Good day!. Today we try our hand in experimenting with a dataset detailing of the performance of Malthael (also known as Aspect of Death) in draft environment games (HL, TL, Unranked) in the game called Heroes of the Storm. The Malthael file is 149 entries long of 19 variables
library(readxl)
Improved_Malthael <- read_excel("D:/Working Directory/Improved_Malthael.xlsx")
View(Improved_Malthael)
Let us inspect the data
head(Improved_Malthael)
## # A tibble: 6 x 19
## Heroic Mode Map Kills Assists Deaths Siege_Damage Hero_Damage XP
## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Last R~ Unra~ Infer~ 10 15 2 56752 45756 15251
## 2 Tormen~ Hero~ Volsk~ 22 8 5 112215 89875 18259
## 3 Last R~ Hero~ Volsk~ 30 6 1 188219 105221 22150
## 4 Last R~ Unra~ Haunt~ 18 12 3 192995 107250 32125
## 5 Tormen~ Team~ Tomb ~ 15 9 2 100250 77525 18925
## 6 Tormen~ Hero~ Warhe~ 9 10 3 75252 65116 19825
## # ... with 10 more variables: Duration <dbl>, Mercenaries <dbl>,
## # Pick_order <dbl>, Level_Reached <dbl>, Siege_Avg <dbl>,
## # Hero_Avg <dbl>, XP_Avg <dbl>, Mins_Per_Lvl <dbl>, Win_Or_Loss <chr>,
## # MVP <chr>
str(Improved_Malthael)
