Sites used for the model evaluation are shown on the map below. An overview table is in the Appendix (last section of this document).
Figure S1: Geographical distribution of sites selected for the bias evaluation. Sites listed in Table S1 as group 1 are in green, sites of group 2 are in black. The color of land area represents aridity, quantified as the ratio of potential evapotranspiration over precipitation from xxx
Daily data are used from the FLUXNET 2015 Tier 1 dataset, downloaded on 13. November, 2016. We use GPP as the mean of values based on the Nighttime Partitioning and the Daytime Partitioning method, both based on the Variable U-Star Threshold method (variables in the FLUXNET 2015 dataset named GPP_NT_VUT_REF
and GPP_DT_VUT_REF
). In the FLUXNET 2015 dataset, daily values are sums over half-hourly data. We use only daily values where less than 50% of respective half-hourly data is gap-filled. We further removed data points where the daytime and nighttime methods (GPP_DT_VUT_REF
and GPP_NT_VUT_REF
, resp.) are inconsistent. I.e., the upper and lower 2.5% quantile of the difference between each method’s GPP quantification. Finally, we removed all negative daily GPP values.
The P-model relies on a minimum set of free parameters. Most parameters are given by known physical laws with accurately defined parameters (e.g., viscosity of water) or well-established physiological relationships with independently constrained parameters (e.g., enzyme kinetics of C3 photosynthesis). Two key free parameters are:
We applied a value of 146.0 for \(\beta\) based on independent constraints from \(\delta^{13}\)C measurements on leaves (Prentice et al., 2014; Wang Han et al., 2017).
\(\varphi_0\) determines the fraction of absorbed light that can be used by the photosynthetic aparatus for assimilating CO\(_2\). Within the P-model, this parameter acts as a linear scalar between absorbed light and GPP and therefore implies a strong sensitivity of simulated GPP to its valule. Considerable uncertainty resides in the quantification of fAPAR and some inconsistency in terms of its definition. Hence, we consider \(\varphi_0\) as a free parameter that we calibrate, given the fAPAR data product used. Here, we use the MODIS FPAR MCD15A3H data product at 1 km/8 day resolution and extract values for a single pixel surrounding the flux tower location. Calibration was done …
OPEN POINT: I did a such a calibration and got \(\varphi_0 = 0.0579\), as described here. I filtered out data points taken at low temperatures (\(<5^{\circ}C\)) and at low soil moisture (\(<0.4\) relative soil water content). The calibration target was GPP_NT_VUT_REF
. Now, I’ve implemented a more flexible and capable calibration function for SOFUN, allowing for multiple parameters to be calibrated simultaneously and accounting for uncertainty in the data. This makes use of different parameter search algorithms implemented in R.
GPP_NT_VUT_MEAN
and GPP_NT_VUT_SE
? Or how to account for uncertainty related to the difference between the nighttime and daytime partitioning approach? Thus: how to additionally use GPP_DT_VUT_MEAN
and GPP_DT_VUT_SE
?Several performance metrics are calculated for different features of GPP variability. The performance metrics are:
The features of variability in GPP, for which model-observation agreement is calculated, are:
library(tidyr)
out_eval$metrics %>%
bind_rows() %>%
unnest() %>%
mutate( level = (out_eval$metrics$gpp$mean_nt_dt_fluxnet2015 %>% names()) ) %>%
mutate_at( vars(one_of("rsq", "rmse", "slope", "bias")), funs(format(., digits=3))) %>%
dplyr::select( Level=level, N=nvals, R2=rsq, RMSE=rmse, Slope=slope, Bias=bias) %>%
knitr::kable( caption="Performance metrics of correlations between modelled and observed values at different temporal aggregation levels, absolute values and anomalies.")
Level | N | R2 | RMSE | Slope | Bias |
---|---|---|---|---|---|
daily_pooled | 262336 | 0.5966 | 2.65 | 0.796 | 7.07e-01 |
xdaily_pooled | 63282 | 0.6495 | 2.38 | 0.878 | 6.97e-01 |
annual_pooled | 648 | 0.5702 | 488.50 | 0.949 | 2.42e+02 |
monthly_pooled | 9134 | 0.6871 | 2.16 | 0.941 | 7.25e-01 |
spatial | 119 | 0.5893 | 505.11 | 0.956 | 2.49e+02 |
anomalies_annual | 648 | 0.0662 | 173.70 | 0.374 | 2.05e+00 |
meandoy | 53641 | 0.6780 | 2.09 | 0.885 | 7.44e-01 |
anomalies_daily | 262193 | 0.2525 | 1.80 | 0.408 | 6.62e-03 |
meanxoy | 10755 | 0.6976 | 2.01 | 0.909 | 7.49e-01 |
anomalies_xdaily | 63282 | 0.1323 | 1.47 | 0.389 | 9.25e-03 |
Annual values in modelled and simulated GPP can be decomposed into the mean annual GPP per site \(\overline{X}_i\) and its anomaly from the multi-annual mean \(X'_{i,t}\): \[ X_{i,t} = \overline{X}_i + X'_{i,t} \]
Comparing the multi-annual mean per site in simulated and observed GPP (\(\overline{X}_i\)) yields a “spatial correlation”.
