edX assignment link: http://bit.ly/2KE2g00

The Programme for International Student Assessment (PISA) is a test given every three years to 15-year-old students from around the world to evaluate their performance in mathematics, reading, and science. This test provides a quantitative way to compare the performance of students from different parts of the world. In this homework assignment, we will predict the reading scores of students from the United States of America on the 2009 PISA exam.

The datasets pisa2009train.csv and pisa2009test.csv contain information about the demographics and schools for American students taking the exam, derived from 2009 PISA Public-Use Data Files distributed by the United States National Center for Education Statistics (NCES). While the datasets are not supposed to contain identifying information about students taking the test, by using the data you are bound by the NCES data use agreement, which prohibits any attempt to determine the identity of any student in the datasets.

Each row in the datasets pisa2009train.csv and pisa2009test.csv represents one student taking the exam. The datasets have the following variables:


Section 1

1.1 Dataset size

Load the training and testing sets using the read.csv() function, and save them as variables with the names pisaTrain and pisaTest.

How many students are there in the training set?

TR = read.csv("data/pisa2009train.csv")
TS = read.csv("data/pisa2009test.csv")
nrow(TR)
[1] 3663

1.2 Summarizing the dataset

Using tapply() on pisaTrain, what is the average reading test score of males?

tapply(TR$readingScore,TR$male,mean) #ans: 483.5
    0     1 
512.9 483.5 

Of females?

#ans: 512.9

1.3 Locating missing values

Which variables are missing data in at least one observation in the training set? Select all that apply.

  • grade
  • male
  • (#)raceeth
  • (#)preschool
  • (#)expectBachelors
  • (#)motherHS
  • (#)motherBachelors
  • (#)motherWork
  • (#)fatherHS
  • (#)fatherBachelors
  • (#)fatherWork
  • (#)selfBornUS
  • (#)motherBornUS
  • (#)fatherBornUS
  • (#)englishAtHome
  • (#)computerForSchoolwork
  • (#)read30MinsADay
  • (#)minutesPerWeekEnglish
  • (#)studentsInEnglish
  • (#)schoolHasLibrary
  • publicSchool
  • urban
  • (#)schoolSize
  • readingScore
#summary(pisaTrain)
#or
is.na(TR) %>% colSums %>% {names(.)[. > 0]} #name?
 [1] "raceeth"               "preschool"             "expectBachelors"      
 [4] "motherHS"              "motherBachelors"       "motherWork"           
 [7] "fatherHS"              "fatherBachelors"       "fatherWork"           
[10] "selfBornUS"            "motherBornUS"          "fatherBornUS"         
[13] "englishAtHome"         "computerForSchoolwork" "read30MinsADay"       
[16] "minutesPerWeekEnglish" "studentsInEnglish"     "schoolHasLibrary"     
[19] "schoolSize"           

1.4 Removing missing values

Linear regression discards observations with missing data, so we will remove all such observations from the training and testing sets. Later in the course, we will learn about imputation, which deals with missing data by filling in missing values with plausible information.

Type the following commands into your R console to remove observations with any missing value from pisaTrain and pisaTest:

pisaTrain = na.omit(pisaTrain)

pisaTest = na.omit(pisaTest)

How many observations are now in the training set?

TR = na.omit(TR)
TS = na.omit(TS)
nrow(TR)
[1] 2414

How many observations are now in the testing set?

nrow(TR)
[1] 2414

Section 2

2.1

Factor variables are variables that take on a discrete set of values, like the “Region” variable in the WHO dataset from the second lecture of Unit 1. This is an unordered factor because there isn’t any natural ordering between the levels. An ordered factor has a natural ordering between the levels (an example would be the classifications “large,” “medium,” and “small”).

Which of the following variables is an unordered factor with at least 3 levels? (Select all that apply.)

  • grade
  • male
  • (#)raceeth
levels(TR$raceeth)
[1] "American Indian/Alaska Native"          "Asian"                                 
[3] "Black"                                  "Hispanic"                              
[5] "More than one race"                     "Native Hawaiian/Other Pacific Islander"
[7] "White"                                 

Which of the following variables is an ordered factor with at least 3 levels? (Select all that apply.)

TR$grade  %<>% as.factor()
levels(TR$grade)
[1] "8"  "9"  "10" "11" "12"
#grade

2.2 Unordered factors in regression models

To include unordered factors in a linear regression model, we define one level as the “reference level” and add a binary variable for each of the remaining levels. In this way, a factor with n levels is replaced by n-1 binary variables. The reference level is typically selected to be the most frequently occurring level in the dataset.

As an example, consider the unordered factor variable “color”, with levels “red”, “green”, and “blue”. If “green” were the reference level, then we would add binary variables “colorred” and “colorblue” to a linear regression problem. All red examples would have colorred=1 and colorblue=0. All blue examples would have colorred=0 and colorblue=1. All green examples would have colorred=0 and colorblue=0.

Now, consider the variable “raceeth” in our problem, which has levels “American Indian/Alaska Native”, “Asian”, “Black”, “Hispanic”, “More than one race”, “Native Hawaiian/Other Pacific Islander”, and “White”. Because it is the most common in our population, we will select White as the reference level.

Which binary variables will be included in the regression model? (Select all that apply.)

#除了receethWhite以外的全部

2.3 Example unordered factors

Consider again adding our unordered factor race to the regression model with reference level “White”.

For a student who is Asian, which binary variables would be set to 0? All remaining variables will be set to 1. (Select all that apply.)

  • (#)raceethAmerican Indian/Alaska Native
  • raceethAsian
  • (#)raceethBlack
  • (#)raceethHispanic
  • (#)raceethMore than one race
  • (#)raceethNative Hawaiian/Other Pacific Islander

For a student who is white, which binary variables would be set to 0? All remaining variables will be set to 1. (Select all that apply.)

  • (#)raceethAmerican Indian/Alaska Native
  • (#)raceethAsian
  • (#)raceethBlack
  • (#)raceethHispanic
  • (#)raceethMore than one race
  • (#)raceethNative Hawaiian/Other Pacific Islander

Section 3

3.1 Building a model

Because the race variable takes on text values, it was loaded as a factor variable when we read in the dataset with read.csv() – you can see this when you run str(pisaTrain) or str(pisaTest). However, by default R selects the first level alphabetically (“American Indian/Alaska Native”) as the reference level of our factor instead of the most common level (“White”). Set the reference level of the factor by typing the following two lines in your R console:

pisaTrain$raceeth = relevel(pisaTrain$raceeth, "White")

pisaTest$raceeth = relevel(pisaTest$raceeth, "White")

Now, build a linear regression model (call it lmScore) using the training set to predict readingScore using all the remaining variables.

It would be time-consuming to type all the variables, but R provides the shorthand notation “readingScore ~ .” to mean “predict readingScore using all the other variables in the data frame.” The period is used to replace listing out all of the independent variables. As an example, if your dependent variable is called “Y”, your independent variables are called “X1”, “X2”, and “X3”, and your training data set is called “Train”, instead of the regular notation:

LinReg = lm(Y ~ X1 + X2 + X3, data = Train)

You would use the following command to build your model:

LinReg = lm(Y ~ ., data = Train)

What is the Multiple R-squared value of lmScore on the training set?