## Classes 'tbl_df', 'tbl' and 'data.frame': 149 obs. of 19 variables:
## $ Heroic : chr "Last Rites" "Tormented Souls" "Last Rites" "Last Rites" ...
## $ Mode : chr "Unranked" "Hero League" "Hero League" "Unranked" ...
## $ Map : chr "Infernal Shrines" "Volskaya Foundry" "Volskaya Foundry" "Haunted Mines" ...
## $ Kills : num 10 22 30 18 15 9 10 11 13.5 22 ...
## $ Assists : num 15 8 6 12 9 10 10 9.5 18 9 ...
## $ Deaths : num 2 5 1 3 2 3 1 1 1 1 ...
## $ Siege_Damage : num 56752 112215 188219 192995 100250 ...
## $ Hero_Damage : num 45756 89875 105221 107250 77525 ...
## $ XP : num 15251 18259 22150 32125 18925 ...
## $ Duration : num 19 22.8 32.2 35 21.2 ...
## $ Mercenaries : num 2 1 2 2 3 2 1 3 2 6 ...
## $ Pick_order : num 2 1 5 2 1 3 4 4 4 2 ...
## $ Level_Reached: num 18 22 27 27 25 27 21 27 27 27 ...
## $ Siege_Avg : num 2987 4933 5845 5514 4718 ...
## $ Hero_Avg : num 2408 3951 3268 3064 3648 ...
## $ XP_Avg : num 803 803 688 918 891 ...
## $ Mins_Per_Lvl : num 0.947 0.967 0.839 0.771 1.176 ...
## $ Win_Or_Loss : chr "Win" "Win" "Win" "Win" ...
## $ MVP : chr "YES" "YES" "NO" "YES" ...
summary(Improved_Malthael)
## Heroic Mode Map Kills
## Length:149 Length:149 Length:149 Min. : 1.00
## Class :character Class :character Class :character 1st Qu.: 8.00
## Mode :character Mode :character Mode :character Median :14.00
## Mean :14.96
## 3rd Qu.:19.00
## Max. :47.00
## Assists Deaths Siege_Damage Hero_Damage
## Min. : 1.00 Min. : 1.000 Min. : 15255 Min. : 6
## 1st Qu.: 9.00 1st Qu.: 1.000 1st Qu.: 68999 1st Qu.: 58725
## Median :12.00 Median : 2.000 Median :105255 Median : 78225
## Mean :13.69 Mean : 3.423 Mean :128949 Mean : 94616
## 3rd Qu.:18.00 3rd Qu.: 5.000 3rd Qu.:188219 3rd Qu.:119226
## Max. :42.00 Max. :13.000 Max. :482566 Max. :299199
## XP Duration Mercenaries Pick_order
## Min. : 5690 Min. : 6.0 Min. : 1.000 Min. :1.000
## 1st Qu.:15677 1st Qu.:15.0 1st Qu.: 2.000 1st Qu.:2.000
## Median :21099 Median :19.0 Median : 5.000 Median :3.000
## Mean :24911 Mean :23.5 Mean : 5.564 Mean :2.946
## 3rd Qu.:29800 3rd Qu.:28.0 3rd Qu.: 8.000 3rd Qu.:4.000
## Max. :68722 Max. :72.0 Max. :22.000 Max. :5.000
## Level_Reached Siege_Avg Hero_Avg XP_Avg
## Min. :10.00 Min. : 1184 Min. : 0.115 Min. : 503.5
## 1st Qu.:18.00 1st Qu.: 4078 1st Qu.:3262.750 1st Qu.: 923.1
## Median :22.00 Median : 5102 Median :4035.062 Median :1111.4
## Mean :22.28 Mean : 5483 Mean :4209.536 Mean :1141.9
## 3rd Qu.:27.00 3rd Qu.: 6640 3rd Qu.:4901.800 3rd Qu.:1283.3
## Max. :30.00 Max. :13142 Max. :7748.400 Max. :2358.0
## Mins_Per_Lvl Win_Or_Loss MVP
## Min. :0.4167 Length:149 Length:149
## 1st Qu.:0.9375 Class :character Class :character
## Median :1.1579 Mode :character Mode :character
## Mean :1.1173
## 3rd Qu.:1.3000
## Max. :1.8750
Let us also load the required and necessary packages
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(readr)
library(tidyr)
library(tibble)
library(stringr)
