Percent correct for 41 repeated questions
percent_Correct_WN2018 <- percent_Correct_OG <- c()
stdError_pCorrect_WN2018 <- stdError_pCorrect_OG <-c ()
pCorrect_WN2018_sec1 <- pCorrect_WN2018_sec2 <- c()
pCorrect_WN2018_sec3 <- pCorrect_WN2018_sec4 <- c()
stdError_pCorrect_WN2018_sec1 <- stdError_pCorrect_WN2018_sec2 <- c()
stdError_pCorrect_WN2018_sec3 <- stdError_pCorrect_WN2018_sec4 <- c()
# Bootstrap - sample with replacement many times, recalculate percent correct each time.
# To determine R = 10000 for the boot() function, I kept changing the R value for a specific question until the hundredth place of the standard error did not change.
bootfunc <- function(d, i) {
d1 <- d[i]
return(mean(d1))
}
# Do these commands for all 41 questions...
percent_Correct_WN2018[1] = mean(allData[[1]][9][[1]])
stdError_pCorrect_WN2018[1] = sd(boot(allData[[1]][9][[1]], bootfunc, 10000)$t)
percent_Correct_OG[1] = mean(allData[[14]][14][[1]])
stdError_pCorrect_OG[1] = sd(boot(allData[[14]][14][[1]], bootfunc, 10000)$t)
pCorrect_WN2018_sec1[1] = mean(filter(WN2018Score_sec[[4]],
section == 100)[9][[1]])
pCorrect_WN2018_sec2[1] = mean(filter(WN2018Score_sec[[4]],
section == 200)[9][[1]])
pCorrect_WN2018_sec3[1] = mean(filter(WN2018Score_sec[[4]],
section == 300)[9][[1]])
pCorrect_WN2018_sec4[1] = mean(filter(WN2018Score_sec[[4]],
section == 400)[9][[1]])
stdError_pCorrect_WN2018_sec1[1] = sd(boot(filter(WN2018Score_sec[[4]],
section == 100)[9][[1]],
bootfunc, 10000)$t)
stdError_pCorrect_WN2018_sec2[1] = sd(boot(filter(WN2018Score_sec[[4]],
section == 200)[9][[1]],
bootfunc, 10000)$t)
stdError_pCorrect_WN2018_sec3[1] = sd(boot(filter(WN2018Score_sec[[4]],
section == 300)[9][[1]],
bootfunc, 10000)$t)
stdError_pCorrect_WN2018_sec4[1] = sd(boot(filter(WN2018Score_sec[[4]],
section == 400)[9][[1]],
bootfunc, 10000)$t)
| 1 |
OG All |
0.6293605 |
0.0186849 |
NA |
| 2 |
OG All |
0.6540698 |
0.0182538 |
NA |
| 3 |
OG All |
0.7593496 |
0.0170604 |
NA |
| 4 |
OG All |
0.8430233 |
0.0137919 |
NA |
| 5 |
OG All |
0.7863372 |
0.0156290 |
NA |
| 6 |
OG All |
0.6325203 |
0.0192975 |
NA |
| 7 |
OG All |
0.7593496 |
0.0172227 |
NA |
| 8 |
OG All |
0.8016260 |
0.0161760 |
NA |
| 9 |
OG All |
0.8629032 |
0.0136775 |
NA |
| 10 |
OG All |
0.7281977 |
0.0168663 |
NA |
| 11 |
OG All |
0.6191860 |
0.0185391 |
NA |
| 12 |
OG All |
0.6243902 |
0.0195574 |
NA |
| 13 |
OG All |
0.7777778 |
0.0169211 |
NA |
| 14 |
OG All |
0.7503650 |
0.0165920 |
NA |
| 15 |
OG All |
0.4850575 |
0.0237356 |
NA |
| 16 |
OG All |
0.7335474 |
0.0178727 |
NA |
| 17 |
OG All |
0.6094771 |
0.0199748 |
NA |
| 18 |
OG All |
0.6091954 |
0.0234054 |