TR$raceeth = relevel(TR$raceeth, "White")
TS$raceeth = relevel(TS$raceeth, "White")
lmScore = lm(readingScore~.,TR)
summary(lmScore)

Call:
lm(formula = readingScore ~ ., data = TR)

Residuals:
    Min      1Q  Median      3Q     Max 
-247.44  -48.86    1.86   49.77  217.18 

Coefficients:
                                               Estimate Std. Error t value
(Intercept)                                   143.76633   33.84123    4.25
grade                                          29.54271    2.93740   10.06
male                                          -14.52165    3.15593   -4.60
raceethAmerican Indian/Alaska Native          -67.27733   16.78693   -4.01
raceethAsian                                   -4.11033    9.22007   -0.45
raceethBlack                                  -67.01235    5.46088  -12.27
raceethHispanic                               -38.97549    5.17774   -7.53
raceethMore than one race                     -16.92252    8.49627   -1.99
raceethNative Hawaiian/Other Pacific Islander  -5.10160   17.00570   -0.30
preschool                                      -4.46367    3.48606   -1.28
expectBachelors                                55.26708    4.29389   12.87
motherHS                                        6.05877    6.09142    0.99
motherBachelors                                12.63807    3.86146    3.27
motherWork                                     -2.80910    3.52183   -0.80
fatherHS                                        4.01821    5.57927    0.72
fatherBachelors                                16.92975    3.99525    4.24
fatherWork                                      5.84280    4.39598    1.33
selfBornUS                                     -3.80628    7.32372   -0.52
motherBornUS                                   -8.79815    6.58762   -1.34
fatherBornUS                                    4.30699    6.26387    0.69
englishAtHome                                   8.03569    6.85949    1.17
computerForSchoolwork                          22.50023    5.70256    3.95
read30MinsADay                                 34.87192    3.40845   10.23
minutesPerWeekEnglish                           0.01279    0.01071    1.19
studentsInEnglish                              -0.28663    0.22782   -1.26
schoolHasLibrary                               12.21509    9.26488    1.32
publicSchool                                  -16.85748    6.72561   -2.51
urban                                          -0.11013    3.96272   -0.03
schoolSize                                      0.00654    0.00220    2.98
                                                       Pr(>|t|)    
(Intercept)                                   0.000022370704602 ***
grade                                                   < 2e-16 ***
male                                          0.000004416601017 ***
raceethAmerican Indian/Alaska Native          0.000063188108554 ***
raceethAsian                                             0.6558    
raceethBlack                                            < 2e-16 ***
raceethHispanic                               0.000000000000073 ***
raceethMore than one race                                0.0465 *  
raceethNative Hawaiian/Other Pacific Islander            0.7642    
preschool                                                0.2005    
expectBachelors                                         < 2e-16 ***
motherHS                                                 0.3200    
motherBachelors                                          0.0011 ** 
motherWork                                               0.4252    
fatherHS                                                 0.4715    
fatherBachelors                               0.000023464767187 ***
fatherWork                                               0.1839    
selfBornUS                                               0.6033    
motherBornUS                                             0.1818    
fatherBornUS                                             0.4918    
englishAtHome                                            0.2415    
computerForSchoolwork                         0.000081887761607 ***
read30MinsADay                                          < 2e-16 ***
minutesPerWeekEnglish                                    0.2326    
studentsInEnglish                                        0.2085    
schoolHasLibrary                                         0.1875    
publicSchool                                             0.0123 *  
urban                                                    0.9778    
schoolSize                                               0.0029 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 73.8 on 2385 degrees of freedom
Multiple R-squared:  0.325, Adjusted R-squared:  0.317 
F-statistic:   41 on 28 and 2385 DF,  p-value: <2e-16
#R2 = 0.325

Note that this R-squared is lower than the ones for the models we saw in the lectures and recitation. This does not necessarily imply that the model is of poor quality. More often than not, it simply means that the prediction problem at hand (predicting a student’s test score based on demographic and school-related variables) is more difficult than other prediction problems (like predicting a team’s number of wins from their runs scored and allowed, or predicting the quality of wine from weather conditions).

3.2 Computing the root-mean squared error of the model

What is the training-set root-mean squared error (RMSE) of lmScore?

pred = predict(lmScore)
SSE = sum((pred - TR$readingScore)^2) #sigma_sum((原本值-預測值)^2)
SST = sum((mean(TR$readingScore) - TR$readingScore)^2)
R2 = 1 - SSE/SST
R2
[1] 0.3251
RMSE = sqrt(SSE/nrow(TR))
RMSE
[1] 73.37

3.3 Comparing predictions for similar students

Consider two students A and B. They have all variable values the same, except that student A is in grade 11 and student B is in grade 9. What is the predicted reading score of student A minus the predicted reading score of student B?

  • -59.09
  • -29.54
  • 0
  • 29.54
  • (#)59.09
  • The difference cannot be determined without more information about the two students
#從前面model的summary得知,grade的estimate是29.54271,也就是每差一個grade,socre會增加29.54271
29.54271 *2 
[1] 59.09

3.4 Interpreting model coefficients

What is the meaning of the coefficient associated with variable raceethAsian?

  • Predicted average reading score of an Asian student
  • (#)Difference between the average reading score of an Asian student and the average reading score of a white student
  • Difference between the average reading score of an Asian student and the average reading score of all the students in the dataset
  • (#)Predicted difference in the reading score between an Asian student and a white student who is otherwise identical

3.5 Identifying variables lacking statistical significance

Based on the significance codes, which variables are candidates for removal from the model? Select all that apply. (We’ll assume that the factor variable raceeth should only be removed if none of its levels are significant.)

  • grade
  • male
  • raceeth
  • (#)preschool
  • expectBachelors
  • motherHS
  • motherBachelors
  • motherWork
  • fatherHS
  • fatherBachelors
  • fatherWork
  • (#)selfBornUS
  • (#)motherBornUS
  • (#)fatherBornUS
  • (#)englishAtHome
  • computerForSchoolwork
  • read30MinsADay
  • (#)minutesPerWeekEnglish
  • (#)studentsInEnglish
  • (#)schoolHasLibrary
  • publicSchool
  • (#)urban
  • schoolSize

Section 4

4.1 Predicting on unseen data

Using the “predict” function and supplying the “newdata” argument, use the lmScore model to predict the reading scores of students in pisaTest. Call this vector of predictions “predTest”. Do not change the variables in the model (for example, do not remove variables that we found were not significant in the previous part of this problem). Use the summary function to describe the test set predictions.

What is the range between the maximum and minimum predicted reading score on the test set?

predTS = predict(lmScore,TS)
summary(predTS)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
    353     482     524     517     556     638 

4.2 Test set SSE and RMSE

What is the sum of squared errors (SSE) of lmScore on the testing set?

SSE = sum((TS$readingScore - predTS)^2)
SSE
[1] 5762082
SST = sum(TS$readingScore - mean(TS$readingScore)^2)

What is the root-mean squared error (RMSE) of lmScore on the testing set?

RMSE
[1] 76.29

4.3 Baseline prediction and test-set SSE

What is the predicted test score used in the baseline model? Remember to compute this value using the training set and not the test set.

baseline
[1] 518

What is the sum of squared errors of the baseline model on the testing set? HINT: We call the sum of squared errors for the baseline model the total sum of squares (SST).