Now, using the filter function, let us attempt to filter by type of draft environment.
For Hero League games
Malthael_HL <- Improved_Malthael %>%
filter(Mode == 'Hero League') %>%
group_by(Heroic) %>%
arrange(Map)
head(Malthael_HL)
## # A tibble: 6 x 19
## # Groups: Heroic [2]
## Heroic Mode Map Kills Assists Deaths Siege_Damage Hero_Damage XP
## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Tormen~ Hero~ Battl~ 14 14 1 149255 121455 33255
## 2 Last R~ Hero~ Battl~ 15 12 2 67802 82522 18567
## 3 Last R~ Hero~ Battl~ 3 12 1 67256 62111 18255
## 4 Tormen~ Hero~ Battl~ 3 10 2 52777 45666 14255
## 5 Last R~ Hero~ Battl~ 2 3 2 28928 28555 10222
## 6 Last R~ Hero~ Black~ 10 10 1 68259 77125 14526
## # ... with 10 more variables: Duration <dbl>, Mercenaries <dbl>,
## # Pick_order <dbl>, Level_Reached <dbl>, Siege_Avg <dbl>,
## # Hero_Avg <dbl>, XP_Avg <dbl>, Mins_Per_Lvl <dbl>, Win_Or_Loss <chr>,
## # MVP <chr>
summary(Malthael_HL)
## Heroic Mode Map Kills
## Length:53 Length:53 Length:53 Min. : 2.00
## Class :character Class :character Class :character 1st Qu.: 8.00
## Mode :character Mode :character Mode :character Median :10.00
## Mean :13.65
## 3rd Qu.:17.00
## Max. :47.00
## Assists Deaths Siege_Damage Hero_Damage
## Min. : 1.00 Min. : 1.000 Min. : 15699 Min. : 6
## 1st Qu.: 9.00 1st Qu.: 1.000 1st Qu.: 67522 1st Qu.: 56899
## Median :12.00 Median : 2.000 Median : 88256 Median : 72190
## Mean :13.43 Mean : 3.208 Mean :110996 Mean : 80142
## 3rd Qu.:17.00 3rd Qu.: 3.000 3rd Qu.:122252 3rd Qu.:102666
## Max. :36.00 Max. :12.000 Max. :325625 Max. :221105
## XP Duration Mercenaries Pick_order
## Min. : 7780 Min. : 7.00 Min. : 1.000 Min. :1.000
## 1st Qu.:15256 1st Qu.:14.00 1st Qu.: 2.000 1st Qu.:2.000
## Median :19825 Median :19.00 Median : 5.000 Median :3.000
## Mean :22914 Mean :21.94 Mean : 4.943 Mean :3.264
## 3rd Qu.:26255 3rd Qu.:25.00 3rd Qu.: 6.000 3rd Qu.:5.000
## Max. :68722 Max. :72.00 Max. :18.000 Max. :5.000
## Level_Reached Siege_Avg Hero_Avg XP_Avg
## Min. :12.00 Min. :1184 Min. : 0.115 Min. : 515.1
## 1st Qu.:16.00 1st Qu.:3740 1st Qu.:3137.500 1st Qu.: 922.2
## Median :22.00 Median :4868 Median :3792.556 Median :1111.4
## Mean :21.42 Mean :5174 Mean :3983.764 Mean :1145.4
## 3rd Qu.:26.00 3rd Qu.:6326 3rd Qu.:4701.375 3rd Qu.:1269.9
## Max. :30.00 Max. :9905 Max. :7340.625 Max. :2358.0
## Mins_Per_Lvl Win_Or_Loss MVP
## Min. :0.4167 Length:53 Length:53
## 1st Qu.:0.9655 Class :character Class :character
## Median :1.1579 Mode :character Mode :character
## Mean :1.1429
## 3rd Qu.:1.2778
## Max. :1.8750
str(Malthael_HL)
## Classes 'grouped_df', 'tbl_df', 'tbl' and 'data.frame': 53 obs. of 19 variables:
## $ Heroic : chr "Tormented Souls" "Last Rites" "Last Rites" "Tormented Souls" ...
## $ Mode : chr "Hero League" "Hero League" "Hero League" "Hero League" ...
## $ Map : chr "Battlefield of Eternity" "Battlefield of Eternity" "Battlefield of Eternity" "Battlefield of Eternity" ...
