1.010e+02   1.026
## motivation_to_attend            2.794e-01  2.699e-01  7.358e+02   1.035
## COMPOSIT:motivation_to_attend   4.353e-03  5.725e-02  2.289e+03   0.076
##                                Pr(>|t|)    
## (Intercept)                    2.15e-10 ***
## gender_female                    0.5946    
## COMPOSIT                         0.2294    
## agency                           0.9048    
## V01.01.HighUtility_sum           0.3568    
## Community_Space_Content          0.0385 *  
## overall_pre_competence_beliefs   0.3075    
## motivation_to_attend             0.3010    
## COMPOSIT:motivation_to_attend    0.9394    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.196                                                   
## COMPOSIT    -0.618 -0.003                                            
## agency      -0.045 -0.007 -0.073                                     
## V01.01.HgU_ -0.022  0.003 -0.026    0.163                            
## Cmmnty_Sp_C -0.006  0.003 -0.031    0.224 -0.319                     
## ovrll_pr_c_ -0.532 -0.066 -0.023   -0.004  0.016 -0.010              
## mtvtn_t_ttn -0.718  0.084  0.725    0.041  0.026 -0.004 -0.107       
## COMPOSIT:__  0.594  0.005 -0.931   -0.073 -0.050 -0.021  0.014 -0.778
sjPlot::sjp.int(RQ2_learning_composite_motivation, type = "eff", swap.pred = TRUE)
## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

RQ2_learning_agency_motivation <- lmer(learning ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              agency*motivation_to_attend + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_agency_motivation)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + agency * motivation_to_attend + (1 |  
##     program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6662.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1313 -0.5709  0.1031  0.5900  2.8774 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.008069 0.08983 
##  participant_ID (Intercept) 0.394290 0.62793 
##  program_ID     (Intercept) 0.002678 0.05175 
##  Residual                   0.710289 0.84279 
## Number of obs: 2499, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     2.079e+00  2.633e-01  1.283e+02   7.897
## gender_female                  -5.570e-02  1.042e-01  1.616e+02  -0.534
## COMPOSIT                        6.912e-02  2.000e-02  1.804e+02   3.456
## agency                         -1.038e-02  4.325e-02  1.761e+03  -0.240
## V01.01.HighUtility_sum         -6.198e-03  6.768e-03  1.343e+02  -0.916
## Community_Space_Content         1.174e-01  5.594e-02  1.782e+02   2.099
## overall_pre_competence_beliefs  6.441e-02  6.335e-02  1.007e+02   1.017
## motivation_to_attend            2.706e-01  1.880e-01  2.251e+02   1.439
## agency:motivation_to_attend     1.368e-02  4.509e-02  2.254e+03   0.303
##                                Pr(>|t|)    
## (Intercept)                    1.11e-12 ***
## gender_female                  0.593834    
## COMPOSIT                       0.000684 ***
## agency                         0.810322    
## V01.01.HighUtility_sum         0.361443    
## Community_Space_Content        0.037207 *  
## overall_pre_competence_beliefs 0.311752    
## motivation_to_attend           0.151447    
## agency:motivation_to_attend    0.761564    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.236                                                 
## COMPOSIT    -0.231  0.003                                          
## agency      -0.284  0.002 -0.077                                   
## V01.01.HgU_  0.015  0.003 -0.199  0.036                            
## Cmmnty_Sp_C  0.022  0.003 -0.140  0.033 -0.319                     
## ovrll_pr_c_ -0.645 -0.066 -0.026  0.016  0.017 -0.011              
## mtvtn_t_ttn -0.567  0.128  0.029  0.397 -0.027 -0.050 -0.130       
## agncy:mtv__  0.303 -0.004 -0.062 -0.937  0.021  0.048 -0.018 -0.432
RQ2_learning_value_motivation <- lmer(learning ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              V01.01.HighUtility_sum*motivation_to_attend + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_value_motivation)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + V01.01.HighUtility_sum * motivation_to_attend +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6662.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1370 -0.5719  0.1027  0.5926  2.9308 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.008142 0.09023 
##  participant_ID (Intercept) 0.395724 0.62907 
##  program_ID     (Intercept) 0.003094 0.05562 
##  Residual                   0.709732 0.84246 
## Number of obs: 2499, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                               Estimate Std. Error
## (Intercept)                                  2.029e+00  2.527e-01
## gender_female                               -5.424e-02  1.045e-01
## COMPOSIT                                     6.990e-02  1.997e-02
## agency                                       1.825e-03  1.514e-02
## V01.01.HighUtility_sum                       2.214e-02  2.835e-02
## Community_Space_Content                      1.155e-01  5.592e-02
## overall_pre_competence_beliefs               6.433e-02  6.355e-02
## motivation_to_attend                         3.234e-01  1.721e-01
## V01.01.HighUtility_sum:motivation_to_attend -2.957e-02  2.868e-02
##                                                     df t value Pr(>|t|)
## (Intercept)                                  1.081e+02   8.028  1.3e-12
## gender_female                                1.621e+02  -0.519 0.604373
## COMPOSIT                                     1.802e+02   3.500 0.000586
## agency                                       1.953e+02   0.121 0.904186
## V01.01.HighUtility_sum                       2.390e+03   0.781 0.434872
## Community_Space_Content                      1.784e+02   2.066 0.040292
## overall_pre_competence_beliefs               1.023e+02   1.012 0.313827
## motivation_to_attend                         1.570e+02   1.880 0.062028
## V01.01.HighUtility_sum:motivation_to_attend  2.421e+03  -1.031 0.302624
##                                                
## (Intercept)                                 ***
## gender_female                                  
## COMPOSIT                                    ***
## agency                                         
## V01.01.HighUtility_sum                         
## Community_Space_Content                     *  
## overall_pre_competence_beliefs                 
## motivation_to_attend                        .  
## V01.01.HighUtility_sum:motivation_to_attend    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01.HgU_ Cm_S_C ovr___ mtvt__
## gender_feml -0.246                                                      
## COMPOSIT    -0.223  0.003                                               
## agency      -0.001 -0.006 -0.386                                        
## V01.01.HgU_ -0.085  0.015 -0.032  0.033                                 
## Cmmnty_Sp_C  0.010  0.003 -0.138  0.223 -0.099                          
## ovrll_pr_c_ -0.667 -0.066 -0.027 -0.002 -0.014      -0.009              
## mtvtn_t_ttn -0.513  0.140  0.006 -0.025  0.148      -0.035 -0.154       
## V01.01.HU_:  0.090 -0.015 -0.016  0.005 -0.971       0.023  0.018 -0.157

March 28 Analysis

Checking Variance components of creating product and basic skills

RQ2_challenge_activity_variance <- lmer(challenge ~ 
                              creating_product + 
                              basic_skills + 
                              (1|program_ID) + 
                              (creating_product + basic_skills|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_activity_variance)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: challenge ~ creating_product + basic_skills + (1 | program_ID) +  
##     (creating_product + basic_skills | participant_ID) + (1 |  
##     beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7431.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1361 -0.5938 -0.0292  0.5283  3.4415 
## 
## Random effects:
##  Groups         Name             Variance Std.Dev. Corr       
##  beep_ID_new    (Intercept)      0.05428  0.2330              
##  participant_ID (Intercept)      0.53447  0.7311              
##                 creating_product 0.25938  0.5093   -0.37      
##                 basic_skills     0.07209  0.2685   -0.33  0.62
##  program_ID     (Intercept)      0.04197  0.2049              
##  Residual                        0.62384  0.7898              
## Number of obs: 2818, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                   Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)        2.16739    0.09166   9.51901  23.646 8.92e-10 ***
## creating_product   0.44064    0.07458 187.08296   5.908 1.61e-08 ***
## basic_skills       0.12650    0.06010 168.42057   2.105   0.0368 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) crtng_
## crtng_prdct -0.244       
## basic_sklls -0.224  0.286
RQ2_relevance_activity_variance <- lmer(relevance ~ 
                              creating_product + 
                              basic_skills +
                              (1|program_ID) + 
                              (creating_product + basic_skills|participant_ID) +  
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_activity_variance)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: relevance ~ creating_product + basic_skills + (1 | program_ID) +  
##     (creating_product + basic_skills | participant_ID) + (1 |  
##     beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6135.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9279 -0.4967  0.0385  0.5588  3.8526 
## 
## Random effects:
##  Groups         Name             Variance Std.Dev. Corr       
##  beep_ID_new    (Intercept)      0.010845 0.10414             
##  participant_ID (Intercept)      0.486848 0.69774             
##                 creating_product 0.129218 0.35947  -0.04      
##                 basic_skills     0.053486 0.23127  -0.18  0.45
##  program_ID     (Intercept)      0.003689 0.06074             
##  Residual                        0.395569 0.62894             
## Number of obs: 2818, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                   Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)        2.52765    0.05697   8.41623  44.366 2.82e-11 ***
## creating_product   0.18062    0.05040 137.97580   3.584 0.000469 ***
## basic_skills       0.07331    0.04072 112.83995   1.801 0.074443 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) crtng_
## crtng_prdct -0.157       
## basic_sklls -0.222  0.258
RQ2_learning_activity_variance <- lmer(learning ~ 
                              creating_product + 
                              basic_skills +
                              (1|program_ID) + 
                              (creating_product + basic_skills|participant_ID) +  
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_activity_variance)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: learning ~ creating_product + basic_skills + (1 | program_ID) +  
##     (creating_product + basic_skills | participant_ID) + (1 |  
##     beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 7490.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1828 -0.5598  0.1225  0.5712  2.8678 
## 
## Random effects:
##  Groups         Name             Variance Std.Dev. Corr       
##  beep_ID_new    (Intercept)      0.01269  0.1127              
##  participant_ID (Intercept)      0.41201  0.6419              
##                 creating_product 0.03387  0.1840    0.06      
##                 basic_skills     0.02007  0.1417   -0.34 -0.96
##  program_ID     (Intercept)      0.00000  0.0000              
##  Residual                        0.69790  0.8354              
## Number of obs: 2817, groups:  
## beep_ID_new, 235; participant_ID, 203; program_ID, 9
## 
## Fixed effects:
##                   Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)        2.71912    0.05157 207.73229  52.726  < 2e-16 ***
## creating_product   0.10874    0.05346 136.24624   2.034 0.043907 *  
## basic_skills       0.17688    0.04685 124.07328   3.775 0.000246 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) crtng_
## crtng_prdct -0.208       
## basic_sklls -0.295  0.166

