passengermiles <- read.csv("~/Downloads/passenger-miles-mil-flown-domest.csv")
library(fpp)
## Loading required package: forecast
## Loading required package: fma
## Loading required package: expsmooth
## Loading required package: lmtest
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: tseries
library(forecast)
library(fma)
library(expsmooth)
library(lmtest)
library(zoo)
passenger.ts = ts(passengermiles[,2],frequency=12,start=c(1962,7))
plot(passenger.ts,xlab="Month",ylab="miles flown(millions)",main= "Passenger miles flown domestic U.K.1962-1972")

head(passenger.ts)
## Jul Aug Sep Oct Nov Dec
## 1962 101.6 101.5 84.3 51.0 38.5 33.7
tail(passenger.ts)
## Jan Feb Mar Apr May Jun
## 1972 76.8 68.8 90.5 102.6 128.3 NA
## Arima Model
fit1=auto.arima(passenger.ts)
fit1
## Series: passenger.ts
## ARIMA(1,1,1)(0,1,1)[12]
##
## Coefficients:
## ar1 ma1 sma1
## 0.5015 -0.8534 -0.5221
## s.e. 0.1313 0.0735 0.1460
##
## sigma^2 estimated as 22.87: log likelihood=-317.5
## AIC=642.99 AICc=643.38 BIC=653.68
summary(fit1)
## Series: passenger.ts
## ARIMA(1,1,1)(0,1,1)[12]
##
## Coefficients:
## ar1 ma1 sma1
## 0.5015 -0.8534 -0.5221
## s.e. 0.1313 0.0735 0.1460
##
## sigma^2 estimated as 22.87: log likelihood=-317.5
## AIC=642.99 AICc=643.38 BIC=653.68
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set -0.3410848 4.47029 3.420549 -0.7388153 3.959829 0.5041305
## ACF1
## Training set -0.02806555
fit2=Arima(passenger.ts,order=c(1,1,1), seasonal=c(0,1,0))
fit2
## Series: passenger.ts
## ARIMA(1,1,1)(0,1,0)[12]
##
## Coefficients:
## ar1 ma1
## 0.3777 -0.8657
## s.e. 0.1474 0.0934
##
## sigma^2 estimated as 26.92: log likelihood=-324.8
## AIC=655.6 AICc=655.83 BIC=663.62
##ETS
fit3=ets(passenger.ts, model="ZZZ")
## Warning in ets(passenger.ts, model = "ZZZ"): Missing values encountered.
## Using longest contiguous portion of time series
fit3
## ETS(A,Ad,A)
##
## Call:
## ets(y = passenger.ts, model = "ZZZ")
##
## Smoothing parameters:
## alpha = 0.7281
## beta = 1e-04
## gamma = 1e-04
## phi = 0.9788
##
## Initial states:
## l = 55.651
## b = 1.1837
## s=26.4599 10 -5.4469 -18.8031 -34.9832 -33.0782
## -30.3075 -31.1193 -7.665 27.3536 47.4661 50.1235
##
## sigma: 4.2322
##
## AIC AICc BIC
## 948.0833 954.9233 998.1075
plot(fit3)

summary(fit3)
## ETS(A,Ad,A)
##
## Call:
## ets(y = passenger.ts, model = "ZZZ")
##
## Smoothing parameters:
## alpha = 0.7281
## beta = 1e-04
## gamma = 1e-04
## phi = 0.9788
##
## Initial states:
## l = 55.651
## b = 1.1837
## s=26.4599 10 -5.4469 -18.8031 -34.9832 -33.0782
## -30.3075 -31.1193 -7.665 27.3536 47.4661 50.1235
##
## sigma: 4.2322
##
## AIC AICc BIC
## 948.0833 954.9233 998.1075
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set 0.1104657 4.232196 3.313952 0.09477059 4.026201 0.4884199
## ACF1
## Training set 0.01556275