Comparing annual anomalies (\(X'_{i,t}\)) yields insight into whether the model accurately simulates interannual variability.
The two above can be combined into a single plot. This shows the same as in the SI of our submitted manuscript: Figures S14 and S15 here.
OPEN POINT:
For some sites, this relationship is completely off. I’ll have to have a closer look to check if the data is ok.
Selecting data only for sites used in the SI of our submitted manuscript (Figures S14 and S15 see here), should give exactly the same figure, but it doesn’t (see below). I’ll have to look into what’s going wrong here (thereby hopefully also resolving the open point mentioned above).
The mean seasonal cycle is calculated as the mean by day-of-year (DOY) across multiple years. \[
\overline{X_{\text{DOY}}} = \frac{1}{N_y} \sum_y X_{\text{DOY},y}
\]
More insights are provided by looking at the seasonal cycle explicitly. Plots for each site are given in the Appendix. Aggregating across multiple sites doesn’t make much sense. However, I aggregated across climate zones and distinguishing between respective zones on the northern and southern hemisphere.
The classification of sites into Koeppen-Geiger climate zones is based on Falge et al. 2016. ORNL DAAC, and complemented by extracting information from a global map. A table explaining the Koeppen-Geiger codes is given below.
Code | Climate |
---|---|
Am | Equatorial monsoon |
As | Equatorial savannah with dry summer |
Aw | Equatorial savannah with dry winter |
BSh | Arid Steppe hot |
BSk | Arid Steppe cold |
BWh | Arid desert hot |
Cfa | Warm temperate fully humid with hot summer |
Cfb | Warm temperate fully humid with warm summer |
Cfc | Warm temperate fully humid with cool summer |
Csb | Temperate/Dry_Summer/Warm_Summer |
Cwa | Warm temperate with dry winter and hot summer |
Cwb | Warm temperate with dry winter and warm summer |
Dfa | Snow with fully humid hot summer |
Dfb | Snow fully humid warm summer |
Dfc | Snow fully humid cool summer |
Dfd | Snow fully humid extremely continental |
Dwa | Snow dry winter hot summer |
Dwb | Snow dry winter warm summer |
Dwc | Snow dry winter cool summer |
EF | Polar frost |
ET | Polar tundra |
Insights from seasonality analysis by climate zones (results see below, red is the model, black the observations, discussing only climate zones with data from more than three sites):
In brief, there is room for improvement by reducing GPP at low temperatures (sort of found before, but we never dealt with a temperature ramp, and why should we?) and low soil moisture (of course). fAPAR data in the tropics needs to be examined, otherwise, it looks like we have a problem with the Aw sites.
Ignoring that we don’t expect a LUE-type linear relationship between absorbed light \(I_{\text{abs}}\) and GPP, we can still evaluate the daily GPP estimated by the P-model: \[ \text{GPP}(d) = \text{LUE}(m|d)\; \times \; I_{\text{abs}}(d) \] Here, \(LUE(m|d)\) is the monthly varying light use efficiency simulated by the P-model using forcing data averaged to monthly means. \(m|d\) refers to the month of a given day.
The correlation is still quite good…
Aggregated to longer periods, the performance slightly improves. Here, I aggregated modeled and observational data to 5-days periods.
Above figure shows the correlation and the distribution of anomalies in daily GPP from the respective mean seasonal cycle in the observations and in simulated values. Note that the blue lines in the first plot are the regression lines of daily anomalies for each site. The fact that their slope is consistently lower than 1, indicates that the day-to-day variability in simulated GPP is higher than in observed GPP. This is also reflected by the histogram in the second plot (note standard deviation values given in the upper left corner).
When plotting the same for values aggregated to 5-day bins, the standard deviation of simulated anomalies declines strongly and is in better agreement with the observations (see histogram), but the correlation analysis doesn’t suggest a better performance.
OPEN POINT:
Would it be worth exploring this in more detail, e.g. quantifying the relationship between some metric and aggregation level, and ‘some metric’ being e.g. the standard deviation of anomalies, the R\(^2\) of obs. vs. mod., or … ?