## $ Kills : num 14 15 3 3 2 10 44 18.5 14 16 ...
## $ Assists : num 14 12 12 10 3 10 17 16 15 6 ...
## $ Deaths : num 1 2 1 2 2 1 10 1 2 1 ...
## $ Siege_Damage : num 149255 67802 67256 52777 28928 ...
## $ Hero_Damage : num 121455 82522 62111 45666 28555 ...
## $ XP : num 33255 18567 18255 14255 10222 ...
## $ Duration : num 45 19 14 9 10 ...
## $ Mercenaries : num 10 5 2 1 1 1 14 4 6 10 ...
## $ Pick_order : num 1 3 3 2 5 4 3 5 5 2 ...
## $ Level_Reached: num 29 20 16 12 13 21 30 23 21 21 ...
## $ Siege_Avg : num 3317 3569 4804 5864 2893 ...
## $ Hero_Avg : num 2699 4343 4436 5074 2856 ...
## $ XP_Avg : num 739 977 1304 1584 1022 ...
## $ Mins_Per_Lvl : num 0.644 1.053 1.143 1.333 1.3 ...
## $ Win_Or_Loss : chr "Win" "Loss" "Loss" "Win" ...
## $ MVP : chr "NO" "YES" "YES" "YES" ...
## - attr(*, "vars")= chr "Heroic"
## - attr(*, "drop")= logi TRUE
## - attr(*, "indices")=List of 2
## ..$ : int 1 2 4 5 6 8 10 11 13 15 ...
## ..$ : int 0 3 7 9 12 14 16 18 25 26 ...
## - attr(*, "group_sizes")= int 25 28
## - attr(*, "biggest_group_size")= int 28
## - attr(*, "labels")='data.frame': 2 obs. of 1 variable:
## ..$ Heroic: chr "Last Rites" "Tormented Souls"
## ..- attr(*, "vars")= chr "Heroic"
## ..- attr(*, "drop")= logi TRUE
## ..- attr(*, "indices")=List of 2
## .. ..$ : int 1 3 6 10 11 12 13 15 17 20 ...
## .. ..$ : int 0 2 4 5 7 8 9 14 16 18 ...
## ..- attr(*, "group_sizes")= int 25 28
## ..- attr(*, "biggest_group_size")= int 28
For Team League games
Malthael_TL <- Improved_Malthael %>%
filter(Mode == 'Team League') %>%
group_by(Heroic) %>%
arrange(Map)
head(Malthael_TL)
## # A tibble: 6 x 19
## # Groups: Heroic [2]
## Heroic Mode Map Kills Assists Deaths Siege_Damage Hero_Damage XP
## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Tormen~ Team~ Battl~ 5 12.5 6 45526 56256 14526
## 2 Last R~ Team~ Battl~ 4 12 1 52555 25666 16222
## 3 Tormen~ Team~ Battl~ 2 6 1 25666 19226 10222
## 4 Tormen~ Team~ Black~ 26 32 10 145255 201255 65422
## 5 Tormen~ Team~ Black~ 29 19 8 212166 209266 32526
## 6 Last R~ Team~ Black~ 10.5 12 4 62566 75255 29255
## # ... with 10 more variables: Duration <dbl>, Mercenaries <dbl>,
## # Pick_order <dbl>, Level_Reached <dbl>, Siege_Avg <dbl>,
## # Hero_Avg <dbl>, XP_Avg <dbl>, Mins_Per_Lvl <dbl>, Win_Or_Loss <chr>,
## # MVP <chr>
summary(Malthael_TL)
## Heroic Mode Map Kills
## Length:53 Length:53 Length:53 Min. : 2.00
## Class :character Class :character Class :character 1st Qu.: 9.00
## Mode :character Mode :character Mode :character Median :14.00
## Mean :15.45
## 3rd Qu.:19.00
## Max. :39.50
## Assists Deaths Siege_Damage Hero_Damage
## Min. : 1.00 Min. : 1.000 Min. : 18255 Min. : 19226
## 1st Qu.: 9.00 1st Qu.: 1.000 1st Qu.: 67255 1st Qu.: 56256
## Median :12.00 Median : 2.000 Median :105852 Median : 82677
## Mean :13.23 Mean : 3.566 Mean :139278 Mean :103075
## 3rd Qu.:18.00 3rd Qu.: 6.000 3rd Qu.:199299 3rd Qu.:121526
## Max. :32.00 Max. :13.000 Max. :405255 Max. :221221
## XP Duration Mercenaries Pick_order
## Min. : 7526 Min. : 7.00 Min. : 1.000 Min. :1.000
## 1st Qu.:16222 1st Qu.:13.00 1st Qu.: 2.000 1st Qu.:1.000
## Median :23267 Median :18.00 Median : 5.000 Median :3.000
## Mean :26160 Mean :23.63 Mean : 6.208 Mean :2.849
## 3rd Qu.:32155 3rd Qu.:30.00 3rd Qu.: 9.000 3rd Qu.:4.000
## Max. :65422 Max. :69.00 Max. :22.000 Max. :5.000
## Level_Reached Siege_Avg Hero_Avg XP_Avg
## Min. :10.00 Min. : 2594 Min. :2403 Min. : 647.8
## 1st Qu.:16.00 1st Qu.: 4375 1st Qu.:3594 1st Qu.:1004.8
## Median :21.00 Median : 5607 Median :4186 Median :1128.2
## Mean :22.09 Mean : 5839 Mean :4486 Mean :1200.4
## 3rd Qu.:28.00 3rd Qu.: 7008 3rd Qu.:5512 3rd Qu.:1404.3
## Max. :30.00 Max. :13142 Max. :7748 Max. :1982.2
## Mins_Per_Lvl Win_Or_Loss MVP
## Min. :0.4348 Length:53 Length:53
## 1st Qu.:0.8571 Class :character Class :character
## Median :1.1868 Mode :character Mode :character
## Mean :1.1257
## 3rd Qu.:1.3333
## Max. :1.8750
str(Malthael_TL)