SSE = sum((baseline - TS$readingScore)^2)
SSE
[1] 7802354

4.4 Test-set R-squared

What is the test-set R-squared value of lmScore?

R2
[1] 0.2612
LS0tCnRpdGxlOiAiQVMyLTIgUmVhZGluZyBUZXN0IFNjb3JlcyIKYXV0aG9yOiAi6Zmz6Z+75Y2JIEIwMzQwMjAwMjciCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCmVkWCBhc3NpZ25tZW50IGxpbms6IGh0dHA6Ly9iaXQubHkvMktFMmcwMAoKVGhlIFByb2dyYW1tZSBmb3IgSW50ZXJuYXRpb25hbCBTdHVkZW50IEFzc2Vzc21lbnQgKFBJU0EpIGlzIGEgdGVzdCBnaXZlbiBldmVyeSB0aHJlZSB5ZWFycyB0byAxNS15ZWFyLW9sZCBzdHVkZW50cyBmcm9tIGFyb3VuZCB0aGUgd29ybGQgdG8gZXZhbHVhdGUgdGhlaXIgcGVyZm9ybWFuY2UgaW4gbWF0aGVtYXRpY3MsIHJlYWRpbmcsIGFuZCBzY2llbmNlLiBUaGlzIHRlc3QgcHJvdmlkZXMgYSBxdWFudGl0YXRpdmUgd2F5IHRvIGNvbXBhcmUgdGhlIHBlcmZvcm1hbmNlIG9mIHN0dWRlbnRzIGZyb20gZGlmZmVyZW50IHBhcnRzIG9mIHRoZSB3b3JsZC4gSW4gdGhpcyBob21ld29yayBhc3NpZ25tZW50LCB3ZSB3aWxsIHByZWRpY3QgdGhlIHJlYWRpbmcgc2NvcmVzIG9mIHN0dWRlbnRzIGZyb20gdGhlIFVuaXRlZCBTdGF0ZXMgb2YgQW1lcmljYSBvbiB0aGUgMjAwOSBQSVNBIGV4YW0uCgpUaGUgZGF0YXNldHMgcGlzYTIwMDl0cmFpbi5jc3YgYW5kIHBpc2EyMDA5dGVzdC5jc3YgY29udGFpbiBpbmZvcm1hdGlvbiBhYm91dCB0aGUgZGVtb2dyYXBoaWNzIGFuZCBzY2hvb2xzIGZvciBBbWVyaWNhbiBzdHVkZW50cyB0YWtpbmcgdGhlIGV4YW0sIGRlcml2ZWQgZnJvbSAyMDA5IFBJU0EgUHVibGljLVVzZSBEYXRhIEZpbGVzIGRpc3RyaWJ1dGVkIGJ5IHRoZSBVbml0ZWQgU3RhdGVzIE5hdGlvbmFsIENlbnRlciBmb3IgRWR1Y2F0aW9uIFN0YXRpc3RpY3MgKE5DRVMpLiBXaGlsZSB0aGUgZGF0YXNldHMgYXJlIG5vdCBzdXBwb3NlZCB0byBjb250YWluIGlkZW50aWZ5aW5nIGluZm9ybWF0aW9uIGFib3V0IHN0dWRlbnRzIHRha2luZyB0aGUgdGVzdCwgYnkgdXNpbmcgdGhlIGRhdGEgeW91IGFyZSBib3VuZCBieSB0aGUgTkNFUyBkYXRhIHVzZSBhZ3JlZW1lbnQsIHdoaWNoIHByb2hpYml0cyBhbnkgYXR0ZW1wdCB0byBkZXRlcm1pbmUgdGhlIGlkZW50aXR5IG9mIGFueSBzdHVkZW50IGluIHRoZSBkYXRhc2V0cy4KCkVhY2ggcm93IGluIHRoZSBkYXRhc2V0cyBwaXNhMjAwOXRyYWluLmNzdiBhbmQgcGlzYTIwMDl0ZXN0LmNzdiByZXByZXNlbnRzIG9uZSBzdHVkZW50IHRha2luZyB0aGUgZXhhbS4gVGhlIGRhdGFzZXRzIGhhdmUgdGhlIGZvbGxvd2luZyB2YXJpYWJsZXM6CgorIGdyYWRlOiBUaGUgZ3JhZGUgaW4gc2Nob29sIG9mIHRoZSBzdHVkZW50IChtb3N0IDE1LXllYXItb2xkcyBpbiBBbWVyaWNhIGFyZSBpbiAxMHRoIGdyYWRlKQoKKyBtYWxlOiBXaGV0aGVyIHRoZSBzdHVkZW50IGlzIG1hbGUgKDEvMCkKCisgcmFjZWV0aDogVGhlIHJhY2UvZXRobmljaXR5IGNvbXBvc2l0ZSjnqK7ml48pIG9mIHRoZSBzdHVkZW50CgorIHByZXNjaG9vbDogV2hldGhlciB0aGUgc3R1ZGVudCBhdHRlbmRlZCBwcmVzY2hvb2wgKDEvMCkKCisgZXhwZWN0QmFjaGVsb3JzOiBXaGV0aGVyIHRoZSBzdHVkZW50IGV4cGVjdHMgdG8gb2J0YWluIGEgYmFjaGVsb3IncyBkZWdyZWUgKDEvMCkKCisgbW90aGVySFM6IFdoZXRoZXIgdGhlIHN0dWRlbnQncyBtb3RoZXIgY29tcGxldGVkIGhpZ2ggc2Nob29sICgxLzApCgorIG1vdGhlckJhY2hlbG9yczogV2hldGhlciB0aGUgc3R1ZGVudCdzIG1vdGhlciBvYnRhaW5lZCBhIGJhY2hlbG9yJ3MgZGVncmVlICgxLzApCgorIG1vdGhlcldvcms6IFdoZXRoZXIgdGhlIHN0dWRlbnQncyBtb3RoZXIgaGFzIHBhcnQtdGltZSBvciBmdWxsLXRpbWUgd29yayAoMS8wKQoKKyBmYXRoZXJIUzogV2hldGhlciB0aGUgc3R1ZGVudCdzIGZhdGhlciBjb21wbGV0ZWQgaGlnaCBzY2hvb2wgKDEvMCkKCisgZmF0aGVyQmFjaGVsb3JzOiBXaGV0aGVyIHRoZSBzdHVkZW50J3MgZmF0aGVyIG9idGFpbmVkIGEgYmFjaGVsb3IncyBkZWdyZWUgKDEvMCkKCisgZmF0aGVyV29yazogV2hldGhlciB0aGUgc3R1ZGVudCdzIGZhdGhlciBoYXMgcGFydC10aW1lIG9yIGZ1bGwtdGltZSB3b3JrICgxLzApCgorIHNlbGZCb3JuVVM6IFdoZXRoZXIgdGhlIHN0dWRlbnQgd2FzIGJvcm4gaW4gdGhlIFVuaXRlZCBTdGF0ZXMgb2YgQW1