Full models below, no moderators

RQ2_challenge_full_2 <- lmer(challenge ~ 
                              gender_female +
                              COMPOSIT + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              creating_product + 
                              basic_skills + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_full_2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: challenge ~ gender_female + COMPOSIT + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + creating_product + basic_skills +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6450.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8449 -0.6310 -0.0363  0.5660  3.3610 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.05125  0.2264  
##  participant_ID (Intercept) 0.46098  0.6790  
##  program_ID     (Intercept) 0.03128  0.1769  
##  Residual                   0.66603  0.8161  
## Number of obs: 2426, groups:  
## beep_ID_new, 227; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                      2.495388   0.289880 138.316007   8.608
## gender_female                   -0.220211   0.113950 168.772773  -1.933
## COMPOSIT                         0.033914   0.026211 179.836087   1.294
## V01.01.HighUtility_sum          -0.020720   0.009387 141.053204  -2.207
## Community_Space_Content          0.205876   0.072544 175.376797   2.838
## overall_pre_competence_beliefs  -0.152067   0.071460 154.626397  -2.128
## motivation_to_attend             0.175089   0.186685 174.614922   0.938
## creating_product                 0.380883   0.073173 223.488327   5.205
## basic_skills                     0.105381   0.060274 178.255515   1.748
##                                Pr(>|t|)    
## (Intercept)                    1.47e-14 ***
## gender_female                   0.05497 .  
## COMPOSIT                        0.19737    
## V01.01.HighUtility_sum          0.02891 *  
## Community_Space_Content         0.00508 ** 
## overall_pre_competence_beliefs  0.03492 *  
## motivation_to_attend            0.34960    
## creating_product               4.38e-07 ***
## basic_skills                    0.08212 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS V01.01 Cm_S_C ovr___ mtvt__ crtng_
## gender_feml -0.228                                                 
## COMPOSIT    -0.286  0.000                                          
## V01.01.HgU_  0.039  0.000 -0.240                                   
## Cmmnty_Sp_C -0.006  0.008 -0.053 -0.334                            
## ovrll_pr_c_ -0.657 -0.078 -0.013  0.013  0.000                     
## mtvtn_t_ttn -0.484  0.144  0.000 -0.015 -0.020 -0.153              
## crtng_prdct  0.075  0.011 -0.428  0.188  0.118 -0.001 -0.011       
## basic_sklls  0.015  0.001 -0.201  0.004 -0.132 -0.013  0.018  0.273
RQ2_relevance_full_2 <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend +
                              creating_product + 
                              basic_skills +
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_full_2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: relevance ~ gender_female + COMPOSIT + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + creating_product + basic_skills +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5267
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9202 -0.5451  0.0227  0.5605  3.9652 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.007092 0.08421 
##  participant_ID (Intercept) 0.477533 0.69104 
##  program_ID     (Intercept) 0.008936 0.09453 
##  Residual                   0.409733 0.64010 
## Number of obs: 2426, groups:  
## beep_ID_new, 227; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                      2.099516   0.268330 120.898339   7.824
## gender_female                   -0.202913   0.111442 167.458836  -1.821
## COMPOSIT                         0.019848   0.016417 181.077146   1.209
## V01.01.HighUtility_sum           0.014016   0.005686 135.247435   2.465
## Community_Space_Content          0.133357   0.045371 181.777507   2.939
## overall_pre_competence_beliefs   0.029642   0.068290 121.768925   0.434
## motivation_to_attend             0.373654   0.180244 161.749573   2.073
## creating_product                 0.176932   0.047185 252.837860   3.750
## basic_skills                     0.026077   0.037697 180.496272   0.692
##                                Pr(>|t|)    
## (Intercept)                    2.16e-12 ***
## gender_female                  0.070423 .  
## COMPOSIT                       0.228226    
## V01.01.HighUtility_sum         0.014954 *  
## Community_Space_Content        0.003717 ** 
## overall_pre_competence_beliefs 0.665011    
## motivation_to_attend           0.039754 *  
## creating_product               0.000219 ***
## basic_skills                   0.489971    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS V01.01 Cm_S_C ovr___ mtvt__ crtng_
## gender_feml -0.248                                                 
## COMPOSIT    -0.190 -0.001                                          
## V01.01.HgU_  0.027  0.000 -0.235                                   
## Cmmnty_Sp_C  0.003  0.010 -0.064 -0.342                            
## ovrll_pr_c_ -0.688 -0.064 -0.014  0.011 -0.003                     
## mtvtn_t_ttn -0.512  0.141 -0.002 -0.013 -0.021 -0.145              
## crtng_prdct  0.055  0.010 -0.431  0.188  0.133 -0.002 -0.010       
## basic_sklls  0.007  0.002 -0.198 -0.003 -0.114 -0.009  0.018  0.258
RQ2_learning_full_2 <- lmer(learning ~ 
                              gender_female +
                              COMPOSIT + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              creating_product + 
                              basic_skills +
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_full_2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: learning ~ gender_female + COMPOSIT + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + creating_product + basic_skills +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6471.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1042 -0.5618  0.1120  0.5919  2.8577 
## 
## Random effects:
##  Groups         Name        Variance  Std.Dev.
##  beep_ID_new    (Intercept) 0.0068193 0.08258 
##  participant_ID (Intercept) 0.3995373 0.63209 
##  program_ID     (Intercept) 0.0008293 0.02880 
##  Residual                   0.7117943 0.84368 
## Number of obs: 2425, groups:  
## beep_ID_new, 227; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                      2.036367   0.251923 101.692090   8.083
## gender_female                   -0.047599   0.104762 158.409650  -0.454
## COMPOSIT                         0.068350   0.020567 160.655313   3.323
## V01.01.HighUtility_sum          -0.008720   0.007109 116.415183  -1.227
## Community_Space_Content          0.097464   0.056731 158.512092   1.718
## overall_pre_competence_beliefs   0.058989   0.063436  92.212708   0.930
## motivation_to_attend             0.319933   0.169950 144.606189   1.883
## creating_product                -0.010031   0.059612 228.860625  -0.168
## basic_skills                     0.127778   0.047507 157.652893   2.690
##                                Pr(>|t|)    
## (Intercept)                    1.37e-12 ***
## gender_female                   0.65020    
## COMPOSIT                        0.00110 ** 
## V01.01.HighUtility_sum          0.22246    
## Community_Space_Content         0.08775 .  
## overall_pre_competence_beliefs  0.35485    
## motivation_to_attend            0.06178 .  
## creating_product                0.86652    
## basic_skills                    0.00792 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS V01.01 Cm_S_C ovr___ mtvt__ crtng_
## gender_feml -0.249                                                 
## COMPOSIT    -0.248 -0.002                                          
## V01.01.HgU_  0.037  0.001 -0.237                                   
## Cmmnty_Sp_C  0.010  0.015 -0.065 -0.344                            
## ovrll_pr_c_ -0.670 -0.063 -0.027  0.016 -0.007                     
## mtvtn_t_ttn -0.507  0.139 -0.003 -0.021 -0.034 -0.154              
## crtng_prdct  0.073  0.016 -0.428  0.188  0.132 -0.003 -0.014       
## basic_sklls  0.004  0.003 -0.198 -0.004 -0.104 -0.012  0.031  0.257

Moderation models for challenge and creating product

RQ2_challenge_composite_product <- lmer(challenge ~ 
                              gender_female +
                              COMPOSIT + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              creating_product + 
                              basic_skills +
                              COMPOSIT*creating_product + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_composite_product)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: challenge ~ gender_female + COMPOSIT + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + creating_product + basic_skills +  
##     COMPOSIT * creating_product + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6453.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8461 -0.6345 -0.0386  0.5647  3.3675 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.05100  0.2258  
##  participant_ID (Intercept) 0.46095  0.6789  
##  program_ID     (Intercept) 0.03089  0.1758  
##  Residual                   0.66623  0.8162  
## Number of obs: 2426, groups:  
## beep_ID_new, 227; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                      2.530082   0.292020 141.534792   8.664
## gender_female                   -0.219340   0.113936 168.767411  -1.925
## COMPOSIT                         0.022811   0.028739 167.861472   0.794
## V01.01.HighUtility_sum          -0.019871   0.009419 139.875960  -2.110
## Community_Space_Content          0.217173   0.073465 169.383208   2.956
## overall_pre_competence_beliefs  -0.151919   0.071435 154.295166  -2.127
## motivation_to_attend             0.175343   0.186642 174.501511   0.939
## creating_product                 0.143493   0.264248 251.143052   0.543
## basic_skills                     0.108944   0.060329 176.186229   1.806
## COMPOSIT:creating_product        0.055396   0.059245 222.368844   0.935
##                                Pr(>|t|)    
## (Intercept)                    9.39e-15 ***
## gender_female                   0.05590 .  
## COMPOSIT                        0.42847    
## V01.01.HighUtility_sum          0.03666 *  
## Community_Space_Content         0.00356 ** 
## overall_pre_competence_beliefs  0.03504 *  
## motivation_to_attend            0.34879    
## creating_product                0.58759    
## basic_skills                    0.07265 .  
## COMPOSIT:creating_product       0.35079    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT V01.01 Cm_S_C ovr___ mtvt__ crtng_
## gender_feml -0.225                                                   
## COMPOSIT    -0.310 -0.003                                            
## V01.01.HgU_  0.051  0.001 -0.257                                     
## Cmmnty_Sp_C  0.015  0.009 -0.115   -0.312                            
## ovrll_pr_c_ -0.651 -0.078 -0.015    0.013  0.001                     
## mtvtn_t_ttn -0.481  0.144  0.000   -0.015 -0.020 -0.153              
## crtng_prdct -0.100 -0.004  0.288   -0.040 -0.126 -0.006 -0.002       
## basic_sklls  0.023  0.002 -0.209    0.010 -0.119 -0.013  0.018  0.015
## COMPOSIT:c_  0.126  0.008 -0.412    0.095  0.165  0.006 -0.001 -0.961
##             bsc_sk
## gender_feml       
## COMPOSIT          
## V01.01.HgU_       
## Cmmnty_Sp_C       
## ovrll_pr_c_       
## mtvtn_t_ttn       
## crtng_prdct       
## basic_sklls       
## COMPOSIT:c_  0.063
RQ2_challenge_value_product <- lmer(challenge ~ 
                              gender_female +
                              COMPOSIT + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              creating_product + 
                              basic_skills +
                              V01.01.HighUtility_sum*creating_product + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_value_product)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: challenge ~ gender_female + COMPOSIT + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + creating_product + basic_skills +  
##     V01.01.HighUtility_sum * creating_product + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6452
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8383 -0.6292 -0.0359  0.5609  3.3592 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.04968  0.2229  
##  participant_ID (Intercept) 0.46090  0.6789  
##  program_ID     (Intercept) 0.03714  0.1927  
##  Residual                   0.66605  0.8161  
## Number of obs: 2426, groups:  
## beep_ID_new, 227; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                          Estimate Std. Error        df
## (Intercept)                               2.48553    0.29180 137.89741
## gender_female                            -0.21885    0.11416 168.72956
## COMPOSIT                                  0.03730    0.02610 178.35907
## V01.01.HighUtility_sum                   -0.01675    0.00959 137.07939
## Community_Space_Content                   0.18257    0.07316 171.53008
## overall_pre_competence_beliefs           -0.15076    0.07180 158.63171
## motivation_to_attend                      0.16969    0.18720 175.50973
## creating_product                          0.42012    0.07622 218.18666
## basic_skills                              0.10612    0.05986 177.02445
## V01.01.HighUtility_sum:creating_product  -0.08019    0.04558 230.09843
##                                         t value Pr(>|t|)    
## (Intercept)                               8.518 2.50e-14 ***
## gender_female                            -1.917   0.0569 .  
## COMPOSIT                                  1.429   0.1548    
## V01.01.HighUtility_sum                   -1.747   0.0829 .  
## Community_Space_Content                   2.495   0.0135 *  
## overall_pre_competence_beliefs           -2.100   0.0373 *  
## motivation_to_attend                      0.906   0.3659    
## creating_product                          5.512 9.98e-08 ***
## basic_skills                              1.773   0.0780 .  
## V01.01.HighUtility_sum:creating_product  -1.759   0.0798 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS V01.01.HgU_ Cm_S_C ovr___ mtvt__ crtng_
## gender_feml -0.226                                                      
## COMPOSIT    -0.284  0.001                                               
## V01.01.HgU_  0.035  0.003 -0.217                                        
## Cmmnty_Sp_C -0.005  0.006 -0.063 -0.360                                 
## ovrll_pr_c_ -0.656 -0.079 -0.013  0.008       0.004                     
## mtvtn_t_ttn -0.482  0.144  0.000 -0.013      -0.019 -0.153              
## crtng_prdct  0.069  0.014 -0.390  0.245       0.061 -0.007 -0.009       
## basic_sklls  0.016  0.001 -0.201  0.004      -0.130 -0.013  0.016  0.261
## V01.01.HU_:  0.009 -0.011 -0.062 -0.237       0.170  0.018 -0.004 -0.298
##             bsc_sk
## gender_feml       
## COMPOSIT          
## V01.01.HgU_       
## Cmmnty_Sp_C       
## ovrll_pr_c_       
## mtvtn_t_ttn       
## crtng_prdct       
## basic_sklls       
## V01.01.HU_: -0.001
sjPlot::sjp.int(RQ2_challenge_value_product, type = "eff", swap.pred = TRUE)
## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