NA |
| 19 |
OG All |
0.7007299 |
0.0175405 |
NA |
| 20 |
OG All |
0.2896552 |
0.0215955 |
NA |
| 21 |
OG All |
0.4656934 |
0.0189381 |
NA |
| 22 |
OG All |
0.6847978 |
0.0172692 |
NA |
| 23 |
OG All |
0.7622821 |
0.0170847 |
NA |
| 24 |
OG All |
0.7291982 |
0.0172163 |
NA |
| 25 |
OG All |
0.6717095 |
0.0180423 |
NA |
| 26 |
OG All |
0.8284519 |
0.0140710 |
NA |
| 27 |
OG All |
0.6652720 |
0.0175749 |
NA |
| 28 |
OG All |
0.8730823 |
0.0122900 |
NA |
| 29 |
OG All |
0.5975794 |
0.0189631 |
NA |
| 30 |
OG All |
0.7726639 |
0.0155704 |
NA |
| 31 |
OG All |
0.5198098 |
0.0196866 |
NA |
| 32 |
OG All |
0.7756410 |
0.0167580 |
NA |
| 33 |
OG All |
0.8451613 |
0.0146125 |
NA |
| 34 |
OG All |
0.5076709 |
0.0188483 |
NA |
| 35 |
OG All |
0.7319277 |
0.0172207 |
NA |
| 36 |
OG All |
0.7790323 |
0.0166205 |
NA |
| 37 |
OG All |
0.8019526 |
0.0147973 |
NA |
| 38 |
OG All |
0.6971154 |
0.0184392 |
NA |
| 39 |
OG All |
0.6069731 |
0.0193384 |
NA |
| 40 |
OG All |
0.6080893 |
0.0182326 |
NA |
| 41 |
OG All |
0.7515060 |
0.0167526 |
NA |
| 1 |
WN2018 All |
0.7536232 |
0.0172350 |
621 |
| 2 |
WN2018 All |
0.6988728 |
0.0186974 |
621 |
| 3 |
WN2018 All |
0.8599034 |
0.0139333 |
621 |
| 4 |
WN2018 All |
0.7777778 |
0.0165720 |
621 |
| 5 |
WN2018 All |
0.7842190 |
0.0164317 |
621 |
| 6 |
WN2018 All |
0.7262480 |
0.0178870 |
621 |
| 7 |
WN2018 All |
0.8421900 |
0.0145882 |
621 |
| 8 |
WN2018 All |
0.8792271 |
0.0131169 |
621 |
| 9 |
WN2018 All |
0.8325282 |
0.0149436 |
621 |
| 10 |
WN2018 All |
0.6537842 |
0.0192754 |
621 |
| 11 |
WN2018 All |
0.5169082 |
0.0201116 |
621 |
| 12 |
WN2018 All |
0.5362319 |
0.0197930 |
621 |
| 13 |
WN2018 All |
0.7929374 |
0.0163213 |
623 |
| 14 |
WN2018 All |
0.8170144 |
0.0154955 |
623 |
| 15 |
WN2018 All |
0.5345104 |
0.0200639 |
623 |
| 16 |
WN2018 All |
0.6869984 |
0.0188511 |
623 |
| 17 |
WN2018 All |
0.7415730 |
0.0175745 |
623 |
| 18 |
WN2018 All |
0.7174960 |
0.0180381 |
623 |
| 19 |
WN2018 All |
0.6099518 |
0.0197686 |
623 |
| 20 |
WN2018 All |
0.3772071 |
0.0192761 |
623 |
| 21 |
WN2018 All |
0.4991974 |
0.0200005 |
623 |
| 22 |
WN2018 All |
0.7445483 |
0.0172968 |
642 |
| 23 |
WN2018 All |
0.9065421 |
0.0116840 |
642 |
| 24 |
WN2018 All |
0.8068536 |
0.0155703 |
642 |
| 25 |
WN2018 All |
0.8333333 |
0.0146708 |
642 |
| 26 |
WN2018 All |
0.9065421 |
0.0115984 |
642 |
| 27 |
WN2018 All |
0.7274143 |
0.0173384 |
642 |
| 28 |
WN2018 All |
0.7056075 |
0.0179484 |
642 |
| 29 |
WN2018 All |
0.5342679 |
0.0196309 |
642 |
| 30 |
WN2018 All |
0.6417445 |
0.0185978 |
642 |
| 31 |
WN2018 All |
0.6137072 |
0.0193236 |
642 |
| 32 |
WN2018 All |
0.7939394 |
0.0156680 |
