library(ggplot2)
load("with_ecan.RData")
ids <- c(107, 113, 109, 102, 105)
sites <- c(15, 9, 18, 10, 1)
data <- data.frame(date = with.ecan$date)
for (i in 1:5) {
id <- ids[i]
site <- sites[i]
train.data <- data.frame(x = with.ecan[, paste0('pm2.5.odin.', id, '.site.18')],
y = with.ecan[, 'pm2.5'])
linear.model <- lm(y ~ x, train.data, na.rm=TRUE)
deployed.data <- data.frame(date = with.ecan$date,
x = with.ecan[, paste0('pm2.5.odin.', id, '.site.', site)])
results <- predict(linear.model, deployed.data)
deployed.data[, paste0('pm2.5.odin.', id)] <- predict(linear.model, deployed.data)
deployed.data$x <- NULL
data <- merge(data, deployed.data, by='date')
}
## Warning: In lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
## extra argument 'na.rm' will be disregarded
## Warning: In lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
## extra argument 'na.rm' will be disregarded
## Warning: In lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
## extra argument 'na.rm' will be disregarded
## Warning: In lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
## extra argument 'na.rm' will be disregarded
## Warning: In lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
## extra argument 'na.rm' will be disregarded
data <- na.omit(data)
for (i in 1:5) {
id <- ids[i]
plt <- ggplot(data, aes(data[, paste0('pm2.5.odin.', id)])) +
geom_histogram(breaks=seq(-20,150,5)) +
xlab('PM2.5') +
ggtitle(paste("ODIN", id))
print(plt)
}





for (i in 1:4) {
id.1 <- ids[i]
x <- data[, paste0('pm2.5.odin.', id.1)]
for (j in (i+1):5) {
id.2 <- ids[j]
print(paste('ODIN', id.1, 'vs ODIN', id.2))
y <- data[, paste0('pm2.5.odin.', id.2)]
print(ks.test(x, y))
}
}
## [1] "ODIN 107 vs ODIN 113"
## Warning in ks.test(x, y): p-value will be approximate in the presence of
## ties
##
## Two-sample Kolmogorov-Smirnov test
##
## data: x and y
## D = 0.20852, p-value < 2.2e-16
## alternative hypothesis: two-sided
##
## [1] "ODIN 107 vs ODIN 109"
## Warning in ks.test(x, y): p-value will be approximate in the presence of
## ties
##
## Two-sample Kolmogorov-Smirnov test
##
## data: x and y
## D = 0.18991, p-value < 2.2e-16
## alternative hypothesis: two-sided
##
## [1] "ODIN 107 vs ODIN 102"
## Warning in ks.test(x, y): p-value will be approximate in the presence of
## ties
##
## Two-sample Kolmogorov-Smirnov test
##
## data: x and y
## D = 0.25663, p-value < 2.2e-16
## alternative hypothesis: two-sided
##
## [1] "ODIN 107 vs ODIN 105"
## Warning in ks.test(x, y): p-value will be approximate in the presence of
## ties
##
## Two-sample Kolmogorov-Smirnov test
##
## data: x and y
## D = 0.34833, p-value < 2.2e-16
## alternative hypothesis: two-sided
##
## [1] "ODIN 113 vs ODIN 109"
## Warning in ks.test(x, y): p-value will be approximate in the presence of
## ties
##
## Two-sample Kolmogorov-Smirnov test
##
## data: x and y
## D = 0.046558, p-value < 2.2e-16
## alternative hypothesis: two-sided
##
## [1] "ODIN 113 vs ODIN 102"
## Warning in ks.test(x, y): p-value will be approximate in the presence of
## ties
##
## Two-sample Kolmogorov-Smirnov test
##
## data: x and y
## D = 0.10957, p-value < 2.2e-16
## alternative hypothesis: two-sided
##
## [1] "ODIN 113 vs ODIN 105"
## Warning in ks.test(x, y): p-value will be approximate in the presence of
## ties
##
## Two-sample Kolmogorov-Smirnov test
##
## data: x and y
## D = 0.2321, p-value < 2.2e-16
## alternative hypothesis: two-sided
##
## [1] "ODIN 109 vs ODIN 102"
## Warning in ks.test(x, y): p-value will be approximate in the presence of
## ties
##
## Two-sample Kolmogorov-Smirnov test
##
## data: x and y
## D = 0.080069, p-value < 2.2e-16
## alternative hypothesis: two-sided
##
## [1] "ODIN 109 vs ODIN 105"
## Warning in ks.test(x, y): p-value will be approximate in the presence of
## ties
##
## Two-sample Kolmogorov-Smirnov test
##
## data: x and y
## D = 0.19635, p-value < 2.2e-16
## alternative hypothesis: two-sided
##
## [1] "ODIN 102 vs ODIN 105"
## Warning in ks.test(x, y): p-value will be approximate in the presence of
## ties
##
## Two-sample Kolmogorov-Smirnov test
##
## data: x and y
## D = 0.13388, p-value < 2.2e-16
## alternative hypothesis: two-sided