Moderation models for challenge and basic skills

RQ2_challenge_composite_basic <- lmer(challenge ~ 
                              gender_female +
                              COMPOSIT + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              creating_product + 
                              basic_skills +
                              COMPOSIT*basic_skills + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_composite_basic)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: challenge ~ gender_female + COMPOSIT + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + creating_product + basic_skills +  
##     COMPOSIT * basic_skills + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6454.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8451 -0.6316 -0.0360  0.5662  3.3613 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.05186  0.2277  
##  participant_ID (Intercept) 0.46097  0.6790  
##  program_ID     (Intercept) 0.03134  0.1770  
##  Residual                   0.66601  0.8161  
## Number of obs: 2426, groups:  
## beep_ID_new, 227; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                      2.493170   0.293393 146.235294   8.498
## gender_female                   -0.220182   0.113954 168.771572  -1.932
## COMPOSIT                         0.034520   0.029051 178.313026   1.188
## V01.01.HighUtility_sum          -0.020742   0.009419 140.437976  -2.202
## Community_Space_Content          0.206185   0.072786 173.999399   2.833
## overall_pre_competence_beliefs  -0.152013   0.071466 154.636160  -2.127
## motivation_to_attend             0.175066   0.186705 174.714526   0.938
## creating_product                 0.380104   0.074934 222.794529   5.073
## basic_skills                     0.116079   0.220613 189.914131   0.526
## COMPOSIT:basic_skills           -0.002750   0.054046 182.161443  -0.051
##                                Pr(>|t|)    
## (Intercept)                    2.04e-14 ***
## gender_female                   0.05501 .  
## COMPOSIT                        0.23631    
## V01.01.HighUtility_sum          0.02929 *  
## Community_Space_Content         0.00516 ** 
## overall_pre_competence_beliefs  0.03500 *  
## motivation_to_attend            0.34971    
## creating_product               8.26e-07 ***
## basic_skills                    0.59939    
## COMPOSIT:basic_skills           0.95947    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT V01.01 Cm_S_C ovr___ mtvt__ crtng_
## gender_feml -0.225                                                   
## COMPOSIT    -0.321  0.000                                            
## V01.01.HgU_  0.043  0.000 -0.228                                     
## Cmmnty_Sp_C -0.011  0.008 -0.033   -0.335                            
## ovrll_pr_c_ -0.650 -0.078 -0.011    0.013  0.000                     
## mtvtn_t_ttn -0.480  0.144  0.004   -0.015 -0.020 -0.153              
## crtng_prdct  0.104  0.011 -0.466    0.189  0.108 -0.002 -0.013       
## basic_sklls -0.142  0.000  0.360   -0.025 -0.003 -0.002  0.015 -0.123
## COMPOSIT:b_  0.152  0.000 -0.426    0.027 -0.035 -0.002 -0.010  0.205
##             bsc_sk
## gender_feml       
## COMPOSIT          
## V01.01.HgU_       
## Cmmnty_Sp_C       
## ovrll_pr_c_       
## mtvtn_t_ttn       
## crtng_prdct       
## basic_sklls       
## COMPOSIT:b_ -0.962
RQ2_challenge_value_basic <- lmer(challenge ~ 
                              gender_female +
                              COMPOSIT + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              creating_product + 
                              basic_skills +
                              V01.01.HighUtility_sum*basic_skills + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_value_basic)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: challenge ~ gender_female + COMPOSIT + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + creating_product + basic_skills +  
##     V01.01.HighUtility_sum * basic_skills + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6456.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8424 -0.6329 -0.0338  0.5641  3.3650 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.05171  0.2274  
##  participant_ID (Intercept) 0.46074  0.6788  
##  program_ID     (Intercept) 0.03257  0.1805  
##  Residual                   0.66601  0.8161  
## Number of obs: 2426, groups:  
## beep_ID_new, 227; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                       Estimate Std. Error         df
## (Intercept)                           2.491918   0.290422 138.595123
## gender_female                        -0.220281   0.113977 168.754549
## COMPOSIT                              0.033781   0.026274 178.684970
## V01.01.HighUtility_sum               -0.018384   0.010800 141.191764
## Community_Space_Content               0.203858   0.072838 175.623431
## overall_pre_competence_beliefs       -0.151581   0.071532 155.677457
## motivation_to_attend                  0.174202   0.186784 174.931172
## creating_product                      0.382975   0.073492 221.733997
## basic_skills                          0.121760   0.070746 187.687225
## V01.01.HighUtility_sum:basic_skills  -0.007804   0.017568 138.876783
##                                     t value Pr(>|t|)    
## (Intercept)                           8.580 1.71e-14 ***
## gender_female                        -1.933   0.0549 .  
## COMPOSIT                              1.286   0.2002    
## V01.01.HighUtility_sum               -1.702   0.0909 .  
## Community_Space_Content               2.799   0.0057 ** 
## overall_pre_competence_beliefs       -2.119   0.0357 *  
## motivation_to_attend                  0.933   0.3523    
## creating_product                      5.211 4.29e-07 ***
## basic_skills                          1.721   0.0869 .  
## V01.01.HighUtility_sum:basic_skills  -0.444   0.6576    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS V01.01.HgU_ Cm_S_C ovr___ mtvt__ crtng_
## gender_feml -0.227                                                      
## COMPOSIT    -0.286  0.000                                               
## V01.01.HgU_  0.025  0.001 -0.218                                        
## Cmmnty_Sp_C -0.005  0.008 -0.051 -0.320                                 
## ovrll_pr_c_ -0.656 -0.078 -0.013  0.005       0.001                     
## mtvtn_t_ttn -0.484  0.144  0.000 -0.008      -0.020 -0.153              
## crtng_prdct  0.074  0.011 -0.428  0.197       0.113 -0.002 -0.011       
## basic_sklls  0.003  0.002 -0.181  0.259      -0.144 -0.018  0.020  0.269
## V01.01.HU_:  0.019 -0.002  0.019 -0.491       0.060  0.012 -0.009 -0.069
##             bsc_sk
## gender_feml       
## COMPOSIT          
## V01.01.HgU_       
## Cmmnty_Sp_C       
## ovrll_pr_c_       
## mtvtn_t_ttn       
## crtng_prdct       
## basic_sklls       
## V01.01.HU_: -0.521

Moderation models for relevance and creating product

RQ2_relevance_composite_product <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              creating_product + 
                              basic_skills +
                              COMPOSIT*creating_product + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_composite_product)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: relevance ~ gender_female + COMPOSIT + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + creating_product + basic_skills +  
##     COMPOSIT * creating_product + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5269.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9131 -0.5435  0.0140  0.5590  3.9623 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.007367 0.08583 
##  participant_ID (Intercept) 0.477372 0.69092 
##  program_ID     (Intercept) 0.009022 0.09498 
##  Residual                   0.409283 0.63975 
## Number of obs: 2426, groups:  
## beep_ID_new, 227; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                      2.066684   0.269245 122.170868   7.676
## gender_female                   -0.203851   0.111434 167.550634  -1.829
## COMPOSIT                         0.030471   0.017922 169.358400   1.700
## V01.01.HighUtility_sum           0.013156   0.005733 136.921645   2.295
## Community_Space_Content          0.123638   0.045987 178.502632   2.689
## overall_pre_competence_beliefs   0.029082   0.068296 122.083464   0.426
## motivation_to_attend             0.374054   0.180237 161.886938   2.075
## creating_product                 0.428812   0.173671 319.136464   2.469
## basic_skills                     0.022466   0.037878 182.257062   0.593
## COMPOSIT:creating_product       -0.057884   0.038406 270.022126  -1.507
##                                Pr(>|t|)    
## (Intercept)                     4.5e-12 ***
## gender_female                   0.06913 .  
## COMPOSIT                        0.09092 .  
## V01.01.HighUtility_sum          0.02327 *  
## Community_Space_Content         0.00786 ** 
## overall_pre_competence_beliefs  0.67099    
## motivation_to_attend            0.03954 *  
## creating_product                0.01407 *  
## basic_skills                    0.55384    
## COMPOSIT:creating_product       0.13293    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT V01.01 Cm_S_C ovr___ mtvt__ crtng_
## gender_feml -0.246                                                   
## COMPOSIT    -0.206 -0.003                                            
## V01.01.HgU_  0.034  0.001 -0.253                                     
## Cmmnty_Sp_C  0.015  0.010 -0.115   -0.322                            
## ovrll_pr_c_ -0.685 -0.064 -0.016    0.011 -0.002                     
## mtvtn_t_ttn -0.510  0.141 -0.001   -0.013 -0.021 -0.145              
## crtng_prdct -0.062 -0.003  0.272   -0.044 -0.103 -0.007 -0.001       
## basic_sklls  0.012  0.002 -0.206    0.003 -0.104 -0.008  0.018  0.011
## COMPOSIT:c_  0.080  0.005 -0.395    0.098  0.145  0.007 -0.001 -0.962
##             bsc_sk
## gender_feml       
## COMPOSIT          
## V01.01.HgU_       
## Cmmnty_Sp_C       
## ovrll_pr_c_       
## mtvtn_t_ttn       
## crtng_prdct       
## basic_sklls       
## COMPOSIT:c_  0.061
RQ2_relevance_value_product <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              creating_product + 
                              basic_skills +
                              V01.01.HighUtility_sum*creating_product + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_value_product)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: relevance ~ gender_female + COMPOSIT + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + creating_product + basic_skills +  
##     V01.01.HighUtility_sum * creating_product + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5270.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9440 -0.5433  0.0205  0.5608  3.9574 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.006939 0.08330 
##  participant_ID (Intercept) 0.477313 0.69088 
##  program_ID     (Intercept) 0.009873 0.09936 
##  Residual                   0.409784 0.64014 
## Number of obs: 2426, groups:  
## beep_ID_new, 227; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                           Estimate Std. Error         df
## (Intercept)                               2.095142   0.268892 121.469534
## gender_female                            -0.201888   0.111525 168.002830
## COMPOSIT                                  0.021127   0.016422 180.096170
## V01.01.HighUtility_sum                    0.015505   0.005823 130.983171
## Community_Space_Content                   0.125006   0.045880 177.522204
## overall_pre_competence_beliefs            0.029285   0.068443 123.888497
## motivation_to_attend                      0.374993   0.180452 162.786313
## creating_product                          0.193125   0.049257 246.243665
## basic_skills                              0.025961   0.037629 179.796375
## V01.01.HighUtility_sum:creating_product  -0.033723   0.029732 291.708512
##                                         t value Pr(>|t|)    
## (Intercept)                               7.792 2.51e-12 ***
## gender_female                            -1.810 0.072044 .  
## COMPOSIT                                  1.287 0.199918    
## V01.01.HighUtility_sum                    2.663 0.008728 ** 
## Community_Space_Content                   2.725 0.007081 ** 
## overall_pre_competence_beliefs            0.428 0.669484    
## motivation_to_attend                      2.078 0.039272 *  
## creating_product                          3.921 0.000114 ***
## basic_skills                              0.690 0.491139    
## V01.01.HighUtility_sum:creating_product  -1.134 0.257639    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS V01.01.HgU_ Cm_S_C ovr___ mtvt__ crtng_
## gender_feml -0.247                                                      
## COMPOSIT    -0.189 -0.001                                               
## V01.01.HgU_  0.025  0.003 -0.214                                        
## Cmmnty_Sp_C  0.003  0.007 -0.074 -0.365                                 
## ovrll_pr_c_ -0.687 -0.065 -0.015  0.006       0.001                     
## mtvtn_t_ttn -0.511  0.141 -0.001 -0.011      -0.021 -0.145              
## crtng_prdct  0.052  0.013 -0.393  0.240       0.079 -0.008 -0.008       
## basic_sklls  0.007  0.002 -0.198 -0.004      -0.112 -0.009  0.017  0.245
## V01.01.HU_:  0.002 -0.012 -0.063 -0.225       0.159  0.021 -0.005 -0.292
##             bsc_sk
## gender_feml       
## COMPOSIT          
## V01.01.HgU_       
## Cmmnty_Sp_C       
## ovrll_pr_c_       
## mtvtn_t_ttn       
## crtng_prdct       
## basic_sklls       
## V01.01.HU_:  0.003