660 |
| 33 |
WN2018 All |
0.8060606 |
0.0153625 |
660 |
| 34 |
WN2018 All |
0.8000000 |
0.0156072 |
660 |
| 35 |
WN2018 All |
0.6863636 |
0.0180785 |
660 |
| 36 |
WN2018 All |
0.7833333 |
0.0162391 |
660 |
| 37 |
WN2018 All |
0.7863636 |
0.0160493 |
660 |
| 38 |
WN2018 All |
0.7287879 |
0.0174217 |
660 |
| 39 |
WN2018 All |
0.9015152 |
0.0116074 |
660 |
| 40 |
WN2018 All |
0.6000000 |
0.0191306 |
660 |
| 41 |
WN2018 All |
0.8000000 |
0.0157346 |
660 |
| 1 |
100 |
0.6570048 |
0.0331544 |
207 |
| 2 |
100 |
0.7149758 |
0.0313865 |
207 |
| 3 |
100 |
0.8888889 |
0.0218998 |
207 |
| 4 |
100 |
0.7826087 |
0.0282426 |
207 |
| 5 |
100 |
0.7971014 |
0.0281296 |
207 |
| 6 |
100 |
0.7004831 |
0.0316926 |
207 |
| 7 |
100 |
0.8260870 |
0.0261368 |
207 |
| 8 |
100 |
0.8599034 |
0.0241065 |
207 |
| 9 |
100 |
0.8309179 |
0.0259795 |
207 |
| 10 |
100 |
0.5942029 |
0.0339932 |
207 |
| 11 |
100 |
0.4927536 |
0.0349024 |
207 |
| 12 |
100 |
0.5458937 |
0.0348215 |
207 |
| 13 |
100 |
0.7714286 |
0.0288050 |
210 |
| 14 |
100 |
0.8047619 |
0.0274546 |
210 |
| 15 |
100 |
0.4857143 |
0.0343417 |
210 |
| 16 |
100 |
0.6857143 |
0.0317330 |
210 |
| 17 |
100 |
0.7476190 |
0.0299435 |
210 |
| 18 |
100 |
0.7285714 |
0.0307490 |
210 |
| 19 |
100 |
0.5523810 |
0.0343224 |
210 |
| 20 |
100 |
0.4714286 |
0.0344802 |
210 |
| 21 |
100 |
0.4809524 |
0.0344610 |
210 |
| 22 |
100 |
0.7761905 |
0.0286758 |
210 |
| 23 |
100 |
0.9142857 |
0.0194899 |
210 |
| 24 |
100 |
0.8523810 |
0.0247635 |
210 |
| 25 |
100 |
0.8619048 |
0.0238155 |
210 |
| 26 |
100 |
0.9095238 |
0.0195644 |
210 |
| 27 |
100 |
0.7428571 |
0.0300012 |
210 |
| 28 |
100 |
0.7285714 |
0.0304445 |
210 |
| 29 |
100 |
0.5190476 |
0.0345562 |
210 |
| 30 |
100 |
0.6476190 |
0.0329031 |
210 |
| 31 |
100 |
0.6333333 |
0.0331645 |
210 |
| 32 |
100 |
0.7899543 |
0.0275199 |
219 |
| 33 |
100 |
0.7579909 |
0.0286676 |
219 |
| 34 |
100 |
0.8036530 |
0.0269656 |
219 |
| 35 |
100 |
0.7031963 |
0.0311181 |
219 |
| 36 |
100 |
0.8127854 |
0.0261121 |
219 |
| 37 |
100 |
0.8264840 |
0.0254677 |
219 |
| 38 |
100 |
0.6940639 |
0.0309506 |
219 |
| 39 |
100 |
0.9178082 |
0.0185267 |
219 |
| 40 |
100 |
0.5205479 |
0.0341461 |
219 |
| 41 |
100 |
0.8127854 |
0.0261150 |
219 |
| 1 |
200 |
0.8201754 |
0.0253398 |
228 |
| 2 |
200 |
0.6622807 |
0.0318491 |
228 |
| 3 |
200 |
0.8201754 |
0.0257776 |
228 |
| 4 |
200 |
0.8026316 |
0.0263451 |
228 |
| 5 |
200 |
0.7763158 |
0.0273645 |
228 |
| 6 |
200 |
0.7324561 |
0.0300375 |
228 |
| 7 |
200 |
0.8157895 |
0.0254758 |
228 |
| 8 |
200 |
0.8859649 |
0.0211574 |
228 |
| 9 |
200 |
0.8289474 |
0.0246963 |
228 |
| 10 |
200 |
0.6622807 |
0.0310901 |