Anyways, the obvious next aggregation level is monthly, and the correlation increases further to a stunning R\(^2\) of 0.69.
Functional relationships seen in the data can be extracted using Artificial Neural Networks (ANN). This is done here. First, a model is fitted to observed GPP with temperature, PPFD, VPD, fAPAR, and soil moisture as predictors. Then, functional relationships are evaluated by using the trained ANN to predict values for a synthetic datasets. The synthetic dataset is generated for each predictor value. E.g. for temperature, a sample of 50 data points is drawn from the empirical distribution of VPD, fAPAR, PPFD, and soil moisture, respectively, and 50 levels of temperature (evenly from 0-40 \(^{\circ}\)C) Then, the dataset is created by all combinations of these variables. Finally, functional relationship between temperature and GPP are assessed by taking the mean across all variable combination for each level of temperature separately. This approach implies that for the evaluation, correlations between predictor variables in the observational dataset are ignored.
In order to improve comparability, ANNs are trained at (P-) modelled and observed GPP, and functional relationships thus derived for observed and modelled. This improves comparability and is preferred here over evaluating the model directly. As always, observations are in black and modelled in red.
There are several points here:
OPEN POINT:
Colin has shown some plots at the ICDC that apparently Trevor produced. They show something similar as I have tried here, but as I remember, there seemed to be much more fine-structure in the functional relationships. Trevor, how did you do that? Using GAMs (as I remember you saying once)? I don’t understand however, why the ANNs look so “stiff” here…
Site | Lon. | Lat. | Period | Veg. | Clim. | N | Reference |
---|---|---|---|---|---|---|---|
AR-SLu | -66.4598 | -33.4648 | 2009-2011 | MF | Bwk | 430 | (Ulke, Gattinoni, and Posse 2015) |
AR-Vir | -56.1886 | -28.2395 | 2009-2012 | ENF | Csb | 585 | (Posse et al. 2016) |
AT-Neu | 11.3175 | 47.1167 | 2002-2012 | GRA | Dfc | 3172 | (Wohlfahrt et al. 2008) |
AU-Ade | 131.1178 | -13.0769 | 2007-2009 | WSA | Aw | 528 | (J. Beringer, Hacker, et al. 2011) |
AU-ASM | 133.2490 | -22.2830 | 2010-2013 | ENF | BSh | 1033 | (Cleverly et al. 2013) |
AU-Cpr | 140.5891 | -34.0021 | 2010-2014 | SAV | BSk | 1360 | (Meyer, Kondrlovà, and Koerber 2015) |
AU-Cum | 150.7225 | -33.6133 | 2012-2014 | EBF | Cfa | 738 | (J. Beringer, Hutley, McHugh, Arndt, Campbell, Cleugh, Cleverly, Dios, et al. 2016a) |
AU-DaP | 131.3181 | -14.0633 | 2007-2013 | GRA | Aw | 1377 | (J. Beringer, Hutley, Hacker, et al. 2011a) |
AU-DaS | 131.3881 | -14.1593 | 2008-2014 | SAV | Aw | 2216 | (Hutley et al. 2011) |
AU-Dry | 132.3706 | -15.2588 | 2008-2014 | SAV | Aw | 1579 | (Cernusak et al. 2011) |
AU-Emr | 148.4746 | -23.8587 | 2011-2013 | GRA | Bwk | 718 | (Schroder, Kuske, and Zegelin 2014) |