Moderation models for relevance and basic skills

RQ2_relevance_composite_basic <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              creating_product + 
                              basic_skills +
                              COMPOSIT*basic_skills + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_composite_basic)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: relevance ~ gender_female + COMPOSIT + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + creating_product + basic_skills +  
##     COMPOSIT * basic_skills + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5270.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9194 -0.5449  0.0223  0.5603  3.9688 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.006841 0.08271 
##  participant_ID (Intercept) 0.477744 0.69119 
##  program_ID     (Intercept) 0.009206 0.09595 
##  Residual                   0.409832 0.64018 
## Number of obs: 2426, groups:  
## beep_ID_new, 227; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                      2.133283   0.270079 125.054909   7.899
## gender_female                   -0.202808   0.111493 167.601648  -1.819
## COMPOSIT                         0.010600   0.018098 180.362988   0.586
## V01.01.HighUtility_sum           0.014174   0.005668 132.808037   2.501
## Community_Space_Content          0.132117   0.045246 178.393076   2.920
## overall_pre_competence_beliefs   0.029780   0.068346 122.493575   0.436
## motivation_to_attend             0.371154   0.180360 162.305779   2.058
## creating_product                 0.188868   0.048104 250.219589   3.926
## basic_skills                    -0.134702   0.138490 197.766231  -0.973
## COMPOSIT:basic_skills            0.040717   0.033737 186.644015   1.207
##                                Pr(>|t|)    
## (Intercept)                    1.24e-12 ***
## gender_female                  0.070693 .  
## COMPOSIT                       0.558806    
## V01.01.HighUtility_sum         0.013609 *  
## Community_Space_Content        0.003952 ** 
## overall_pre_competence_beliefs 0.663806    
## motivation_to_attend           0.041203 *  
## creating_product               0.000112 ***
## basic_skills                   0.331917    
## COMPOSIT:basic_skills          0.229000    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT V01.01 Cm_S_C ovr___ mtvt__ crtng_
## gender_feml -0.246                                                   
## COMPOSIT    -0.216 -0.002                                            
## V01.01.HgU_  0.029  0.000 -0.221                                     
## Cmmnty_Sp_C  0.001  0.009 -0.050   -0.342                            
## ovrll_pr_c_ -0.684 -0.064 -0.012    0.010 -0.003                     
## mtvtn_t_ttn -0.510  0.141  0.004   -0.013 -0.021 -0.145              
## crtng_prdct  0.075  0.010 -0.469    0.188  0.126 -0.003 -0.013       
## basic_sklls -0.101 -0.001  0.362   -0.022 -0.013  0.000  0.016 -0.130
## COMPOSIT:b_  0.107  0.002 -0.427    0.022 -0.018 -0.002 -0.012  0.206
##             bsc_sk
## gender_feml       
## COMPOSIT          
## V01.01.HgU_       
## Cmmnty_Sp_C       
## ovrll_pr_c_       
## mtvtn_t_ttn       
## crtng_prdct       
## basic_sklls       
## COMPOSIT:b_ -0.962
RQ2_relevance_value_basic <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              creating_product + 
                              basic_skills +
                              V01.01.HighUtility_sum*basic_skills + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_value_basic)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: relevance ~ gender_female + COMPOSIT + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + creating_product + basic_skills +  
##     V01.01.HighUtility_sum * basic_skills + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5274.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9184 -0.5445  0.0221  0.5599  3.9638 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.007360 0.08579 
##  participant_ID (Intercept) 0.477544 0.69105 
##  program_ID     (Intercept) 0.008934 0.09452 
##  Residual                   0.409698 0.64008 
## Number of obs: 2426, groups:  
## beep_ID_new, 227; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                       Estimate Std. Error         df
## (Intercept)                          2.100e+00  2.684e-01  1.209e+02
## gender_female                       -2.029e-01  1.114e-01  1.674e+02
## COMPOSIT                             1.980e-02  1.647e-02  1.802e+02
## V01.01.HighUtility_sum               1.396e-02  6.560e-03  1.367e+02
## Community_Space_Content              1.337e-01  4.565e-02  1.832e+02
## overall_pre_competence_beliefs       2.969e-02  6.830e-02  1.218e+02
## motivation_to_attend                 3.736e-01  1.803e-01  1.619e+02
## creating_product                     1.769e-01  4.742e-02  2.507e+02
## basic_skills                         2.565e-02  4.460e-02  1.904e+02
## V01.01.HighUtility_sum:basic_skills  1.453e-04  1.064e-02  1.323e+02
##                                     t value Pr(>|t|)    
## (Intercept)                           7.823 2.17e-12 ***
## gender_female                        -1.821 0.070463 .  
## COMPOSIT                              1.202 0.230920    
## V01.01.HighUtility_sum                2.128 0.035123 *  
## Community_Space_Content               2.928 0.003839 ** 
## overall_pre_competence_beliefs        0.435 0.664489    
## motivation_to_attend                  2.073 0.039779 *  
## creating_product                      3.731 0.000236 ***
## basic_skills                          0.575 0.565903    
## V01.01.HighUtility_sum:basic_skills   0.014 0.989119    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS V01.01.HgU_ Cm_S_C ovr___ mtvt__ crtng_
## gender_feml -0.248                                                      
## COMPOSIT    -0.190 -0.001                                               
## V01.01.HgU_  0.016  0.002 -0.212                                        
## Cmmnty_Sp_C  0.004  0.009 -0.063 -0.334                                 
## ovrll_pr_c_ -0.687 -0.064 -0.014  0.004      -0.002                     
## mtvtn_t_ttn -0.512  0.141 -0.002 -0.007      -0.022 -0.145              
## crtng_prdct  0.054  0.010 -0.431  0.196       0.127 -0.003 -0.010       
## basic_sklls -0.002  0.003 -0.177  0.259      -0.137 -0.013  0.020  0.254
## V01.01.HU_:  0.014 -0.002  0.016 -0.493       0.076  0.010 -0.010 -0.067
##             bsc_sk
## gender_feml       
## COMPOSIT          
## V01.01.HgU_       
## Cmmnty_Sp_C       
## ovrll_pr_c_       
## mtvtn_t_ttn       
## crtng_prdct       
## basic_sklls       
## V01.01.HU_: -0.530

Moderation models for learning and creating product

RQ2_learning_composite_product <- lmer(learning ~ 
                              gender_female +
                              COMPOSIT + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              creating_product + 
                              basic_skills +
                              COMPOSIT*creating_product + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_composite_product)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: learning ~ gender_female + COMPOSIT + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + creating_product + basic_skills +  
##     COMPOSIT * creating_product + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6475.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1167 -0.5618  0.1131  0.5932  2.8534 
## 
## Random effects:
##  Groups         Name        Variance  Std.Dev.
##  beep_ID_new    (Intercept) 0.0071855 0.08477 
##  participant_ID (Intercept) 0.3996243 0.63216 
##  program_ID     (Intercept) 0.0006976 0.02641 
##  Residual                   0.7116647 0.84360 
## Number of obs: 2425, groups:  
## beep_ID_new, 227; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                      2.019985   0.253309 103.000887   7.974
## gender_female                   -0.047899   0.104753 158.251307  -0.457
## COMPOSIT                         0.073961   0.022471 147.139059   3.291
## V01.01.HighUtility_sum          -0.009172   0.007166 116.547055  -1.280
## Community_Space_Content          0.092252   0.057493 153.872518   1.605
## overall_pre_competence_beliefs   0.058267   0.063414  92.111605   0.919
## motivation_to_attend             0.320303   0.169916 144.412496   1.885
## creating_product                 0.125215   0.220859 292.208924   0.567
## basic_skills                     0.125898   0.047732 157.468067   2.638
## COMPOSIT:creating_product       -0.030993   0.048787 242.660085  -0.635
##                                Pr(>|t|)    
## (Intercept)                     2.2e-12 ***
## gender_female                   0.64811    
## COMPOSIT                        0.00125 ** 
## V01.01.HighUtility_sum          0.20314    
## Community_Space_Content         0.11064    
## overall_pre_competence_beliefs  0.36058    
## motivation_to_attend            0.06143 .  
## creating_product                0.57118    
## basic_skills                    0.00919 ** 
## COMPOSIT:creating_product       0.52585    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT V01.01 Cm_S_C ovr___ mtvt__ crtng_
## gender_feml -0.247                                                   
## COMPOSIT    -0.270 -0.004                                            
## V01.01.HgU_  0.048  0.002 -0.255                                     
## Cmmnty_Sp_C  0.026  0.016 -0.117   -0.324                            
## ovrll_pr_c_ -0.665 -0.062 -0.029    0.017 -0.005                     
## mtvtn_t_ttn -0.505  0.139 -0.001   -0.021 -0.034 -0.154              
## crtng_prdct -0.083 -0.003  0.276   -0.044 -0.105 -0.012  0.000       
## basic_sklls  0.010  0.003 -0.206    0.002 -0.094 -0.011  0.031  0.009
## COMPOSIT:c_  0.107  0.008 -0.397    0.098  0.145  0.012 -0.004 -0.963
##             bsc_sk
## gender_feml       
## COMPOSIT          
## V01.01.HgU_       
## Cmmnty_Sp_C       
## ovrll_pr_c_       
## mtvtn_t_ttn       
## crtng_prdct       
## basic_sklls       
## COMPOSIT:c_  0.063
RQ2_learning_value_product <- lmer(learning ~ 
                              gender_female +
                              COMPOSIT + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              creating_product + 
                              basic_skills +
                              V01.01.HighUtility_sum*creating_product + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_value_product)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: learning ~ gender_female + COMPOSIT + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + creating_product + basic_skills +  
##     V01.01.HighUtility_sum * creating_product + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6475.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1049 -0.5633  0.1138  0.5891  2.8615 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.006955 0.08340 
##  participant_ID (Intercept) 0.399815 0.63231 
##  program_ID     (Intercept) 0.001800 0.04243 
##  Residual                   0.711727 0.84364 
## Number of obs: 2425, groups:  
## beep_ID_new, 227; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                           Estimate Std. Error         df
## (Intercept)                               2.029850   0.253013 102.352212
## gender_female                            -0.047333   0.104991 159.368720
## COMPOSIT                                  0.069292   0.020624 159.937490
## V01.01.HighUtility_sum                   -0.007637   0.007299 112.916899
## Community_Space_Content                   0.092027   0.057465 154.991118
## overall_pre_competence_beliefs            0.059797   0.063746  94.774345
## motivation_to_attend                      0.321304   0.170427 145.965011
## creating_product                          0.002371   0.062567 220.974821
## basic_skills                              0.127520   0.047562 157.243253
## V01.01.HighUtility_sum:creating_product  -0.025553   0.037695 269.241667
##                                         t value Pr(>|t|)    
## (Intercept)                               8.023 1.79e-12 ***
## gender_female                            -0.451 0.652724    
## COMPOSIT                                  3.360 0.000976 ***
## V01.01.HighUtility_sum                   -1.046 0.297631    
## Community_Space_Content                   1.601 0.111318    
## overall_pre_competence_beliefs            0.938 0.350608    
## motivation_to_attend                      1.885 0.061378 .  
## creating_product                          0.038 0.969799    
## basic_skills                              2.681 0.008120 ** 
## V01.01.HighUtility_sum:creating_product  -0.678 0.498426    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS V01.01.HgU_ Cm_S_C ovr___ mtvt__ crtng_
## gender_feml -0.248                                                      
## COMPOSIT    -0.248 -0.001                                               
## V01.01.HgU_  0.036  0.004 -0.219                                        
## Cmmnty_Sp_C  0.009  0.012 -0.072 -0.364                                 
## ovrll_pr_c_ -0.670 -0.064 -0.027  0.009      -0.002                     
## mtvtn_t_ttn -0.506  0.139 -0.002 -0.019      -0.033 -0.154              
## crtng_prdct  0.069  0.020 -0.392  0.241       0.080 -0.012 -0.011       
## basic_sklls  0.004  0.002 -0.197 -0.005      -0.103 -0.012  0.030  0.244
## V01.01.HU_: -0.001 -0.016 -0.051 -0.220       0.149  0.029 -0.007 -0.300
##             bsc_sk
## gender_feml       
## COMPOSIT          
## V01.01.HgU_       
## Cmmnty_Sp_C       
## ovrll_pr_c_       
## mtvtn_t_ttn       
## crtng_prdct       
## basic_sklls       
## V01.01.HU_:  0.004