lcmljYSAoMS8wKQoKKyBtb3RoZXJCb3JuVVM6IFdoZXRoZXIgdGhlIHN0dWRlbnQncyBtb3RoZXIgd2FzIGJvcm4gaW4gdGhlIFVuaXRlZCBTdGF0ZXMgb2YgQW1lcmljYSAoMS8wKQoKKyBmYXRoZXJCb3JuVVM6IFdoZXRoZXIgdGhlIHN0dWRlbnQncyBmYXRoZXIgd2FzIGJvcm4gaW4gdGhlIFVuaXRlZCBTdGF0ZXMgb2YgQW1lcmljYSAoMS8wKQoKKyBlbmdsaXNoQXRIb21lOiBXaGV0aGVyIHRoZSBzdHVkZW50IHNwZWFrcyBFbmdsaXNoIGF0IGhvbWUgKDEvMCkKCisgY29tcHV0ZXJGb3JTY2hvb2x3b3JrOiBXaGV0aGVyIHRoZSBzdHVkZW50IGhhcyBhY2Nlc3MgdG8gYSBjb21wdXRlciBmb3Igc2Nob29sd29yayAoMS8wKQoKKyByZWFkMzBNaW5zQURheTogV2hldGhlciB0aGUgc3R1ZGVudCByZWFkcyBmb3IgcGxlYXN1cmUgZm9yIDMwIG1pbnV0ZXMvZGF5ICgxLzApCgorIG1pbnV0ZXNQZXJXZWVrRW5nbGlzaDogVGhlIG51bWJlciBvZiBtaW51dGVzIHBlciB3ZWVrIHRoZSBzdHVkZW50IHNwZW5kIGluIEVuZ2xpc2ggY2xhc3MKCisgc3R1ZGVudHNJbkVuZ2xpc2g6IFRoZSBudW1iZXIgb2Ygc3R1ZGVudHMgaW4gdGhpcyBzdHVkZW50J3MgRW5nbGlzaCBjbGFzcyBhdCBzY2hvb2wKCisgc2Nob29sSGFzTGlicmFyeTogV2hldGhlciB0aGlzIHN0dWRlbnQncyBzY2hvb2wgaGFzIGEgbGlicmFyeSAoMS8wKQoKKyBwdWJsaWNTY2hvb2w6IFdoZXRoZXIgdGhpcyBzdHVkZW50IGF0dGVuZHMgYSBwdWJsaWMgc2Nob29sICgxLzApCgorIHVyYmFuOiBXaGV0aGVyIHRoaXMgc3R1ZGVudCdzIHNjaG9vbCBpcyBpbiBhbiB1cmJhbiBhcmVhICgxLzApCgorIHNjaG9vbFNpemU6IFRoZSBudW1iZXIgb2Ygc3R1ZGVudHMgaW4gdGhpcyBzdHVkZW50J3Mgc2Nob29sCgorIHJlYWRpbmdTY29yZTogVGhlIHN0dWRlbnQncyByZWFkaW5nIHNjb3JlLCBvbiBhIDEwMDAtcG9pbnQgc2NhbGUKCi0gLSAtCgojIyMgU2VjdGlvbiAxCiAKIyMjIyAxLjEgRGF0YXNldCBzaXplCkxvYWQgdGhlIHRyYWluaW5nIGFuZCB0ZXN0aW5nIHNldHMgdXNpbmcgdGhlIHJlYWQuY3N2KCkgZnVuY3Rpb24sIGFuZCBzYXZlIHRoZW0gYXMgdmFyaWFibGVzIHdpdGggdGhlIG5hbWVzIHBpc2FUcmFpbiBhbmQgcGlzYVRlc3QuCgpIb3cgbWFueSBzdHVkZW50cyBhcmUgdGhlcmUgaW4gdGhlIHRyYWluaW5nIHNldD8KCmBgYHtyfQpUUiA9IHJlYWQuY3N2KCJkYXRhL3Bpc2EyMDA5dHJhaW4uY3N2IikKVFMgPSByZWFkLmNzdigiZGF0YS9waXNhMjAwOXRlc3QuY3N2IikKCm5yb3coVFIpCgpgYGAKCgojIyMjIDEuMiBTdW1tYXJpemluZyB0aGUgZGF0YXNldApVc2luZyB0YXBwbHkoKSBvbiBwaXNhVHJhaW4sIHdoYXQgaXMgdGhlIGF2ZXJhZ2UgcmVhZGluZyB0ZXN0IHNjb3JlIG9mIG1hbGVzPwoKYGBge3J9CnRhcHBseShUUiRyZWFkaW5nU2NvcmUsVFIkbWFsZSxtZWFuKSAjYW5zOiA0ODMuNQoKYGBgCgpPZiBmZW1hbGVzPwoKYGBge3J9CiNhbnM6IDUxMi45CgpgYGAKCiMjIyMxLjMgTG9jYXRpbmcgbWlzc2luZyB2YWx1ZXMKV2hpY2ggdmFyaWFibGVzIGFyZSBtaXNzaW5nIGRhdGEgaW4gYXQgbGVhc3Qgb25lIG9ic2VydmF0aW9uIGluIHRoZSB0cmFpbmluZyBzZXQ/IFNlbGVjdCBhbGwgdGhhdCBhcHBseS4KCisgZ3JhZGUKKyBtYWxlCisgKCMpcmFjZWV0aAorICgjKXByZXNjaG9vbAorICgjKWV4cGVjdEJhY2hlbG9ycworICgjKW1vdGhlckhTCisgKCMpbW90aGVyQmFjaGVsb3JzCisgKCMpbW90aGVyV29yaworICgjKWZhdGhlckhTCisgKCMpZmF0aGVyQmFjaGVsb3JzCisgKCMpZmF0aGVyV29yaworICgjKXNlbGZCb3JuVVMKKyAoIyltb3RoZXJCb3JuVVMKKyAoIylmYXRoZXJCb3JuVVMKKyAoIyllbmdsaXNoQXRIb21lCisgKCMpY29tcHV0ZXJGb3JTY2hvb2x3b3JrCisgKCMpcmVhZDMwTWluc0FEYXkKKyAoIyltaW51dGVzUGVyV2Vla0VuZ2xpc2gKKyAoIylzdHVkZW50c0luRW5nbGlzaAorICgjKXNjaG9vbEhhc0xpYnJhcnkKKyBwdWJsaWNTY2hvb2wKKyB1cmJhbgorICgjKXNjaG9vbFNpemUKKyByZWFkaW5nU2NvcmUKCmBgYHtyfQojc3VtbWFyeShwaXNhVHJhaW4pCgojb3IKCmlzLm5hKFRSKSAlPiUgY29sU3VtcyAlPiUge25hbWVzKC4pWy4gPiAwXX0gI25hbWU/CmBgYAoKCiMjIyMxLjQgUmVtb3ZpbmcgbWlzc2luZyB2YWx1ZXMKCkxpbmVhciByZWdyZXNzaW9uIGRpc2NhcmRzIG9ic2VydmF0aW9ucyB3aXRoIG1pc3NpbmcgZGF0YSwgc28gd2Ugd2lsbCByZW1vdmUgYWxsIHN1Y2ggb2JzZXJ2YXRpb25zIGZyb20gdGhlIHRyYWluaW5nIGFuZCB0ZXN0aW5nIHNldHMuIExhdGVyIGluIHRoZSBjb3Vyc2UsIHdlIHdpbGwgbGVhcm4gYWJvdXQgaW1wdXRhdGlvbiwgd2hpY2ggZGVhbHMgd2l0aCBtaXNzaW5nIGRhdGEgYnkgZmlsbGluZyBpbiBtaXNzaW5nIHZhbHVlcyB3aXRoIHBsYXVzaWJsZSBpbmZvcm1hdGlvbi4KClR5cGUgdGhlIGZvbGxvd2luZyBjb21tYW5kcyBpbnRvIHlvdXIgUiBjb25zb2xlIHRvIHJlbW92ZSBvYnNlcnZhdGlvbnMgd2l0aCBhbnkgbWlzc2luZyB2YWx1ZSBmcm9tIHBpc2FUcmFpbiBhbmQgcGlzYVRlc3Q6CgogICAgcGlzYVRyYWluID0gbmEub21pdChwaXNhVHJhaW4pCgogICAgcGlzYVRlc3QgPSBuYS5vbWl0KHBpc2FUZXN0KQoKSG93IG1hbnkgb2JzZXJ2YXRpb25zIGFyZSBub3cgaW4gdGhlIHRyYWluaW5nIHNldD8KCmBgYHtyfQoKVFIgPSBuYS5vbWl0KFRSKQpUUyA9IG5hLm9taXQoVFMpCgpucm93KFRSKQoKYGBgCgpIb3cgbWFueSBvYnNlcnZhdGlvbnMgYXJlIG5vdyBpbiB0aGUgdGVzdGluZyBzZXQ/CgpgYGB7cn0KbnJvdyhUUikKCmBgYAoKCgojIyMgU2VjdGlvbiAyCgoKIyMjIzIuMQoKRmFjdG9yIHZhcmlhYmxlcyBhcmUgdmFyaWFibGVzIHRoYXQgdGFrZSBvbiBhIGRpc2NyZXRlIHNldCBvZiB2YWx1ZXMsIGxpa2UgdGhlICJSZWdpb24iIHZhcmlhYmxlIGluIHRoZSBXSE8gZGF0YXNldCBmcm9tIHRoZSBzZWNvbmQgbGVjdHVyZSBvZiBVbml0IDEuIFRoaXMgaXMgYW4gdW5vcmRlcmVkIGZhY3RvciBiZWNhdXNlIHRoZXJlIGlzbid0IGFueSBuYXR1cmFsIG9yZGVyaW5nIGJldHdlZW4gdGhlIGxldmVscy4gQW4gb3JkZXJlZCBmYWN0b3IgaGFzIGEgbmF0dXJhbCBvcmRlcmluZyBiZXR3ZWVuIHRoZSBsZXZlbHMgKGFuIGV4YW1wbGUgd291bGQgYmUgdGhlIGNsYXNzaWZpY2F0aW9ucyAibGFyZ2UsIiAibWVkaXVtLCIgYW5kICJzbWFsbCIpLgoKV2hpY2ggb2YgdGhlIGZvbGxvd2luZyB2YXJpYWJsZXMgaXMgYW4gdW5vcmRlcmVkIGZhY3RvciB3aXRoIGF0IGxlYXN0IDMgbGV2ZWxzPyAoU2VsZWN0IGFsbCB0aGF0IGFwcGx5LikKCisgZ3JhZGUKKyBtYWxlCisgKCMpcmFjZWV0aAoKYGBge3J9CmxldmVscyhUUiRyYWNlZXRoKQoKYGBgCgpXaGljaCBvZiB0aGUgZm9sbG93aW5nIHZhcmlhYmxlcyBpcyBhbiBvcmRlcmVkIGZhY3RvciB3aXRoIGF0IGxlYXN0IDMgbGV2ZWxzPyAoU2VsZWN0IGFsbCB0aGF0IGFwcGx5LikKCmBgYHtyfQpUUiRncmFkZSAgJTw+JSBhcy5mYWN0b3IoKQpsZXZlbHMoVFIkZ3JhZGUpCgojZ3JhZGUKCmBgYAoKIyMjIyAyLjIgVW5vcmRlcmVkIGZhY3RvcnMgaW4gcmVncmVzc2lvbiBtb2RlbHMKClRvIGluY2x1ZGUgdW5vcmRlcmVkIGZhY3RvcnMgaW4gYSBsaW5lYXIgcmVncmVzc2lvbiBtb2RlbCwgd2UgZGVmaW5lIG9uZSBsZXZlbCBhcyB0aGUgInJlZmVyZW5jZSBsZXZlbCIgYW5kIGFkZCBhIGJpbmFyeSB2YXJpYWJsZSBmb3IgZWFjaCBvZiB0aGUgcmVtYWluaW5nIGxldmVscy4gSW4gdGhpcyB3YXksIGEgZmFjdG9yIHdpdGggbiBsZXZlbHMgaXMgcmVwbGFjZWQgYnkgbi0xIGJpbmFyeSB2YXJpYWJsZXMuIFRoZSByZWZlcmVuY2UgbGV2ZWwgaXMgdHlwaWNhbGx5IHNlbGVjdGVkIHRvIGJlIHRoZSBtb3N0IGZyZXF1ZW50bHkgb2NjdXJyaW5nIGxldmVsIGluIHRoZSBkYXRhc2V0LgoKQXMgYW4gZXhhbXBsZSwgY29uc2lkZXIgdGhlIHVub3JkZXJlZCBmYWN0b3IgdmFyaWFibGUgImNvbG9yIiwgd2l0aCBsZXZlbHMgInJlZCIsICJncmVlbiIsIGFuZCAiYmx1ZSIuIElmICJncmVlbiIgd2VyZSB0aGUgcmVmZXJlbmNlIGxldmVsLCB0aGVuIHdlIHdvdWxkIGFkZCBiaW5hcnkgdmFyaWFibGVzICJjb2xvcnJlZCIgYW5kICJjb2xvcmJsdWUiIHRvIGEgbGluZWFyIHJlZ3Jlc3Npb24gcHJvYmxlbS4gQWxsIHJlZCBleGFtcGxlcyB3b3VsZCBoYXZlIGNvbG9ycmVkPTEgYW5kIGNvbG9yYmx1ZT0wLiBBbGwgYmx1ZSBleGFtcGxlcyB3b3VsZCBoYXZlIGNvbG9ycmVkPTAgYW5kIGNvbG9yYmx1ZT0xLiBBbGwgZ3JlZW4gZXhhbXBsZXMgd291bGQgaGF2ZSBjb2xvcnJlZD0wIGFuZCBjb2xvcmJsdWU9MC4KCk5vdywgY29uc2lkZXIgdGhlIHZhcmlhYmxlICJyYWNlZXRoIiBpbiBvdXIgcHJvYmxlbSwgd2hpY2ggaGFzIGxldmVscyAiQW1lcmljYW4gSW5kaWFuL0FsYXNrYSBOYXRpdmUiLCAiQXNpYW4iLCAiQmxhY2siLCAiSGlzcGFuaWMiLCAiTW9yZSB0aGFuIG9uZSByYWNlIiwgIk5hdGl2ZSBIYXdhaWlhbi9PdGhlciBQYWNpZmljIElzbGFuZGVyIiwgYW5