AU-Fog | 131.3072 | -12.5452 | 2006-2008 | WET | Aw | 868 | (Beringer et al. 2013) |
AU-Gin | 115.7138 | -31.3764 | 2011-2014 | WSA | Cwb | 935 | (J. Beringer, Hutley, McHugh, Arndt, Campbell, Cleugh, Cleverly, De Dios, et al. 2016) |
AU-GWW | 120.6541 | -30.1913 | 2013-2014 | SAV | Bwk | 646 | (Prober et al. 2012) |
AU-How | 131.1523 | -12.4943 | 2001-2014 | WSA | Aw | NA | (Cernusak 2007) |
AU-Lox | 140.6551 | -34.4704 | 2008-2009 | DBF | Bsh | 271 | (Stevens et al. 2011) |
AU-RDF | 132.4776 | -14.5636 | 2011-2013 | WSA | Bwh | 424 | (Bristow et al. 2016) |
AU-Rig | 145.5759 | -36.6499 | 2011-2014 | GRA | Cfb | 1121 | (J. Beringer, Hutley, McHugh, Arndt, Campbell, Cleugh, Cleverly, Dios, et al. 2016b) |
AU-Rob | 145.6301 | -17.1175 | 2014-2014 | EBF | Csb | 334 | (J. Beringer, Hutley, McHugh, Arndt, Campbell, Cleugh, Cleverly, Dios, et al. 2016c) |
AU-Stp | 133.3502 | -17.1507 | 2008-2014 | GRA | BSh | 1314 | (J. Beringer, Hutley, Hacker, et al. 2011b) |
AU-TTE | 133.6400 | -22.2870 | 2012-2013 | OSH | BWh | 94 | (Cleverly et al. 2016) |
AU-Tum | 148.1517 | -35.6566 | 2001-2014 | EBF | Cfb | 4202 | (Leuning et al. 2005) |
AU-Wac | 145.1878 | -37.4259 | 2005-2008 | EBF | Cfb | 971 | (Kilinc et al. 2013) |
AU-Whr | 145.0294 | -36.6732 | 2011-2014 | EBF | Cfb | 1062 | (McHugh et al. 2017) |
AU-Wom | 144.0944 | -37.4222 | 2010-2012 | EBF | Cfb | 897 | (Hinko-Najera et al. 2017) |
AU-Ync | 146.2907 | -34.9893 | 2012-2014 | GRA | BSk | 384 | (Yee et al. 2015) |
BE-Bra | 4.5206 | 51.3092 | 1996-2014 | MF | Cfb | 4463 | (Carrara et al. 2004) |
BE-Lon | 4.7461 | 50.5516 | 2004-2014 | CRO | Cfb | 3027 | (Moureaux et al. 2006) |
BE-Vie | 5.9981 | 50.3051 | 1996-2014 | MF | Cfb | 5556 | (Aubinet et al. 2001) |
BR-Sa3 | -54.9714 | -3.0180 | 2000-2004 | EBF | Am | 1134 | (Wick et al. 2005) |
CA-Man | -98.4808 | 55.8796 | 1994-2008 | ENF | Dfc | 2435 | (Dunn et al. 2007) |
CA-NS1 | -98.4839 | 55.8792 | 2001-2005 | ENF | Dfc | 763 | (Goulden et al. 2006a) |
CA-NS2 | -98.5247 | 55.9058 | 2001-2005 | ENF | Dfc | 859 | (Goulden et al. 2006b) |
CA-NS3 | -98.3822 | 55.9117 | 2001-2005 | ENF | Dfc | 1062 | (Goulden et al. 2006c) |
CA-NS4 | -98.3822 | 55.9117 | 2002-2005 | ENF | Dfc | 601 | (Goulden et al. 2006d) |
CA-NS5 | -98.4850 | 55.8631 | 2001-2005 | ENF | Dfc | 903 | (Goulden et al. 2006e) |
CA-NS6 | -98.9644 | 55.9167 | 2001-2005 | OSH | Dfc | 905 | (Goulden et al. 2006f) |
CA-NS7 | -99.9483 | 56.6358 | 2002-2005 | OSH | Dfc | 694 | (Goulden et al. 2006g) |
CA-Qfo | -74.3421 | 49.6925 | 2003-2010 | ENF | Dfc | 1795 | (Bergeron et al. 2007) |
CA-SF1 | -105.8176 | 54.4850 | 2003-2006 | ENF | Dfc | 513 | (Mkhabela et al. 2009a) |
CA-SF2 | -105.8775 | 54.2539 | 2001-2005 | ENF | Dfc | 664 | (Mkhabela et al. 2009b) |
CA-SF3 | -106.0053 | 54.0916 | 2001-2006 | OSH | Dfc | 634 | (Mkhabela et al. 2009c) |
CH-Cha | 8.4104 | 47.2102 | 2005-2014 | GRA | Cfb | 2876 | (Merbold et al. 2014) |
CH-Dav | 9.8559 | 46.8153 | 1997-2014 | ENF | ET | 5293 | (Zielis et al. 2014) |