Moderation models for learning and basic skills

RQ2_learning_composite_basic <- lmer(learning ~ 
                              gender_female +
                              COMPOSIT + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              creating_product + 
                              basic_skills +
                              COMPOSIT*basic_skills + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_composite_basic)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: learning ~ gender_female + COMPOSIT + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + creating_product + basic_skills +  
##     COMPOSIT * basic_skills + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6474.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0742 -0.5747  0.1161  0.5871  2.8427 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.006714 0.08194 
##  participant_ID (Intercept) 0.400143 0.63257 
##  program_ID     (Intercept) 0.001059 0.03255 
##  Residual                   0.711637 0.84359 
## Number of obs: 2425, groups:  
## beep_ID_new, 227; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                      2.080696   0.255053 109.266600   8.158
## gender_female                   -0.047347   0.104872 158.955789  -0.451
## COMPOSIT                         0.056470   0.022745 162.294995   2.483
## V01.01.HighUtility_sum          -0.008568   0.007103 115.907010  -1.206
## Community_Space_Content          0.096198   0.056700 157.490175   1.697
## overall_pre_competence_beliefs   0.059276   0.063538  93.489925   0.933
## motivation_to_attend             0.315484   0.170195 146.285236   1.854
## creating_product                 0.004985   0.060840 229.290323   0.082
## basic_skills                    -0.079085   0.175253 176.272099  -0.451
## COMPOSIT:basic_skills            0.052314   0.042672 165.361890   1.226
##                                Pr(>|t|)    
## (Intercept)                    6.32e-13 ***
## gender_female                    0.6523    
## COMPOSIT                         0.0141 *  
## V01.01.HighUtility_sum           0.2302    
## Community_Space_Content          0.0917 .  
## overall_pre_competence_beliefs   0.3533    
## motivation_to_attend             0.0658 .  
## creating_product                 0.9348    
## basic_skills                     0.6524    
## COMPOSIT:basic_skills            0.2220    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT V01.01 Cm_S_C ovr___ mtvt__ crtng_
## gender_feml -0.245                                                   
## COMPOSIT    -0.285 -0.003                                            
## V01.01.HgU_  0.039  0.001 -0.221                                     
## Cmmnty_Sp_C  0.007  0.015 -0.051   -0.344                            
## ovrll_pr_c_ -0.664 -0.063 -0.023    0.016 -0.007                     
## mtvtn_t_ttn -0.505  0.139  0.007   -0.021 -0.033 -0.154              
## crtng_prdct  0.100  0.016 -0.466    0.187  0.125 -0.003 -0.018       
## basic_sklls -0.140 -0.003  0.364   -0.018 -0.010 -0.001  0.029 -0.127
## COMPOSIT:b_  0.147  0.004 -0.429    0.017 -0.019 -0.002 -0.022  0.203
##             bsc_sk
## gender_feml       
## COMPOSIT          
## V01.01.HgU_       
## Cmmnty_Sp_C       
## ovrll_pr_c_       
## mtvtn_t_ttn       
## crtng_prdct       
## basic_sklls       
## COMPOSIT:b_ -0.963
RQ2_learning_value_basic <- lmer(learning ~ 
                              gender_female +
                              COMPOSIT + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              creating_product + 
                              basic_skills +
                              V01.01.HighUtility_sum*basic_skills + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_value_basic)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: learning ~ gender_female + COMPOSIT + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + creating_product + basic_skills +  
##     V01.01.HighUtility_sum * basic_skills + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6478.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1037 -0.5632  0.1137  0.5894  2.8530 
## 
## Random effects:
##  Groups         Name        Variance  Std.Dev.
##  beep_ID_new    (Intercept) 0.0072675 0.08525 
##  participant_ID (Intercept) 0.3995978 0.63214 
##  program_ID     (Intercept) 0.0006693 0.02587 
##  Residual                   0.7116966 0.84362 
## Number of obs: 2425, groups:  
## beep_ID_new, 227; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                       Estimate Std. Error         df
## (Intercept)                           2.038990   0.251905 101.345185
## gender_female                        -0.047540   0.104744 158.135877
## COMPOSIT                              0.068372   0.020637 160.005217
## V01.01.HighUtility_sum               -0.009991   0.008225 116.848900
## Community_Space_Content               0.098993   0.057099 159.994790
## overall_pre_competence_beliefs        0.059024   0.063411  91.720803
## motivation_to_attend                  0.318876   0.169933 144.721937
## creating_product                     -0.011061   0.059912 226.930925
## basic_skills                          0.118616   0.056198 167.258747
## V01.01.HighUtility_sum:basic_skills   0.004117   0.013316 114.174722
##                                     t value Pr(>|t|)    
## (Intercept)                           8.094 1.32e-12 ***
## gender_female                        -0.454  0.65055    
## COMPOSIT                              3.313  0.00114 ** 
## V01.01.HighUtility_sum               -1.215  0.22691    
## Community_Space_Content               1.734  0.08489 .  
## overall_pre_competence_beliefs        0.931  0.35438    
## motivation_to_attend                  1.876  0.06260 .  
## creating_product                     -0.185  0.85369    
## basic_skills                          2.111  0.03629 *  
## V01.01.HighUtility_sum:basic_skills   0.309  0.75773    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS V01.01.HgU_ Cm_S_C ovr___ mtvt__ crtng_
## gender_feml -0.249                                                      
## COMPOSIT    -0.249 -0.002                                               
## V01.01.HgU_  0.022  0.004 -0.213                                        
## Cmmnty_Sp_C  0.012  0.014 -0.064 -0.337                                 
## ovrll_pr_c_ -0.669 -0.063 -0.027  0.005      -0.006                     
## mtvtn_t_ttn -0.507  0.139 -0.003 -0.009      -0.035 -0.154              
## crtng_prdct  0.071  0.016 -0.428  0.196       0.126 -0.004 -0.012       
## basic_sklls -0.008  0.005 -0.175  0.260      -0.131 -0.019  0.037  0.254
## V01.01.HU_:  0.022 -0.006  0.015 -0.497       0.080  0.017 -0.020 -0.067
##             bsc_sk
## gender_feml       
## COMPOSIT          
## V01.01.HgU_       
## Cmmnty_Sp_C       
## ovrll_pr_c_       
## mtvtn_t_ttn       
## crtng_prdct       
## basic_sklls       
## V01.01.HU_: -0.530

April 11 Analysis

Interaction between community space and composite

RQ2_challenge_composite_community <- lmer(challenge ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              COMPOSIT*Community_Space_Content + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_composite_community)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + COMPOSIT * Community_Space_Content +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6637.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8628 -0.6432 -0.0557  0.5590  3.3885 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06014  0.2452  
##  participant_ID (Intercept) 0.46197  0.6797  
##  program_ID     (Intercept) 0.03743  0.1935  
##  Residual                   0.65964  0.8122  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                    Estimate Std. Error         df t value
## (Intercept)                        2.290846   0.293521 143.182557   7.805
## gender_female                     -0.225800   0.114010 168.974712  -1.981
## COMPOSIT                           0.091754   0.027305 200.540433   3.360
## agency                             0.045439   0.019415 212.810355   2.340
## V01.01.HighUtility_sum            -0.026972   0.009126 163.231624  -2.955
## Community_Space_Content            0.813755   0.264769 209.815065   3.073
## overall_pre_competence_beliefs    -0.149170   0.071681 159.424832  -2.081
## motivation_to_attend               0.170434   0.187183 176.648641   0.911
## COMPOSIT:Community_Space_Content  -0.151772   0.062678 200.047102  -2.421
##                                  Pr(>|t|)    
## (Intercept)                      1.14e-12 ***
## gender_female                    0.049268 *  
## COMPOSIT                         0.000932 ***
## agency                           0.020188 *  
## V01.01.HighUtility_sum           0.003585 ** 
## Community_Space_Content          0.002397 ** 
## overall_pre_competence_beliefs   0.039029 *  
## motivation_to_attend             0.363789    
## COMPOSIT:Community_Space_Content 0.016351 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.224                                                   
## COMPOSIT    -0.281  0.004                                            
## agency      -0.019 -0.001 -0.358                                     
## V01.01.HgU_ -0.002  0.003 -0.156    0.149                            
## Cmmnty_Sp_C -0.115  0.006  0.265    0.047 -0.007                     
## ovrll_pr_c_ -0.653 -0.079 -0.011    0.004  0.017  0.015              
## mtvtn_t_ttn -0.477  0.144 -0.001   -0.016 -0.016 -0.015 -0.153       
## COMPOSIT:C_  0.117 -0.006 -0.311    0.014 -0.082 -0.961 -0.016  0.010
sjPlot::sjp.int(RQ2_challenge_composite_community, type = "eff", swap.pred = TRUE)
## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

RQ2_relevance_composite_community <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              COMPOSIT*Community_Space_Content + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_composite_community)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + COMPOSIT * Community_Space_Content +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5439.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9768 -0.5369  0.0296  0.5813  3.7064 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.009826 0.09913 
##  participant_ID (Intercept) 0.473806 0.68834 
##  program_ID     (Intercept) 0.011520 0.10733 
##  Residual                   0.411085 0.64116 
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                    Estimate Std. Error         df t value
## (Intercept)                        2.008238   0.269593 125.037828   7.449
## gender_female                     -0.213224   0.111198 168.514173  -1.918
## COMPOSIT                           0.053421   0.017134 196.454971   3.118
## agency                             0.002097   0.012281 213.482089   0.171
## V01.01.HighUtility_sum             0.012278   0.005563 151.118397   2.207
## Community_Space_Content            0.521324   0.167301 210.821012   3.116
## overall_pre_competence_beliefs     0.035480   0.068375 127.765543   0.519
## motivation_to_attend               0.370569   0.180236 165.031528   2.056
## COMPOSIT:Community_Space_Content  -0.104499   0.039372 200.929094  -2.654
##                                  Pr(>|t|)    
## (Intercept)                      1.35e-11 ***
## gender_female                     0.05686 .  
## COMPOSIT                          0.00210 ** 
## agency                            0.86461    
## V01.01.HighUtility_sum            0.02883 *  
## Community_Space_Content           0.00209 ** 
## overall_pre_competence_beliefs    0.60473    
## motivation_to_attend              0.04136 *  
## COMPOSIT:Community_Space_Content  0.00859 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.245                                                   
## COMPOSIT    -0.190  0.003                                            
## agency      -0.004 -0.003 -0.369                                     
## V01.01.HgU_ -0.001  0.003 -0.160    0.156                            
## Cmmnty_Sp_C -0.081  0.005  0.263    0.051 -0.017                     
## ovrll_pr_c_ -0.686 -0.066 -0.010    0.000  0.014  0.016              
## mtvtn_t_ttn -0.508  0.141 -0.001   -0.017 -0.014 -0.015 -0.145       
## COMPOSIT:C_  0.084 -0.005 -0.310    0.010 -0.073 -0.962 -0.018  0.010
sjPlot::sjp.int(RQ2_relevance_composite_community, type = "eff", swap.pred = TRUE)
## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