kICJXaGl0ZSIuIEJlY2F1c2UgaXQgaXMgdGhlIG1vc3QgY29tbW9uIGluIG91ciBwb3B1bGF0aW9uLCB3ZSB3aWxsIHNlbGVjdCBXaGl0ZSBhcyB0aGUgcmVmZXJlbmNlIGxldmVsLgoKCldoaWNoIGJpbmFyeSB2YXJpYWJsZXMgd2lsbCBiZSBpbmNsdWRlZCBpbiB0aGUgcmVncmVzc2lvbiBtb2RlbD8gKFNlbGVjdCBhbGwgdGhhdCBhcHBseS4pCgoKYGBge3J9CiPpmaTkuoZyZWNlZXRoV2hpdGXku6XlpJbnmoTlhajpg6gKYGBgCgojIyMjIDIuMyBFeGFtcGxlIHVub3JkZXJlZCBmYWN0b3JzIAoKQ29uc2lkZXIgYWdhaW4gYWRkaW5nIG91ciB1bm9yZGVyZWQgZmFjdG9yIHJhY2UgdG8gdGhlIHJlZ3Jlc3Npb24gbW9kZWwgd2l0aCByZWZlcmVuY2UgbGV2ZWwgIldoaXRlIi4KCkZvciBhIHN0dWRlbnQgd2hvIGlzIEFzaWFuLCB3aGljaCBiaW5hcnkgdmFyaWFibGVzIHdvdWxkIGJlIHNldCB0byAwPyBBbGwgcmVtYWluaW5nIHZhcmlhYmxlcyB3aWxsIGJlIHNldCB0byAxLiAoU2VsZWN0IGFsbCB0aGF0IGFwcGx5LikKCisgKCMpcmFjZWV0aEFtZXJpY2FuIEluZGlhbi9BbGFza2EgTmF0aXZlCisgcmFjZWV0aEFzaWFuCisgKCMpcmFjZWV0aEJsYWNrCisgKCMpcmFjZWV0aEhpc3BhbmljCisgKCMpcmFjZWV0aE1vcmUgdGhhbiBvbmUgcmFjZQorICgjKXJhY2VldGhOYXRpdmUgSGF3YWlpYW4vT3RoZXIgUGFjaWZpYyBJc2xhbmRlcgoKCmBgYHtyfQoKYGBgCgoKRm9yIGEgc3R1ZGVudCB3aG8gaXMgd2hpdGUsIHdoaWNoIGJpbmFyeSB2YXJpYWJsZXMgd291bGQgYmUgc2V0IHRvIDA/IEFsbCByZW1haW5pbmcgdmFyaWFibGVzIHdpbGwgYmUgc2V0IHRvIDEuIChTZWxlY3QgYWxsIHRoYXQgYXBwbHkuKQoKKyAoIylyYWNlZXRoQW1lcmljYW4gSW5kaWFuL0FsYXNrYSBOYXRpdmUKKyAoIylyYWNlZXRoQXNpYW4KKyAoIylyYWNlZXRoQmxhY2sKKyAoIylyYWNlZXRoSGlzcGFuaWMKKyAoIylyYWNlZXRoTW9yZSB0aGFuIG9uZSByYWNlCisgKCMpcmFjZWV0aE5hdGl2ZSBIYXdhaWlhbi9PdGhlciBQYWNpZmljIElzbGFuZGVyCgoKYGBge3J9CgpgYGAKCgojIyMgU2VjdGlvbiAzCgojIyMjMy4xIEJ1aWxkaW5nIGEgbW9kZWwKCkJlY2F1c2UgdGhlIHJhY2UgdmFyaWFibGUgdGFrZXMgb24gdGV4dCB2YWx1ZXMsIGl0IHdhcyBsb2FkZWQgYXMgYSBmYWN0b3IgdmFyaWFibGUgd2hlbiB3ZSByZWFkIGluIHRoZSBkYXRhc2V0IHdpdGggcmVhZC5jc3YoKSAtLSB5b3UgY2FuIHNlZSB0aGlzIHdoZW4geW91IHJ1biBzdHIocGlzYVRyYWluKSBvciBzdHIocGlzYVRlc3QpLiBIb3dldmVyLCBieSBkZWZhdWx0IFIgc2VsZWN0cyB0aGUgZmlyc3QgbGV2ZWwgYWxwaGFiZXRpY2FsbHkgKCJBbWVyaWNhbiBJbmRpYW4vQWxhc2thIE5hdGl2ZSIpIGFzIHRoZSByZWZlcmVuY2UgbGV2ZWwgb2Ygb3VyIGZhY3RvciBpbnN0ZWFkIG9mIHRoZSBtb3N0IGNvbW1vbiBsZXZlbCAoIldoaXRlIikuIFNldCB0aGUgcmVmZXJlbmNlIGxldmVsIG9mIHRoZSBmYWN0b3IgYnkgdHlwaW5nIHRoZSBmb2xsb3dpbmcgdHdvIGxpbmVzIGluIHlvdXIgUiBjb25zb2xlOgoKICAgIHBpc2FUcmFpbiRyYWNlZXRoID0gcmVsZXZlbChwaXNhVHJhaW4kcmFjZWV0aCwgIldoaXRlIikKCiAgICBwaXNhVGVzdCRyYWNlZXRoID0gcmVsZXZlbChwaXNhVGVzdCRyYWNlZXRoLCAiV2hpdGUiKQoKTm93LCBidWlsZCBhIGxpbmVhciByZWdyZXNzaW9uIG1vZGVsIChjYWxsIGl0IGxtU2NvcmUpIHVzaW5nIHRoZSB0cmFpbmluZyBzZXQgdG8gcHJlZGljdCByZWFkaW5nU2NvcmUgdXNpbmcgYWxsIHRoZSByZW1haW5pbmcgdmFyaWFibGVzLgoKSXQgd291bGQgYmUgdGltZS1jb25zdW1pbmcgdG8gdHlwZSBhbGwgdGhlIHZhcmlhYmxlcywgYnV0IFIgcHJvdmlkZXMgdGhlIHNob3J0aGFuZCBub3RhdGlvbiAicmVhZGluZ1Njb3JlIH4gLiIgdG8gbWVhbiAicHJlZGljdCByZWFkaW5nU2NvcmUgdXNpbmcgYWxsIHRoZSBvdGhlciB2YXJpYWJsZXMgaW4gdGhlIGRhdGEgZnJhbWUuIiBUaGUgcGVyaW9kIGlzIHVzZWQgdG8gcmVwbGFjZSBsaXN0aW5nIG91dCBhbGwgb2YgdGhlIGluZGVwZW5kZW50IHZhcmlhYmxlcy4gQXMgYW4gZXhhbXBsZSwgaWYgeW91ciBkZXBlbmRlbnQgdmFyaWFibGUgaXMgY2FsbGVkICJZIiwgeW91ciBpbmRlcGVuZGVudCB2YXJpYWJsZXMgYXJlIGNhbGxlZCAiWDEiLCAiWDIiLCBhbmQgIlgzIiwgYW5kIHlvdXIgdHJhaW5pbmcgZGF0YSBzZXQgaXMgY2FsbGVkICJUcmFpbiIsIGluc3RlYWQgb2YgdGhlIHJlZ3VsYXIgbm90YXRpb246CgogICAgTGluUmVnID0gbG0oWSB+IFgxICsgWDIgKyBYMywgZGF0YSA9IFRyYWluKQoKWW91IHdvdWxkIHVzZSB0aGUgZm9sbG93aW5nIGNvbW1hbmQgdG8gYnVpbGQgeW91ciBtb2RlbDoKCiAgICBMaW5SZWcgPSBsbShZIH4gLiwgZGF0YSA9IFRyYWluKQoKV2hhdCBpcyB0aGUgTXVsdGlwbGUgUi1zcXVhcmVkIHZhbHVlIG9mIGxtU2NvcmUgb24gdGhlIHRyYWluaW5nIHNldD8KCmBgYHtyfQpUUiRyYWNlZXRoID0gcmVsZXZlbChUUiRyYWNlZXRoLCAiV2hpdGUiKQpUUyRyYWNlZXRoID0gcmVsZXZlbChUUyRyYWNlZXRoLCAiV2hpdGUiKQoKbG1TY29yZSA9IGxtKHJlYWRpbmdTY29yZX4uLFRSKQpzdW1tYXJ5KGxtU2NvcmUpCiNSMiA9IDAuMzI1CgpgYGAKCgpOb3RlIHRoYXQgdGhpcyBSLXNxdWFyZWQgaXMgbG93ZXIgdGhhbiB0aGUgb25lcyBmb3IgdGhlIG1vZGVscyB3ZSBzYXcgaW4gdGhlIGxlY3R1cmVzIGFuZCByZWNpdGF0aW9uLiBUaGlzIGRvZXMgbm90IG5lY2Vzc2FyaWx5IGltcGx5IHRoYXQgdGhlIG1vZGVsIGlzIG9mIHBvb3IgcXVhbGl0eS4gTW9yZSBvZnRlbiB0aGFuIG5vdCwgaXQgc2ltcGx5IG1lYW5zIHRoYXQgdGhlIHByZWRpY3Rpb24gcHJvYmxlbSBhdCBoYW5kIChwcmVkaWN0aW5nIGEgc3R1ZGVudCdzIHRlc3Qgc2NvcmUgYmFzZWQgb24gZGVtb2dyYXBoaWMgYW5kIHNjaG9vbC1yZWxhdGVkIHZhcmlhYmxlcykgaXMgbW9yZSBkaWZmaWN1bHQgdGhhbiBvdGhlciBwcmVkaWN0aW9uIHByb2JsZW1zIChsaWtlIHByZWRpY3RpbmcgYSB0ZWFtJ3MgbnVtYmVyIG9mIHdpbnMgZnJvbSB0aGVpciBydW5zIHNjb3JlZCBhbmQgYWxsb3dlZCwgb3IgcHJlZGljdGluZyB0aGUgcXVhbGl0eSBvZiB3aW5lIGZyb20gd2VhdGhlciBjb25kaXRpb25zKS4KCgojIyMjMy4yIENvbXB1dGluZyB0aGUgcm9vdC1tZWFuIHNxdWFyZWQgZXJyb3Igb2YgdGhlIG1vZGVsCldoYXQgaXMgdGhlIHRyYWluaW5nLXNldCByb290LW1lYW4gc3F1YXJlZCBlcnJvciAoUk1TRSkgb2YgbG1TY29yZT8KCmBgYHtyfQpwcmVkID0gcHJlZGljdChsbVNjb3JlKQpTU0UgPSBzdW0oKHByZWQgLSBUUiRyZWFkaW5nU2NvcmUpXjIpICNzaWdtYV9zdW0oKOWOn+acrOWAvC3poJDmuKzlgLwpXjIpClNTVCA9IHN1bSgobWVhbihUUiRyZWFkaW5nU2NvcmUpIC0gVFIkcmVhZGluZ1Njb3JlKV4yKQoKUjIgPSAxIC0gU1NFL1NTVApSMgpSTVNFID0gc3FydChTU0UvbnJvdyhUUikpClJNU0UKYGBgCgoKCiMjIyMgMy4zIENvbXBhcmluZyBwcmVkaWN0aW9ucyBmb3Igc2ltaWxhciBzdHVkZW50cwoKQ29uc2lkZXIgdHdvIHN0dWRlbnRzIEEgYW5kIEIuIFRoZXkgaGF2ZSBhbGwgdmFyaWFibGUgdmFsdWVzIHRoZSBzYW1lLCBleGNlcHQgdGhhdCBzdHVkZW50IEEgaXMgaW4gZ3JhZGUgMTEgYW5kIHN0dWRlbnQgQiBpcyBpbiBncmFkZSA5LiBXaGF0IGlzIHRoZSBwcmVkaWN0ZWQgcmVhZGluZyBzY29yZSBvZiBzdHVkZW50IEEgbWludXMgdGhlIHByZWRpY3RlZCByZWFkaW5nIHNjb3JlIG9mIHN0dWRlbnQgQj8KCisgLTU5LjA5CisgLTI5LjU0CisgMAorIDI5LjU0CisgKCMpNTkuMDkKKyBUaGUgZGlmZmVyZW5jZSBjYW5ub3QgYmUgZGV0ZXJtaW5lZCB3aXRob3V0IG1vcmUgaW5mb3JtYXRpb24gYWJvdXQgdGhlIHR3byBzdHVkZW50cwoKYGBge3J9CiPlvp7liY3pnaJtb2RlbOeahHN1bW1hcnnlvpfnn6XvvIxncmFkZeeahGVzdGltYXRl5pivMjkuNTQyNzHvvIzkuZ/lsLHmmK/mr4/lt67kuIDlgItncmFkZe+8jHNvY3Jl5pyD5aKe5YqgMjkuNTQyNzEKCjI5LjU0MjcxICoyIAoKCmBgYAoKCiMjIyMgMy40IEludGVycHJldGluZyBtb2RlbCBjb2VmZmljaWVudHMKCldoYXQgaXMgdGhlIG1lYW5pbmcgb2YgdGhlIGNvZWZmaWNpZW50IGFzc29jaWF0ZWQgd2l0aCB2YXJpYWJsZSByYWNlZXRoQXNpYW4/CgorIFByZWRpY3RlZCBhdmVyYWdlIHJlYWRpbmcgc2NvcmUgb2YgYW4gQXNpYW4gc3R1ZGVudAorICgjKURpZmZlcmVuY2UgYmV0d2VlbiB0aGUgYXZlcmFnZSByZWFkaW5nIHNjb3JlIG9mIGFuIEFzaWFuIHN0dWRlbnQgYW5kIHRoZSBhdmVyYWdlIHJlYWRpbmcgIHNjb3JlIG9mIGEgd2hpdGUgc3R1ZGVudAorIERpZmZlcmVuY2UgYmV0d2VlbiB0aGUgYXZlcmFnZSByZWFkaW5nIHNjb3JlIG9mIGFuIEFzaWFuIHN0dWRlbnQgYW5kIHRoZSBhdmVyYWdlIHJlYWRpbmcgICAgc2NvcmUgb2YgYWxsIHRoZSBzdHVkZW50cyBpbiB0aGUgZGF0YXNldAorICgjKVByZWRpY3RlZCBkaWZmZXJlbmNlIGluIHRoZSByZWFkaW5nIHNjb3JlIGJldHdlZW4gYW4gQXNpYW4gc3R1ZGVudCBhbmQgYSB3aGl0ZSBzdHVkZW50IHdobyBpcyBvdGhlcndpc2UgaWRlbnRpY2FsCgoKCgoKIyMjIzMuNSBJZGVudGlmeWluZyB2YXJpYWJsZXMgbGFja2luZyBzdGF0aXN0aWNhbCBzaWduaWZpY2FuY2UKCkJhc2VkIG9uIHRoZSBzaWduaWZpY2FuY2UgY29kZXMsIHdoaWNoIHZhcmlhYmxlcyBhcmUgY2FuZGlkYXRlcyBmb3IgcmVtb3ZhbCBmcm9tIHRoZSBtb2RlbD8gU2VsZWN0IGFsbCB0aGF0IGFwcGx5LiAoV2UnbGwgYXNzdW1lIHRoYXQgdGhlIGZhY3RvciB2YXJpYWJsZSByYWNlZXRoIHNob3VsZCBvbmx5IGJlIHJlbW92ZWQgaWYgbm9uZSBvZiBpdHMgbGV2ZWxzIGFyZSBzaWduaWZpY2FudC4pCgorIGdyYWRlCisgbWFsZQorIHJhY2VldGgKKyAoIylwcmVzY2hvb2wKKyBleHBlY3RCYWNoZWxvcnMKKyBtb3RoZXJIUworIG1vdGhlckJhY2hlbG9ycworIG1vdGhlcldvcmsKKyBmYXRoZXJIUworIGZhdGhlckJhY2hlbG9ycworIGZhdGhlcldvcmsKKyAoIylzZWxmQm9yblVTCisgKCMpbW90aGVyQm9yblVTCisgKCMpZmF0aGVyQm9yblVTCisgKCMpZW5nbGlzaEF0SG9tZQorIGNvbXB1dGVyRm9yU2Nob29sd29yaworIHJlYWQzME1pbnNBRGF5CisgKCMpbWludXRlc1BlcldlZWtFbmdsaXNoCisgKCMpc3R1ZGVudHNJbkVuZ2xpc2gKKyAoIylzY2hvb2xIYXNMaWJyYXJ5CisgcHVibGljU2Nob29sCisgKCMpdXJiYW4KKyBzY2hvb2xTaXplCgpgYGB7cn0KCmBgYAoKCiMjI1NlY3Rpb24gNAoKCiMjIyMgNC4xIFByZWRpY3Rpbmcgb24gdW5zZWVuIGRhdGEKClVzaW5nIHRoZSAicHJlZGljdCIgZnVuY3Rpb24gYW5kIHN1cHBseWluZyB0aGUgIm5ld2RhdGEiIGFyZ3VtZW50LCB1c2UgdGhlIGxtU2NvcmUgbW9kZWwgdG8gcHJlZGljdCB0aGUgcmVhZGluZyBzY29yZXMgb2Ygc3R1ZGVudHMgaW4gcGlzYVRlc3QuIENhbGwgdGhpcyB2ZWN0b3Igb2YgcHJlZGljdGlvbnMgInByZWRUZXN0Ii4gRG8gbm90IGNoYW5nZSB0aGUgdmFyaWFibGVzIGluIHRoZSBtb2RlbCAoZm9yIGV4YW1wbGUsIGRvIG5vdCByZW1vdmUgdmFyaWFibGVzIHRoYXQgd2UgZm91bmQgd2VyZSBub3Qgc2lnbmlmaWNhbnQgaW4gdGhlIHByZXZpb3VzIHBhcnQgb2YgdGhpcyBwcm9ibGVtKS4gVXNlIHRoZSBzdW1tYXJ5IGZ1bmN0aW9uIHRvIGRlc2NyaWJlIHRoZSB0ZXN0IHNldCBwcmVkaWN0aW9ucy4KCldoYXQgaXMgdGhlIHJhbmdlIGJldHdlZW4gdGhlIG1heGltdW0gYW5kIG1pbmltdW0gcHJlZGljdGVkIHJlYWRpbmcgc2NvcmUgb24gdGhlIHRlc3Qgc2V0PwoKYGBge3J9CnByZWRUUyA9IHByZWRpY3QobG1TY29yZSxUUykKc3VtbWFyeShwcmVkVFMpCgpgYGAKCiMjIyMgNC4yIFRlc3Qgc2V0IFNTRSBhbmQgUk1TRQoKV2hhdCBpcyB0aGUgc3VtIG9mIHNxdWFyZWQgZXJyb3JzIChTU0UpIG9mIGxtU2NvcmUgb24gdGhlIHRlc3Rpbmcgc2V0PwoKYGBge3J9ClNTRSA9IHN1bSgoVFMkcmVhZGluZ1Njb3JlIC0gcHJlZFRTKV4yKQpTU0UKClNTVCA9IHN1bSgoVFMkcmVhZGluZ1Njb3JlIC0gbWVhbihUUyRyZWFkaW5nU2NvcmUpKV4yKQoKYGBgCgpXaGF0IGlzIHRoZSByb290LW1lYW4gc3F1YXJlZCBlcnJvciAoUk1TRSkgb2YgbG1TY29yZSBvbiB0aGUgdGVzdGluZyBzZXQ/CgpgYGB7cn0KClJNU0UgPSBzcXJ0KFNTRS9ucm93KFRTKSkKUk1TRQpgYGAKCgojIyMjIDQuMyBCYXNlbGluZSBwcmVkaWN0aW9uIGFuZCB0ZXN0LXNldCBTU0UKCldoYXQgaXMgdGhlIHByZWRpY3RlZCB0ZXN0IHNjb3JlIHVzZWQgaW4gdGhlIGJhc2VsaW5lIG1vZGVsPyBSZW1lbWJlciB0byBjb21wdXRlIHRoaXMgdmFsdWUgdXNpbmcgdGhlIHRyYWluaW5nIHNldCBhbmQgbm90IHRoZSB0ZXN0IHNldC4KCmBgYHtyfQpiYXNlbGluZSA9IG1lYW4oVFIkcmVhZGluZ1Njb3JlKQpiYXNlbGluZQpgYGAKCldoYXQgaXMgdGhlIHN1bSBvZiBzcXVhcmVkIGVycm9ycyBvZiB0aGUgYmFzZWxpbmUgbW9kZWwgb24gdGhlIHRlc3Rpbmcgc2V0PyBISU5UOiBXZSBjYWxsIHRoZSBzdW0gb2Ygc3F1YXJlZCBlcnJvcnMgZm9yIHRoZSBiYXNlbGluZSBtb2RlbCB0aGUgdG90YWwgc3VtIG9mIHNxdWFyZXMgKFNTVCkuCgpgYGB7cn0KU1NFID0gc3VtKChiYXNlbGluZSAtIFRTJHJlYWRpbmdTY29yZSleMikKU1NFCmBgYAoKIyMjIyA0LjQgVGVzdC1zZXQgUi1zcXVhcmVkCgpXaGF0IGlzIHRoZSB0ZXN0LXNldCBSLXNxdWFyZWQgdmFsdWUgb2YgbG1TY29yZT8KYGBge3J9ClIyID0gMSAtIDU3NjIwODIvU1NUClIyCgpgYGAKCgoKCg==