## Classes 'grouped_df', 'tbl_df', 'tbl' and 'data.frame': 53 obs. of 19 variables:
## $ Heroic : chr "Tormented Souls" "Last Rites" "Tormented Souls" "Tormented Souls" ...
## $ Mode : chr "Team League" "Team League" "Team League" "Team League" ...
## $ Map : chr "Battlefield of Eternity" "Battlefield of Eternity" "Battlefield of Eternity" "Blackheart's Bay" ...
## $ Kills : num 5 4 2 26 29 10.5 19 28 15 8 ...
## $ Assists : num 12.5 12 6 32 19 12 1 28 12 12 ...
## $ Deaths : num 6 1 1 10 8 4 1 1 1 3 ...
## $ Siege_Damage : num 45526 52555 25666 145255 212166 ...
## $ Hero_Damage : num 56256 25666 19226 201255 209266 ...
## $ XP : num 14526 16222 10222 65422 32526 ...
## $ Duration : num 10 10 8 56 39 18 15 48 28 16 ...
## $ Mercenaries : num 1 1 1 16 14 5 6 16 5 6 ...
## $ Pick_order : num 4 5 5 2 3 1 4 2 5 1 ...
## $ Level_Reached: num 12 14 12 30 27 22 20 30 26 21 ...
## $ Siege_Avg : num 4553 5256 3208 2594 5440 ...
## $ Hero_Avg : num 5626 2567 2403 3594 5366 ...
## $ XP_Avg : num 1453 1622 1278 1168 834 ...
## $ Mins_Per_Lvl : num 1.2 1.4 1.5 0.536 0.692 ...
## $ Win_Or_Loss : chr "Loss" "Loss" "Loss" "Win" ...
## $ MVP : chr "YES" "YES" "YES" "YES" ...
## - attr(*, "vars")= chr "Heroic"
## - attr(*, "drop")= logi TRUE
## - attr(*, "indices")=List of 2
## ..$ : int 1 5 6 7 8 9 10 11 13 16 ...
## ..$ : int 0 2 3 4 12 14 15 19 23 24 ...
## - attr(*, "group_sizes")= int 32 21
## - attr(*, "biggest_group_size")= int 32
## - attr(*, "labels")='data.frame': 2 obs. of 1 variable:
## ..$ Heroic: chr "Last Rites" "Tormented Souls"
## ..- attr(*, "vars")= chr "Heroic"
## ..- attr(*, "drop")= logi TRUE
## ..- attr(*, "indices")=List of 2
## .. ..$ : int 1 4 5 8 9 11 13 16 18 19 ...
## .. ..$ : int 0 2 3 6 7 10 12 14 15 17 ...
## ..- attr(*, "group_sizes")= int 32 21
## ..- attr(*, "biggest_group_size")= int 32
For Unranked
Malthael_Unranked <- Improved_Malthael %>%
filter(Mode == 'Unranked') %>%
group_by(Heroic) %>%
arrange(Map)
head(Malthael_Unranked)
## # A tibble: 6 x 19
## # Groups: Heroic [2]
## Heroic Mode Map Kills Assists Deaths Siege_Damage Hero_Damage XP
## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Last R~ Unra~ Battl~ 19 1 1 87255 78905 14525