RQ2_learning_composite_community <- lmer(learning ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              COMPOSIT*Community_Space_Content + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_composite_community)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + COMPOSIT * Community_Space_Content +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6661.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1130 -0.5697  0.1049  0.5901  2.8494 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.007933 0.08907 
##  participant_ID (Intercept) 0.393518 0.62731 
##  program_ID     (Intercept) 0.003708 0.06090 
##  Residual                   0.710277 0.84278 
## Number of obs: 2499, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                    Estimate Std. Error         df t value
## (Intercept)                        2.069572   0.253375 113.262827   8.168
## gender_female                     -0.056978   0.104323 162.838836  -0.546
## COMPOSIT                           0.064880   0.021012 177.648725   3.088
## agency                             0.002052   0.015126 192.157608   0.136
## V01.01.HighUtility_sum            -0.006587   0.006777 131.930528  -0.972
## Community_Space_Content           -0.026702   0.205915 188.726326  -0.130
## overall_pre_competence_beliefs     0.065381   0.063564 104.997685   1.029
## motivation_to_attend               0.298100   0.169822 153.000142   1.755
## COMPOSIT:Community_Space_Content   0.035115   0.048441 180.289037   0.725
##                                  Pr(>|t|)    
## (Intercept)                      4.93e-13 ***
## gender_female                     0.58570    
## COMPOSIT                          0.00234 ** 
## agency                            0.89225    
## V01.01.HighUtility_sum            0.33288    
## Community_Space_Content           0.89696    
## overall_pre_competence_beliefs    0.30604    
## motivation_to_attend              0.08120 .  
## COMPOSIT:Community_Space_Content  0.46945    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.245                                                   
## COMPOSIT    -0.246  0.005                                            
## agency      -0.001 -0.006 -0.370                                     
## V01.01.HgU_  0.001  0.004 -0.165    0.159                            
## Cmmnty_Sp_C -0.108  0.007  0.267    0.050 -0.018                     
## ovrll_pr_c_ -0.670 -0.067 -0.015   -0.003  0.019  0.026              
## mtvtn_t_ttn -0.501  0.140 -0.002   -0.024 -0.021 -0.024 -0.153       
## COMPOSIT:C_  0.114 -0.006 -0.314    0.011 -0.071 -0.963 -0.030  0.016

Interaction between community space and agency

RQ2_challenge_agency_community <- lmer(challenge ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              agency*Community_Space_Content + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_agency_community)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + agency * Community_Space_Content +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6644
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8651 -0.6440 -0.0523  0.5622  3.3802 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06106  0.2471  
##  participant_ID (Intercept) 0.45937  0.6778  
##  program_ID     (Intercept) 0.04394  0.2096  
##  Residual                   0.66094  0.8130  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     2.369e+00  2.935e-01  1.391e+02   8.070
## gender_female                  -2.280e-01  1.139e-01  1.688e+02  -2.001
## COMPOSIT                        7.162e-02  2.609e-02  1.958e+02   2.745
## agency                          4.602e-02  2.068e-02  2.116e+02   2.225
## V01.01.HighUtility_sum         -2.882e-02  9.231e-03  1.588e+02  -3.122
## Community_Space_Content         1.972e-01  1.145e-01  1.586e+02   1.723
## overall_pre_competence_beliefs -1.483e-01  7.184e-02  1.627e+02  -2.064
## motivation_to_attend            1.682e-01  1.873e-01  1.772e+02   0.898
## agency:Community_Space_Content -2.312e-04  5.546e-02  1.660e+02  -0.004
##                                Pr(>|t|)    
## (Intercept)                    2.96e-13 ***
## gender_female                   0.04701 *  
## COMPOSIT                        0.00661 ** 
## agency                          0.02715 *  
## V01.01.HighUtility_sum          0.00213 ** 
## Community_Space_Content         0.08684 .  
## overall_pre_competence_beliefs  0.04058 *  
## motivation_to_attend            0.37026    
## agency:Community_Space_Content  0.99668    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.223                                                 
## COMPOSIT    -0.258  0.002                                          
## agency      -0.036  0.001 -0.359                                   
## V01.01.HgU_  0.014  0.002 -0.186  0.094                            
## Cmmnty_Sp_C -0.042  0.002 -0.102  0.387 -0.305                     
## ovrll_pr_c_ -0.653 -0.081 -0.016  0.009  0.013  0.010              
## mtvtn_t_ttn -0.478  0.145  0.003 -0.016 -0.014 -0.014 -0.153       
## agncy:C_S_C  0.046 -0.003  0.025 -0.333  0.140 -0.768 -0.014  0.004
RQ2_relevance_agency_community <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              agency*Community_Space_Content + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_agency_community)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + agency * Community_Space_Content +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5445.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0012 -0.5471  0.0392  0.5878  3.6944 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01040  0.1020  
##  participant_ID (Intercept) 0.47067  0.6861  
##  program_ID     (Intercept) 0.01519  0.1232  
##  Residual                   0.41171  0.6416  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                      2.067591   0.270339 126.466760   7.648
## gender_female                   -0.216088   0.111188 169.548125  -1.943
## COMPOSIT                         0.039823   0.016414 193.536403   2.426
## agency                          -0.002741   0.013151 217.751393  -0.208
## V01.01.HighUtility_sum           0.012054   0.005644 149.365621   2.136
## Community_Space_Content          0.033036   0.069962 148.827411   0.472
## overall_pre_competence_beliefs   0.035253   0.068676 135.189573   0.513
## motivation_to_attend             0.377352   0.180512 168.347548   2.090
## agency:Community_Space_Content   0.040123   0.034119 158.104998   1.176
##                                Pr(>|t|)    
## (Intercept)                     4.5e-12 ***
## gender_female                    0.0536 .  
## COMPOSIT                         0.0162 *  
## agency                           0.8351    
## V01.01.HighUtility_sum           0.0343 *  
## Community_Space_Content          0.6375    
## overall_pre_competence_beliefs   0.6086    
## motivation_to_attend             0.0381 *  
## agency:Community_Space_Content   0.2414    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.243                                                 
## COMPOSIT    -0.173  0.001                                          
## agency      -0.018 -0.002 -0.369                                   
## V01.01.HgU_  0.010  0.002 -0.188  0.101                            
## Cmmnty_Sp_C -0.027  0.003 -0.106  0.395 -0.309                     
## ovrll_pr_c_ -0.686 -0.068 -0.015  0.006  0.010  0.009              
## mtvtn_t_ttn -0.508  0.142  0.002 -0.017 -0.012 -0.017 -0.145       
## agncy:C_S_C  0.036 -0.002  0.022 -0.340  0.134 -0.753 -0.016  0.006
RQ2_learning_agency_community <- lmer(learning ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              agency*Community_Space_Content + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_agency_community)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + agency * Community_Space_Content +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6660
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1106 -0.5641  0.1091  0.5895  2.8622 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.007595 0.08715 
##  participant_ID (Intercept) 0.394146 0.62781 
##  program_ID     (Intercept) 0.004532 0.06732 
##  Residual                   0.709827 0.84251 
## Number of obs: 2499, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                      2.064845   0.252890 112.236967   8.165
## gender_female                   -0.057451   0.104510 163.638044  -0.550
## COMPOSIT                         0.070385   0.019904 179.147489   3.536
## agency                          -0.006795   0.016063 202.334348  -0.423
## V01.01.HighUtility_sum          -0.004781   0.006801 132.913234  -0.703
## Community_Space_Content          0.016773   0.084234 131.815496   0.199
## overall_pre_competence_beliefs   0.065177   0.063783 108.255339   1.022
## motivation_to_attend             0.299525   0.170203 154.711701   1.760
## agency:Community_Space_Content   0.065505   0.041206 141.194481   1.590
##                                Pr(>|t|)    
## (Intercept)                    5.26e-13 ***
## gender_female                  0.583260    
## COMPOSIT                       0.000517 ***
## agency                         0.672744    
## V01.01.HighUtility_sum         0.483276    
## Community_Space_Content        0.842473    
## overall_pre_competence_beliefs 0.309128    
## motivation_to_attend           0.080417 .  
## agency:Community_Space_Content 0.114138    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.244                                                 
## COMPOSIT    -0.221  0.003                                          
## agency      -0.020 -0.005 -0.369                                   
## V01.01.HgU_  0.016  0.003 -0.193  0.103                            
## Cmmnty_Sp_C -0.035  0.003 -0.105  0.396 -0.311                     
## ovrll_pr_c_ -0.672 -0.068 -0.026  0.008  0.013  0.017              
## mtvtn_t_ttn -0.505  0.140  0.003 -0.025 -0.018 -0.027 -0.153       
## agncy:C_S_C  0.052 -0.002  0.019 -0.343  0.134 -0.750 -0.030  0.010

Interaction between community space and value

RQ2_challenge_value_community <- lmer(challenge ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              V01.01.HighUtility_sum*Community_Space_Content + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_challenge_value_community)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## challenge ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + V01.01.HighUtility_sum * Community_Space_Content +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6645.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8673 -0.6422 -0.0527  0.5670  3.4119 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.06121  0.2474  
##  participant_ID (Intercept) 0.45997  0.6782  
##  program_ID     (Intercept) 0.04239  0.2059  
##  Residual                   0.66074  0.8129  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                                 Estimate Std. Error
## (Intercept)                                      2.36886    0.29288
## gender_female                                   -0.22818    0.11396
## COMPOSIT                                         0.07100    0.02610
## agency                                           0.04535    0.01953
## V01.01.HighUtility_sum                          -0.02466    0.01119
## Community_Space_Content                          0.23163    0.09084
## overall_pre_competence_beliefs                  -0.14863    0.07180
## motivation_to_attend                             0.16805    0.18727
## V01.01.HighUtility_sum:Community_Space_Content  -0.01165    0.01807
##                                                       df t value Pr(>|t|)
## (Intercept)                                    137.95226   8.088 2.79e-13
## gender_female                                  168.79896  -2.002  0.04686
## COMPOSIT                                       197.04320   2.720  0.00711
## agency                                         207.57299   2.321  0.02123
## V01.01.HighUtility_sum                         170.47362  -2.204  0.02888
## Community_Space_Content                        191.05661   2.550  0.01156
## overall_pre_competence_beliefs                 161.83471  -2.070  0.04004
## motivation_to_attend                           177.21459   0.897  0.37072
## V01.01.HighUtility_sum:Community_Space_Content 150.35951  -0.644  0.52026
##                                                   
## (Intercept)                                    ***
## gender_female                                  *  
## COMPOSIT                                       ** 
## agency                                         *  
## V01.01.HighUtility_sum                         *  
## Community_Space_Content                        *  
## overall_pre_competence_beliefs                 *  
## motivation_to_attend                              
## V01.01.HighUtility_sum:Community_Space_Content    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01.HgU_ Cm_S_C ovr___ mtvt__
## gender_feml -0.223                                                      
## COMPOSIT    -0.259  0.002                                               
## agency      -0.021  0.000 -0.370                                        
## V01.01.HgU_  0.002 -0.001 -0.174  0.093                                 
## Cmmnty_Sp_C -0.013 -0.002 -0.124  0.144  0.135                          
## ovrll_pr_c_ -0.653 -0.081 -0.016  0.003  0.019       0.005              
## mtvtn_t_ttn -0.479  0.145  0.003 -0.015 -0.020      -0.022 -0.153       
## V01.01.HU_:  0.007  0.005  0.031  0.052 -0.576      -0.590 -0.011  0.014
RQ2_relevance_value_community <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              V01.01.HighUtility_sum*Community_Space_Content + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_value_community)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + V01.01.HighUtility_sum * Community_Space_Content +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5446.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0192 -0.5421  0.0362  0.5862  3.6587 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01038  0.1019  
##  participant_ID (Intercept) 0.47194  0.6870  
##  program_ID     (Intercept) 0.01288  0.1135  
##  Residual                   0.41160  0.6416  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                                  Estimate Std. Error
## (Intercept)                                      2.062397   0.269117
## gender_female                                   -0.215941   0.111132
## COMPOSIT                                         0.038282   0.016413
## agency                                           0.001684   0.012372
## V01.01.HighUtility_sum                           0.017084   0.006909
## Community_Space_Content                          0.143765   0.056989
## overall_pre_competence_beliefs                   0.035007   0.068450
## motivation_to_attend                             0.372066   0.180259
## V01.01.HighUtility_sum:Community_Space_Content  -0.015929   0.010943
##                                                        df t value Pr(>|t|)
## (Intercept)                                    123.540374   7.664 4.58e-12
## gender_female                                  168.966381  -1.943   0.0537
## COMPOSIT                                       195.154805   2.332   0.0207
## agency                                         211.148172   0.136   0.8919
## V01.01.HighUtility_sum                         167.187780   2.473   0.0144
## Community_Space_Content                        193.603650   2.523   0.0125
## overall_pre_competence_beliefs                 130.193548   0.511   0.6099
## motivation_to_attend                           166.442926   2.064   0.0406
## V01.01.HighUtility_sum:Community_Space_Content 139.129365  -1.456   0.1477
##                                                   
## (Intercept)                                    ***
## gender_female                                  .  
## COMPOSIT                                       *  
## agency                                            
## V01.01.HighUtility_sum                         *  
## Community_Space_Content                        *  
## overall_pre_competence_beliefs                    
## motivation_to_attend                           *  
## V01.01.HighUtility_sum:Community_Space_Content    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01.HgU_ Cm_S_C ovr___ mtvt__
## gender_feml -0.244                                                      
## COMPOSIT    -0.174  0.001                                               
## agency      -0.005 -0.003 -0.382                                        
## V01.01.HgU_  0.002 -0.001 -0.180  0.100                                 
## Cmmnty_Sp_C -0.001 -0.002 -0.135  0.153  0.139                          
## ovrll_pr_c_ -0.686 -0.067 -0.016  0.000  0.016       0.002              
## mtvtn_t_ttn -0.509  0.141  0.003 -0.016 -0.019      -0.024 -0.145       
## V01.01.HU_:  0.004  0.005  0.041  0.046 -0.588      -0.591 -0.011  0.014
RQ2_learning_value_community <- lmer(learning ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              V01.01.HighUtility_sum*Community_Space_Content + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_learning_value_community)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## learning ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + V01.01.HighUtility_sum * Community_Space_Content +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6661.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1336 -0.5681  0.1010  0.5992  2.8471 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.007616 0.08727 
##  participant_ID (Intercept) 0.395313 0.62874 
##  program_ID     (Intercept) 0.001553 0.03941 
##  Residual                   0.709779 0.84248 
## Number of obs: 2499, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                                  Estimate Std. Error
## (Intercept)                                     2.063e+00  2.500e-01
## gender_female                                  -5.641e-02  1.042e-01
## COMPOSIT                                        6.782e-02  1.990e-02
## agency                                          7.677e-04  1.510e-02
## V01.01.HighUtility_sum                          2.405e-03  8.377e-03
## Community_Space_Content                         1.865e-01  6.892e-02
## overall_pre_competence_beliefs                  6.409e-02  6.312e-02
## motivation_to_attend                            2.870e-01  1.693e-01
## V01.01.HighUtility_sum:Community_Space_Content -2.281e-02  1.315e-02
##                                                        df t value Pr(>|t|)
## (Intercept)                                     1.032e+02   8.249 5.49e-13
## gender_female                                   1.600e+02  -0.542 0.588821
## COMPOSIT                                        1.792e+02   3.408 0.000808
## agency                                          1.926e+02   0.051 0.959495
## V01.01.HighUtility_sum                          1.502e+02   0.287 0.774396
## Community_Space_Content                         1.750e+02   2.707 0.007464
## overall_pre_competence_beliefs                  9.602e+01   1.015 0.312500
## motivation_to_attend                            1.479e+02   1.695 0.092150
## V01.01.HighUtility_sum:Community_Space_Content  1.216e+02  -1.734 0.085463
##                                                   
## (Intercept)                                    ***
## gender_female                                     
## COMPOSIT                                       ***
## agency                                            
## V01.01.HighUtility_sum                            
## Community_Space_Content                        ** 
## overall_pre_competence_beliefs                    
## motivation_to_attend                           .  
## V01.01.HighUtility_sum:Community_Space_Content .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01.HgU_ Cm_S_C ovr___ mtvt__
## gender_feml -0.248                                                      
## COMPOSIT    -0.222  0.003                                               
## agency      -0.001 -0.006 -0.383                                        
## V01.01.HgU_  0.007 -0.003 -0.185  0.102                                 
## Cmmnty_Sp_C  0.007 -0.003 -0.136  0.153  0.143                          
## ovrll_pr_c_ -0.671 -0.064 -0.029 -0.004  0.023       0.001              
## mtvtn_t_ttn -0.508  0.139  0.004 -0.024 -0.030      -0.041 -0.153       
## V01.01.HU_:  0.002  0.010  0.043  0.045 -0.594      -0.590 -0.016  0.024
sjPlot::sjp.int(RQ2_learning_value_community, type = "eff", swap.pred = TRUE)
## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

Models with all interactions that were significant for challenge, relevance, and learning

RQ2_relevance_composite_motivation_all <- lmer(relevance ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              COMPOSIT*motivation_to_attend + 
                              V01.01.HighUtility_sum*motivation_to_attend +
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_relevance_composite_motivation_all)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## relevance ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + COMPOSIT * motivation_to_attend +  
##     V01.01.HighUtility_sum * motivation_to_attend + (1 | program_ID) +  
##     (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5445.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9889 -0.5385  0.0496  0.5867  3.3578 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.01037  0.1018  
##  participant_ID (Intercept) 0.47392  0.6884  
##  program_ID     (Intercept) 0.01441  0.1200  
##  Residual                   0.41080  0.6409  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                               Estimate Std. Error
## (Intercept)                                  1.788e+00  3.063e-01
## gender_female                               -2.141e-01  1.115e-01
## COMPOSIT                                     1.049e-01  4.273e-02
## agency                                       3.888e-03  1.238e-02
## V01.01.HighUtility_sum                       5.120e-02  2.194e-02
## Community_Space_Content                      9.499e-02  4.599e-02
## overall_pre_competence_beliefs               3.290e-02  6.878e-02
## motivation_to_attend                         6.847e-01  2.435e-01
## COMPOSIT:motivation_to_attend               -7.331e-02  4.449e-02
## V01.01.HighUtility_sum:motivation_to_attend -4.126e-02  2.213e-02
##                                                     df t value Pr(>|t|)
## (Intercept)                                  2.025e+02   5.836 2.09e-08
## gender_female                                1.693e+02  -1.921  0.05645
## COMPOSIT                                     1.711e+03   2.456  0.01416
## agency                                       2.128e+02   0.314  0.75382
## V01.01.HighUtility_sum                       2.348e+03   2.333  0.01972
## Community_Space_Content                      1.940e+02   2.066  0.04019
## overall_pre_competence_beliefs               1.333e+02   0.478  0.63315
## motivation_to_attend                         5.029e+02   2.811  0.00513
## COMPOSIT:motivation_to_attend                2.314e+03  -1.648  0.09954
## V01.01.HighUtility_sum:motivation_to_attend  2.356e+03  -1.864  0.06243
##                                                
## (Intercept)                                 ***
## gender_female                               .  
## COMPOSIT                                    *  
## agency                                         
## V01.01.HighUtility_sum                      *  
## Community_Space_Content                     *  
## overall_pre_competence_beliefs                 
## motivation_to_attend                        ** 
## COMPOSIT:motivation_to_attend               .  
## V01.01.HighUtility_sum:motivation_to_attend .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT agency V01.01.HgU_ Cm_S_C ovr___ mtvt__
## gender_feml -0.213                                                        
## COMPOSIT    -0.489 -0.004                                                 
## agency      -0.038 -0.003 -0.082                                          
## V01.01.HgU_ -0.028  0.011 -0.069    0.033                                 
## Cmmnty_Sp_C -0.009  0.001 -0.031    0.224 -0.101                          
## ovrll_pr_c_ -0.601 -0.068 -0.014    0.000 -0.008      -0.005              
## mtvtn_t_ttn -0.648  0.103  0.614    0.035  0.041       0.000 -0.115       
## COMPOSIT:__  0.466  0.005 -0.923   -0.071  0.061      -0.023  0.009 -0.664
## V01.01.HU_:  0.024 -0.011  0.064    0.008 -0.967       0.021  0.012 -0.037
##             COMPOSIT:
## gender_feml          
## COMPOSIT             
## agency               
## V01.01.HgU_          
## Cmmnty_Sp_C          
## ovrll_pr_c_          
## mtvtn_t_ttn          
## COMPOSIT:__          
## V01.01.HU_: -0.076
sjPlot::sjp.int(RQ2_relevance_composite_motivation_all, type = "eff", swap.pred = TRUE)
## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

## Warning in Effect.merMod(predictors, mod, vcov. = vcov., ...): pbkrtest is
## not available, KR set to FALSE

May 2 Analysis

Predicting Control

RQ2_control_composite_community <- lmer(in_control ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              COMPOSIT*Community_Space_Content + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_control_composite_community)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## in_control ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + COMPOSIT * Community_Space_Content +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6498.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3531 -0.5394  0.0355  0.5616  3.2228 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02106  0.1451  
##  participant_ID (Intercept) 0.47933  0.6923  
##  program_ID     (Intercept) 0.00000  0.0000  
##  Residual                   0.64437  0.8027  
## Number of obs: 2498, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                    Estimate Std. Error         df t value
## (Intercept)                        2.164478   0.270992 193.421500   7.987
## gender_female                     -0.232547   0.112557 168.928355  -2.066
## COMPOSIT                           0.056455   0.022170 221.847152   2.547
## agency                             0.032201   0.015904 238.308935   2.025
## V01.01.HighUtility_sum             0.001540   0.007245 170.791082   0.213
## Community_Space_Content            0.086545   0.216439 233.957101   0.400
## overall_pre_competence_beliefs     0.031413   0.067997 173.962836   0.462
## motivation_to_attend               0.297333   0.182162 178.836013   1.632
## COMPOSIT:Community_Space_Content  -0.015724   0.051013 222.822350  -0.308
##                                  Pr(>|t|)    
## (Intercept)                      1.21e-13 ***
## gender_female                      0.0404 *  
## COMPOSIT                           0.0116 *  
## agency                             0.0440 *  
## V01.01.HighUtility_sum             0.8319    
## Community_Space_Content            0.6896    
## overall_pre_competence_beliefs     0.6447    
## motivation_to_attend               0.1044    
## COMPOSIT:Community_Space_Content   0.7582    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.250                                                   
## COMPOSIT    -0.241  0.005                                            
## agency      -0.001 -0.006 -0.366                                     
## V01.01.HgU_  0.001  0.004 -0.163    0.157                            
## Cmmnty_Sp_C -0.107  0.006  0.267    0.047 -0.015                     
## ovrll_pr_c_ -0.674 -0.060 -0.019   -0.003  0.017  0.028              
## mtvtn_t_ttn -0.505  0.138 -0.003   -0.024 -0.020 -0.024 -0.149       
## COMPOSIT:C_  0.114 -0.005 -0.314    0.013 -0.074 -0.962 -0.032  0.015

Predicting interest

RQ2_interest_composite_community <- lmer(interest ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              COMPOSIT*Community_Space_Content + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_interest_composite_community)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## interest ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + COMPOSIT * Community_Space_Content +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6616.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2639 -0.5394  0.1170  0.6016  2.7449 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.03806  0.1951  
##  participant_ID (Intercept) 0.37476  0.6122  
##  program_ID     (Intercept) 0.01858  0.1363  
##  Residual                   0.67524  0.8217  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                    Estimate Std. Error         df t value
## (Intercept)                        2.309290   0.262234 140.465736   8.806
## gender_female                     -0.126259   0.103511 168.465566  -1.220
## COMPOSIT                           0.011008   0.024793 198.154618   0.444
## agency                             0.036364   0.017709 211.273161   2.053
## V01.01.HighUtility_sum             0.005373   0.008202 156.356747   0.655
## Community_Space_Content            0.080902   0.241354 208.407887   0.335
## overall_pre_competence_beliefs     0.096112   0.064536 145.473082   1.489
## motivation_to_attend               0.204457   0.169829 171.967409   1.204
## COMPOSIT:Community_Space_Content   0.006494   0.057019 198.310190   0.114
##                                  Pr(>|t|)    
## (Intercept)                      4.34e-15 ***
## gender_female                      0.2243    
## COMPOSIT                           0.6575    
## agency                             0.0413 *  
## V01.01.HighUtility_sum             0.5134    
## Community_Space_Content            0.7378    
## overall_pre_competence_beliefs     0.1386    
## motivation_to_attend               0.2303    
## COMPOSIT:Community_Space_Content   0.9094    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.229                                                   
## COMPOSIT    -0.284  0.004                                            
## agency      -0.015 -0.002 -0.361                                     
## V01.01.HgU_ -0.001  0.003 -0.159    0.153                            
## Cmmnty_Sp_C -0.119  0.007  0.266    0.047 -0.011                     
## ovrll_pr_c_ -0.655 -0.077 -0.013    0.002  0.019  0.020              
## mtvtn_t_ttn -0.483  0.143 -0.001   -0.020 -0.019 -0.018 -0.155       
## COMPOSIT:C_  0.122 -0.007 -0.313    0.013 -0.078 -0.962 -0.021  0.012