228 |
| 11 |
200 |
0.5219298 |
0.0328752 |
228 |
| 12 |
200 |
0.4956140 |
0.0330940 |
228 |
| 13 |
200 |
0.8122271 |
0.0257102 |
229 |
| 14 |
200 |
0.7991266 |
0.0262606 |
229 |
| 15 |
200 |
0.5283843 |
0.0328931 |
229 |
| 16 |
200 |
0.7248908 |
0.0295432 |
229 |
| 17 |
200 |
0.7423581 |
0.0287846 |
229 |
| 18 |
200 |
0.7161572 |
0.0298782 |
229 |
| 19 |
200 |
0.6331878 |
0.0318186 |
229 |
| 20 |
200 |
0.2794760 |
0.0295100 |
229 |
| 21 |
200 |
0.4847162 |
0.0333618 |
229 |
| 22 |
200 |
0.7167382 |
0.0295297 |
233 |
| 23 |
200 |
0.9227468 |
0.0176087 |
233 |
| 24 |
200 |
0.7982833 |
0.0267591 |
233 |
| 25 |
200 |
0.8154506 |
0.0252528 |
233 |
| 26 |
200 |
0.9184549 |
0.0180106 |
233 |
| 27 |
200 |
0.7081545 |
0.0296456 |
233 |
| 28 |
200 |
0.6781116 |
0.0306953 |
233 |
| 29 |
200 |
0.5193133 |
0.0329520 |
233 |
| 30 |
200 |
0.6137339 |
0.0315099 |
233 |
| 31 |
200 |
0.5879828 |
0.0322446 |
233 |
| 32 |
200 |
0.7982833 |
0.0260931 |
233 |
| 33 |
200 |
0.8454936 |
0.0238030 |
233 |
| 34 |
200 |
0.8497854 |
0.0231153 |
233 |
| 35 |
200 |
0.7038627 |
0.0300123 |
233 |
| 36 |
200 |
0.7896996 |
0.0268366 |
233 |
| 37 |
200 |
0.7510730 |
0.0279496 |
233 |
| 38 |
200 |
0.7725322 |
0.0274050 |
233 |
| 39 |
200 |
0.9098712 |
0.0186795 |
233 |
| 40 |
200 |
0.6266094 |
0.0316937 |
233 |
| 41 |
200 |
0.7982833 |
0.0264097 |
233 |
| 1 |
300 |
0.7792208 |
0.0335713 |
154 |
| 2 |
300 |
0.6948052 |
0.0367692 |
154 |
| 3 |
300 |
0.8961039 |
0.0247005 |
154 |
| 4 |
300 |
0.8116883 |
0.0314149 |
154 |
| 5 |
300 |
0.8311688 |
0.0305324 |
154 |
| 6 |
300 |
0.7727273 |
0.0336127 |
154 |
| 7 |
300 |
0.8961039 |
0.0247896 |
154 |
| 8 |
300 |
0.9025974 |
0.0237054 |
154 |
| 9 |
300 |
0.8506494 |
0.0287374 |
154 |
| 10 |
300 |
0.7207792 |
0.0360011 |
154 |
| 11 |
300 |
0.5389610 |
0.0405681 |
154 |
| 12 |
300 |
0.6168831 |
0.0390268 |
154 |
| 13 |
300 |
0.8039216 |
0.0324074 |
153 |
| 14 |
300 |
0.8692810 |
0.0270840 |
153 |
| 15 |
300 |
0.6274510 |
0.0388870 |
153 |
| 16 |
300 |
0.6862745 |
0.0370400 |
153 |
| 17 |
300 |
0.7647059 |
0.0342877 |
153 |
| 18 |
300 |
0.7581699 |
0.0346978 |
153 |
| 19 |
300 |
0.6666667 |
0.0382592 |
153 |
| 20 |
300 |
0.4248366 |
0.0400938 |
153 |
| 21 |
300 |
0.5163399 |
0.0403266 |
153 |
| 22 |
300 |
0.7515152 |
0.0332127 |
165 |
| 23 |
300 |
0.9030303 |
0.0230893 |
165 |
| 24 |
300 |
0.8000000 |
0.0313300 |
165 |
| 25 |
300 |
0.8303030 |
0.0289923 |
165 |
| 26 |
300 |
0.9151515 |
0.0214337 |
165 |
| 27 |
300 |
0.7393939 |
0.0340140 |
165 |
| 28 |
300 |
0.7333333 |
0.0346152 |
165 |
| 29 |
300 |
0.5636364 |
0.0383845 |
165 |
| 30 |
300 |
0.6727273 |
0.0365283 |