## 2 Tormen~ Unra~ Battl~ 3 2 2 15255 17277 5690
## 3 Last R~ Unra~ Black~ 8 31 2 219211 125455 22156
## 4 Last R~ Unra~ Black~ 5 7 4 29555 45666 12100
## 5 Tormen~ Unra~ Black~ 28 18 6 156255 132677 32825
## 6 Tormen~ Unra~ Braxi~ 5 18 2 188256 89225 19825
## # ... with 10 more variables: Duration <dbl>, Mercenaries <dbl>,
## # Pick_order <dbl>, Level_Reached <dbl>, Siege_Avg <dbl>,
## # Hero_Avg <dbl>, XP_Avg <dbl>, Mins_Per_Lvl <dbl>, Win_Or_Loss <chr>,
## # MVP <chr>
summary(Malthael_Unranked)
## Heroic Mode Map Kills
## Length:43 Length:43 Length:43 Min. : 1.00
## Class :character Class :character Class :character 1st Qu.: 9.00
## Mode :character Mode :character Mode :character Median :15.00
## Mean :15.99
## 3rd Qu.:21.00
## Max. :42.00
## Assists Deaths Siege_Damage Hero_Damage
## Min. : 1.00 Min. : 1.000 Min. : 15255 Min. : 17277
## 1st Qu.:10.00 1st Qu.: 1.000 1st Qu.: 84911 1st Qu.: 68911
## Median :12.00 Median : 2.000 Median :118255 Median : 89225
## Mean :14.57 Mean : 3.512 Mean :138345 Mean :102030
## 3rd Qu.:18.00 3rd Qu.: 5.000 3rd Qu.:188256 3rd Qu.:120707
## Max. :42.00 Max. :12.000 Max. :482566 Max. :299199
## XP Duration Mercenaries Pick_order
## Min. : 5690 Min. : 6.00 Min. : 1.000 Min. :1.000
## 1st Qu.:17239 1st Qu.:18.00 1st Qu.: 2.000 1st Qu.:2.000
## Median :22195 Median :22.00 Median : 5.000 Median :2.000
## Mean :25832 Mean :25.26 Mean : 5.535 Mean :2.674
## 3rd Qu.:31002 3rd Qu.:27.00 3rd Qu.: 7.500 3rd Qu.:4.000
## Max. :62772 Max. :68.00 Max. :19.000 Max. :5.000
## Level_Reached Siege_Avg Hero_Avg XP_Avg
## Min. :10.00 Min. :1750 Min. :1660 Min. : 503.5
## 1st Qu.:21.50 1st Qu.:4231 1st Qu.:3174 1st Qu.: 877.4
## Median :24.00 Median :5075 Median :4153 Median :1009.8
## Mean :23.58 Mean :5426 Mean :4147 Mean :1065.4
## 3rd Qu.:27.50 3rd Qu.:6515 3rd Qu.:4889 3rd Qu.:1261.9
## Max. :30.00 Max. :9908 Max. :6473 Max. :1623.5
## Mins_Per_Lvl Win_Or_Loss MVP
## Min. :0.4412 Length:43 Length:43
## 1st Qu.:0.9220 Class :character Class :character
## Median :1.1579 Mode :character Mode :character
## Mean :1.0753
## 3rd Qu.:1.2222
## Max. :1.6667
str(Malthael_Unranked)