Reliability for engagement = .67 (also creating control + interest composite)

#control_interest_reliability <- select(df, in_control, interest)
#cronbach(control_interest_reliability)

df$control_interest <- jmRtools::composite_mean_maker(df, in_control, interest)

Predicting interest-control composite

RQ2_interest_control_composite_community <- lmer(control_interest ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              COMPOSIT*Community_Space_Content + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_interest_control_composite_community)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## control_interest ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + COMPOSIT * Community_Space_Content +  
##     (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5611.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7878 -0.5074  0.0622  0.5907  3.5378 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02375  0.1541  
##  participant_ID (Intercept) 0.37314  0.6109  
##  program_ID     (Intercept) 0.00000  0.0000  
##  Residual                   0.44122  0.6642  
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                    Estimate Std. Error         df t value
## (Intercept)                        2.255096   0.238336 196.153876   9.462
## gender_female                     -0.169543   0.098769 170.103229  -1.717
## COMPOSIT                           0.032781   0.019863 210.848642   1.650
## agency                             0.034748   0.014198 224.383149   2.447
## V01.01.HighUtility_sum             0.003497   0.006562 165.699215   0.533
## Community_Space_Content            0.105035   0.193619 221.119139   0.542
## overall_pre_competence_beliefs     0.049696   0.059679 175.296059   0.833
## motivation_to_attend               0.270914   0.159670 179.977820   1.697
## COMPOSIT:Community_Space_Content  -0.009206   0.045715 210.452175  -0.201
##                                  Pr(>|t|)    
## (Intercept)                        <2e-16 ***
## gender_female                      0.0879 .  
## COMPOSIT                           0.1004    
## agency                             0.0152 *  
## V01.01.HighUtility_sum             0.5948    
## Community_Space_Content            0.5880    
## overall_pre_competence_beliefs     0.4061    
## motivation_to_attend               0.0915 .  
## COMPOSIT:Community_Space_Content   0.8406    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOSIT agency V01.01 Cm_S_C ovr___ mtvt__
## gender_feml -0.250                                                   
## COMPOSIT    -0.245  0.005                                            
## agency      -0.004 -0.005 -0.362                                     
## V01.01.HgU_  0.001  0.004 -0.161    0.154                            
## Cmmnty_Sp_C -0.108  0.005  0.267    0.047 -0.011                     
## ovrll_pr_c_ -0.673 -0.059 -0.020   -0.001  0.017  0.027              
## mtvtn_t_ttn -0.504  0.138 -0.003   -0.024 -0.020 -0.023 -0.148       
## COMPOSIT:C_  0.115 -0.005 -0.313    0.013 -0.077 -0.962 -0.031  0.014

Predicting engagement

RQ3_overall_engagement <- lmer(overall_engagement ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ3_overall_engagement)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## overall_engagement ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 5237.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2397 -0.5166  0.0652  0.5695  3.8282 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.022709 0.15070 
##  participant_ID (Intercept) 0.333568 0.57755 
##  program_ID     (Intercept) 0.004963 0.07045 
##  Residual                   0.377561 0.61446 
## Number of obs: 2500, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                      2.235185   0.228580 111.829219   9.779
## gender_female                   -0.065908   0.094064 165.515657  -0.701
## COMPOSIT                         0.032503   0.017870 212.955541   1.819
## agency                           0.019262   0.013425 226.562881   1.435
## V01.01.HighUtility_sum           0.003013   0.006207 169.369786   0.485
## Community_Space_Content          0.028287   0.050133 207.302105   0.564
## overall_pre_competence_beliefs   0.080777   0.057572 111.661263   1.403
## motivation_to_attend             0.248645   0.152642 157.178884   1.629
##                                Pr(>|t|)    
## (Intercept)                      <2e-16 ***
## gender_female                    0.4845    
## COMPOSIT                         0.0703 .  
## agency                           0.1527    
## V01.01.HighUtility_sum           0.6280    
## Community_Space_Content          0.5732    
## overall_pre_competence_beliefs   0.1634    
## motivation_to_attend             0.1053    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___
## gender_feml -0.245                                          
## COMPOSIT    -0.221  0.003                                   
## agency      -0.009 -0.003 -0.376                            
## V01.01.HgU_  0.008  0.003 -0.194  0.154                     
## Cmmnty_Sp_C  0.004  0.001 -0.133  0.218 -0.313              
## ovrll_pr_c_ -0.675 -0.066 -0.025  0.001  0.014 -0.007       
## mtvtn_t_ttn -0.504  0.140  0.001 -0.021 -0.017 -0.028 -0.147

June 20 Analysis

Predicting Control w/ no interaction

RQ2_control_no_interaction <- lmer(in_control ~ 
                              gender_female +
                              COMPOSIT + 
                              agency + 
                              V01.01.HighUtility_sum +
                              Community_Space_Content + 
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = df)

summary(RQ2_control_no_interaction)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## in_control ~ gender_female + COMPOSIT + agency + V01.01.HighUtility_sum +  
##     Community_Space_Content + overall_pre_competence_beliefs +  
##     motivation_to_attend + (1 | program_ID) + (1 | participant_ID) +  
##     (1 | beep_ID_new)
##    Data: df
## 
## REML criterion at convergence: 6494.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3479 -0.5379  0.0367  0.5616  3.2223 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  beep_ID_new    (Intercept) 0.02062  0.1436  
##  participant_ID (Intercept) 0.47895  0.6921  
##  program_ID     (Intercept) 0.00000  0.0000  
##  Residual                   0.64447  0.8028  
## Number of obs: 2498, groups:  
## beep_ID_new, 235; participant_ID, 175; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                      2.174174   0.269076 188.849430   8.080
## gender_female                   -0.232765   0.112511 168.971096  -2.069
## COMPOSIT                         0.054329   0.020992 223.735303   2.588
## agency                           0.032244   0.015860 239.519239   2.033
## V01.01.HighUtility_sum           0.001381   0.007203 172.184427   0.192
## Community_Space_Content          0.022180   0.058737 221.085060   0.378
## overall_pre_competence_beliefs   0.030710   0.067932 173.672618   0.452
## motivation_to_attend             0.298137   0.182068 178.801844   1.638
##                                Pr(>|t|)    
## (Intercept)                    7.51e-14 ***
## gender_female                    0.0401 *  
## COMPOSIT                         0.0103 *  
## agency                           0.0431 *  
## V01.01.HighUtility_sum           0.8482    
## Community_Space_Content          0.7061    
## overall_pre_competence_beliefs   0.6518    
## motivation_to_attend             0.1033    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gndr_f COMPOS agency V01.01 Cm_S_C ovr___
## gender_feml -0.251                                          
## COMPOSIT    -0.217  0.003                                   
## agency      -0.002 -0.006 -0.382                            
## V01.01.HgU_  0.010  0.004 -0.196  0.158                     
## Cmmnty_Sp_C  0.010  0.003 -0.135  0.220 -0.316              
## ovrll_pr_c_ -0.675 -0.060 -0.030 -0.002  0.015 -0.010       
## mtvtn_t_ttn -0.510  0.138  0.002 -0.024 -0.019 -0.034 -0.149

Reliability for agency = .823 (7 items) and making composite

#agency_reliability <- select(post_survey_all, at_program_choose_time, at_program_suggest_ideas, at_program_choose_activities, at_program_plan_activities, at_program_lead_activities, at_program_in_charge, at_program_decicision_rules)
#cronbach(agency_reliability)

July 3 Analysis

Preparing for BLUPS

d_red <- df %>% 
    group_by(participant_ID, program_ID) %>% 
    mutate(rownum = row_number()) %>% 
    mutate(post_agency = ifelse(rownum == 1, post_agency, NA))

d_red <- filter(d_red, !is.na(overall_pre_competence_beliefs) & !is.na(gender_female), !is.na(motivation_to_attend))

Predicting Post_Agency using control

RQ2_control_post_agency <- lmer(in_control ~ 
                              gender_female +
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              (1|program_ID) + 
                              (1|participant_ID) + 
                              (1|beep_ID_new),
                              data = d_red)

#summary(RQ2_control_post_agency)

control_agency_BLUP <-ranef(RQ2_control_post_agency) %>%
    pluck(2) %>%
    rownames_to_column("participant_ID") %>%
    mutate(participant_ID = as.integer(participant_ID)) %>%
    rename(in_control_BLUP = `(Intercept)`)

d_ind_level_2 <- distinct(df, participant_ID, post_agency, program_ID, .keep_all = TRUE)
d_ind_level_2$participant_ID <- as.integer(as.character(d_ind_level_2$participant_ID))
d_for_m2 <- left_join(d_ind_level_2, control_agency_BLUP, by = "participant_ID")
d_for_m2 <- filter(d_for_m2, !is.na(post_agency) & !is.na(gender_female) & !is.na(overall_pre_competence_beliefs) & !is.na(in_control_BLUP) & !is.na(motivation_to_attend))

BLUP_model <- lm(post_agency ~ 1 + in_control_BLUP + gender_female + overall_pre_competence_beliefs + motivation_to_attend, data = d_for_m2)

summary(BLUP_model)
## 
## Call:
## lm(formula = post_agency ~ 1 + in_control_BLUP + gender_female + 
##     overall_pre_competence_beliefs + motivation_to_attend, data = d_for_m2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.63094 -0.46498 -0.03061  0.46625  1.59712 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     2.60290    0.27562   9.444  < 2e-16 ***
## in_control_BLUP                 0.25459    0.08556   2.975  0.00347 ** 
## gender_female                  -0.01279    0.11405  -0.112  0.91088    
## overall_pre_competence_beliefs -0.05139    0.07136  -0.720  0.47272    
## motivation_to_attend            0.11107    0.19114   0.581  0.56215    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6642 on 134 degrees of freedom
## Multiple R-squared:  0.07046,    Adjusted R-squared:  0.04271 
## F-statistic: 2.539 on 4 and 134 DF,  p-value: 0.0428

Predicting post_agency using pqa agency

temp_df <- df %>%
    group_by(program_ID) %>%
    summarise(new_agency = mean(agency, na.rm = TRUE))

df_new <- left_join(df, temp_df, by = "program_ID")

RQ2_pqa_agency_post_agency <- lmer(post_agency ~ 
                              new_agency +        
                              gender_female +
                              overall_pre_competence_beliefs + 
                              motivation_to_attend + 
                              (1|program_ID) + 
                              #(1|participant_ID), 
                              (1|beep_ID_new),
                              data = df_new)

summary(RQ2_pqa_agency_post_agency)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## post_agency ~ new_agency + gender_female + overall_pre_competence_beliefs +  
##     motivation_to_attend + (1 | program_ID) + (1 | beep_ID_new)
##    Data: df_new
## 
## REML criterion at convergence: 4680.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4270 -0.5811  0.0028  0.7249  1.9840 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  beep_ID_new (Intercept) 0.00000  0.0000  
##  program_ID  (Intercept) 0.05669  0.2381  
##  Residual                0.43832  0.6621  
## Number of obs: 2302, groups:  beep_ID_new, 248; program_ID, 9
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                       3.21488    0.49057    7.17158   6.553
## new_agency                       -0.38763    0.23570    7.00602  -1.645
## gender_female                    -0.07172    0.02973 2296.93187  -2.412
## overall_pre_competence_beliefs    0.06674    0.01966 2280.47850   3.394
## motivation_to_attend             -0.03699    0.05045 2295.19987  -0.733
##                                Pr(>|t|)    
## (Intercept)                    0.000287 ***
## new_agency                     0.144021    
## gender_female                  0.015942 *  
## overall_pre_competence_beliefs 0.000699 ***
## motivation_to_attend           0.463446    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) nw_gnc gndr_f ovr___
## new_agency  -0.976                     
## gender_feml -0.030 -0.002              
## ovrll_pr_c_ -0.088 -0.016 -0.135       
## mtvtn_t_ttn -0.056 -0.019  0.163 -0.188