165 |
| 31 |
300 |
0.6303030 |
0.0378202 |
165 |
| 32 |
300 |
0.7790698 |
0.0317100 |
172 |
| 33 |
300 |
0.7965116 |
0.0305897 |
172 |
| 34 |
300 |
0.7325581 |
0.0340885 |
172 |
| 35 |
300 |
0.6627907 |
0.0358372 |
172 |
| 36 |
300 |
0.7441860 |
0.0336642 |
172 |
| 37 |
300 |
0.8081395 |
0.0298452 |
172 |
| 38 |
300 |
0.7151163 |
0.0343136 |
172 |
| 39 |
300 |
0.8779070 |
0.0246360 |
172 |
| 40 |
300 |
0.5988372 |
0.0378870 |
172 |
| 41 |
300 |
0.7848837 |
0.0311216 |
172 |
| 1 |
400 |
0.7812500 |
0.0726224 |
32 |
| 2 |
400 |
0.8750000 |
0.0579086 |
32 |
| 3 |
400 |
0.7812500 |
0.0732291 |
32 |
| 4 |
400 |
0.4062500 |
0.0875292 |
32 |
| 5 |
400 |
0.5312500 |
0.0879502 |
32 |
| 6 |
400 |
0.6250000 |
0.0862821 |
32 |
| 7 |
400 |
0.8750000 |
0.0585302 |
32 |
| 8 |
400 |
0.8437500 |
0.0641500 |
32 |
| 9 |
400 |
0.7812500 |
0.0734022 |
32 |
| 10 |
400 |
0.6562500 |
0.0846850 |
32 |
| 11 |
400 |
0.5312500 |
0.0864236 |
32 |
| 12 |
400 |
0.3750000 |
0.0859247 |
32 |
| 13 |
400 |
0.7419355 |
0.0783643 |
31 |
| 14 |
400 |
0.7741935 |
0.0744586 |
31 |
| 15 |
400 |
0.4516129 |
0.0886908 |
31 |
| 16 |
400 |
0.4193548 |
0.0883812 |
31 |
| 17 |
400 |
0.5806452 |
0.0893970 |
31 |
| 18 |
400 |
0.4516129 |
0.0901393 |
31 |
| 19 |
400 |
0.5483871 |
0.0893454 |
31 |
| 20 |
400 |
0.2258065 |
0.0749255 |
31 |
| 21 |
400 |
0.6451613 |
0.0845375 |
31 |
| 22 |
400 |
0.7058824 |
0.0781173 |
34 |
| 23 |
400 |
0.7647059 |
0.0735598 |
34 |
| 24 |
400 |
0.6176471 |
0.0834099 |
34 |
| 25 |
400 |
0.7941176 |
0.0695505 |
34 |
| 26 |
400 |
0.7647059 |
0.0730556 |
34 |
| 27 |
400 |
0.7058824 |
0.0778615 |
34 |
| 28 |
400 |
0.6176471 |
0.0835097 |
34 |
| 29 |
400 |
0.5882353 |
0.0842227 |
34 |
| 30 |
400 |
0.6470588 |
0.0816309 |
34 |
| 31 |
400 |
0.5882353 |
0.0842483 |
34 |
| 32 |
400 |
0.8611111 |
0.0579035 |
36 |
| 33 |
400 |
0.8888889 |
0.0528892 |
36 |
| 34 |
400 |
0.7777778 |
0.0691756 |
36 |
| 35 |
400 |
0.5833333 |
0.0825406 |
36 |
| 36 |
400 |
0.7500000 |
0.0720095 |
36 |
| 37 |
400 |
0.6666667 |
0.0799192 |
36 |
| 38 |
400 |
0.7222222 |
0.0743427 |
36 |
| 39 |
400 |
0.8611111 |
0.0579041 |
36 |
| 40 |
400 |
0.9166667 |
0.0463602 |
36 |
| 41 |
400 |
0.8055556 |
0.0662782 |
36 |
Winter 2018 by Section and Overall vs. Original Terms
Not including section 400 performance for individual sections because size of error bars makes it difficult to compare to the other sections. However, the WN2018 All data points do include section 400. So in Question 4, for example, the WN2018 All percent correct point is lower than the other 3 sections. But section 400 is much lower (~0.4), which accounts for this.