## Classes 'grouped_df', 'tbl_df', 'tbl' and 'data.frame': 43 obs. of 19 variables:
## $ Heroic : chr "Last Rites" "Tormented Souls" "Last Rites" "Last Rites" ...
## $ Mode : chr "Unranked" "Unranked" "Unranked" "Unranked" ...
## $ Map : chr "Battlefield of Eternity" "Battlefield of Eternity" "Blackheart's Bay" "Blackheart's Bay" ...
## $ Kills : num 19 3 8 5 28 5 18 5 8 9 ...
## $ Assists : num 1 2 31 7 18 18 15 10 18 22 ...
## $ Deaths : num 1 2 2 4 6 2 8 1 1 3 ...
## $ Siege_Damage : num 87255 15255 219211 29555 156255 ...
## $ Hero_Damage : num 78905 17277 125455 45666 132677 ...
## $ XP : num 14525 5690 22156 12100 32825 ...
## $ Duration : num 19 6 44 12 28 19 26 9 18 19 ...
## $ Mercenaries : num 5 1 8 1 1 3 5 2 3 5 ...
## $ Pick_order : num 4 2 2 4 5 1 4 1 2 2 ...
## $ Level_Reached: num 22 10 30 18 27 30 25 14 22 22 ...
## $ Siege_Avg : num 4592 2542 4982 2463 5581 ...
## $ Hero_Avg : num 4153 2880 2851 3806 4738 ...
## $ XP_Avg : num 764 948 504 1008 1172 ...
## $ Mins_Per_Lvl : num 1.158 1.667 0.682 1.5 0.964 ...
## $ Win_Or_Loss : chr "Win" "Loss" "Win" "Loss" ...
## $ MVP : chr "NO" "NO" "NO" "NO" ...
## - attr(*, "vars")= chr "Heroic"
## - attr(*, "drop")= logi TRUE
## - attr(*, "indices")=List of 2
## ..$ : int 0 2 3 6 10 13 14 16 17 19 ...
## ..$ : int 1 4 5 7 8 9 11 12 15 18 ...
## - attr(*, "group_sizes")= int 27 16
## - attr(*, "biggest_group_size")= int 27
## - attr(*, "labels")='data.frame': 2 obs. of 1 variable:
## ..$ Heroic: chr "Last Rites" "Tormented Souls"
## ..- attr(*, "vars")= chr "Heroic"
## ..- attr(*, "drop")= logi TRUE
## ..- attr(*, "indices")=List of 2
## .. ..$ : int 0 1 2 4 5 6 7 9 11 13 ...
## .. ..$ : int 3 8 10 12 16 17 20 22 24 25 ...
## ..- attr(*, "group_sizes")= int 27 16
## ..- attr(*, "biggest_group_size")= int 27
Now we visualize. But first, via HL:
#with respect to Kills and Hero-related damage
a1_HL <- ggplot(Malthael_HL, aes(x=Kills, y=Hero_Damage, col = Pick_order))
a1_HL <- a1_HL + geom_point(alpha=0.825)
a1_HL <- a1_HL + labs(x = "\n Kills \n")
a1_HL <- a1_HL + labs(y = "\n Hero Damage \n")
a1_HL <- a1_HL + labs(title = "\n Kills with respect to Hero Damage\n")
print(a1_HL)
#with respect to Kills and Assists
a2_HL <- ggplot(Malthael_HL, aes(x=Kills, y=Assists, col = Pick_order))
a2_HL <- a2_HL + geom_point(alpha = 0.825)
a2_HL <- a2_HL + labs(x = "\n Kills \n")
a2_HL <- a2_HL + labs(y = "\n Assists \n")
a2_HL <- a2_HL + labs(title = "\n Kills with respect to assists")
print(a2_HL)
#with respect to Siege Damage and XP
a3_HL <- ggplot(Malthael_HL, aes(x=Siege_Damage, y = XP, col = Pick_order))
a3_HL <- a3_HL + geom_point(alpha = 0.825)
a3_HL <- a3_HL + labs(x = "\n Siege Damage \n")
a3_HL <- a3_HL + labs(y = "\n XP \n")
a3_HL <- a3_HL + labs(title = "\n Laning Effectiveness (Siege Damage with respect to XP) \n")
print(a3_HL)
#With respect to maps
a4_HL_facet <- ggplot(Malthael_HL, aes(x = Duration, y = Level_Reached, col = Map))
a4_HL_facet <- a4_HL_facet + geom_col()
a4_HL_facet <- a4_HL_facet + labs(x = "\n Duration \n")
a4_HL_facet <- a4_HL_facet + labs(y = "\n Level achieved at the end of the match \n")
a4_HL_facet <- a4_HL_facet + labs(title = "\n Duration with respect to Level Reached and with the map \n")
print(a4_HL_facet)