CH-Fru | 8.5378 | 47.1158 | 2005-2014 | GRA | Cfb | 2527 | (Imer et al. 2013) |
CH-Lae | 8.3650 | 47.4781 | 2004-2014 | MF | Cfb | 3144 | (Etzold et al. 2011) |
CH-Oe1 | 7.7319 | 47.2858 | 2002-2008 | GRA | Cfb | 2083 | (Ammann et al. 2009) |
CH-Oe2 | 7.7343 | 47.2863 | 2004-2014 | CRO | Cfb | 3258 | (Dietiker, Buchmann, and Eugster 2010) |
CN-Cha | 128.0958 | 42.4025 | 2003-2005 | MF | Dwb | 804 | (Guan et al. 2006) |
CN-Cng | 123.5092 | 44.5934 | 2007-2010 | GRA | Bsh | 1092 | (???) |
CN-Dan | 91.0664 | 30.4978 | 2004-2005 | GRA | ET | 619 | (Shi et al. 2006) |
CN-Din | 112.5361 | 23.1733 | 2003-2005 | EBF | Cfa | 894 | (Yan et al. 2013) |
CN-Du2 | 116.2836 | 42.0467 | 2006-2008 | GRA | Dwb | 599 | (Chen et al. 2009) |
CN-Ha2 | 101.3269 | 37.6086 | 2003-2005 | WET | ET | 892 | (???) |
CN-HaM | 101.1800 | 37.3700 | 2002-2004 | GRA | NA | 664 | (Kato et al. 2006) |
CN-Qia | 115.0581 | 26.7414 | 2003-2005 | ENF | Cfa | 987 | (Wen et al. 2010) |
CN-Sw2 | 111.8971 | 41.7902 | 2010-2012 | GRA | Bsh | 224 | (Shao et al. 2017) |
CZ-BK1 | 18.5369 | 49.5021 | 2004-2008 | ENF | Dfb | 1051 | (Acosta et al. 2013) |
CZ-BK2 | 18.5429 | 49.4944 | 2004-2006 | GRA | Dfb | 156 | (???) |
CZ-wet | 14.7704 | 49.0247 | 2006-2014 | WET | Cfb | 2592 | (Dušek et al. 2012) |
DE-Akm | 13.6834 | 53.8662 | 2009-2014 | WET | Cfb | NA | (???) |
DE-Geb | 10.9143 | 51.1001 | 2001-2014 | CRO | Cfb | 3779 | (Anthoni et al. 2004) |
DE-Gri | 13.5125 | 50.9495 | 2004-2014 | GRA | Cfb | 3354 | (Prescher, Grünwald, and Bernhofer 2010a) |
DE-Hai | 10.4530 | 51.0792 | 2000-2012 | DBF | Cfb | 3436 | (Knohl et al. 2003) |
DE-Kli | 13.5225 | 50.8929 | 2004-2014 | CRO | Cfb | NA | (Prescher, Grünwald, and Bernhofer 2010b) |
DE-Lkb | 13.3047 | 49.0996 | 2009-2013 | ENF | Cfb | 848 | (Lindauer et al. 2014) |
DE-Obe | 13.7196 | 50.7836 | 2008-2014 | ENF | Cfb | 1992 | (???) |
DE-RuR | 6.3041 | 50.6219 | 2011-2014 | GRA | Cfb | 1178 | (Post et al. 2015) |
DE-RuS | 6.4472 | 50.8659 | 2011-2014 | CRO | Cfb | NA | (Mauder et al. 2013) |
DE-Seh | 6.4497 | 50.8706 | 2007-2010 | CRO | Cfb | 1026 | (Schmidt et al. 2012) |
DE-SfN | 11.3275 | 47.8064 | 2012-2014 | WET | Cfb | 737 | (Hommeltenberg et al. 2014) |
DE-Spw | 14.0337 | 51.8923 | 2010-2014 | WET | Cfb | 1323 | (???) |
DE-Tha | 13.5669 | 50.9636 | 1996-2014 | ENF | Cfb | 5965 | (Grünwald and Bernhofer 2007) |
DK-Fou | 9.5872 | 56.4842 | 2005-2005 | CRO | Cfb | 220 | (???) |
DK-NuF | -51.3861 | 64.1308 | 2008-2014 | WET | ET | 870 | (Westergaard-Nielsen et al. 2013) |
DK-Sor | 11.6446 | 55.4859 | 1996-2014 | DBF | Cfb | 5514 | (Pilegaard et al. 2011) |
DK-ZaF | -20.5545 | 74.4814 | 2008-2011 | WET | ET | 328 | (Stiegler et al. 2016) |
DK-ZaH | -20.5503 | 74.4732 | 2000-2014 | GRA | ET | 1652 | (Lund et al. 2012) |
ES-LgS | -2.9658 | 37.0979 | 2007-2009 | OSH | Cwc | 778 | (Reverter et al. 2010) |
ES-Ln2 | -3.4758 | 36.9695 | 2009-2009 | OSH | Cwc | 66 | (Serrano-Ortiz et al. 2011) |
FI-Hyy | 24.2950 | 61.8475 | 1996-2014 | ENF | Dfc | 5204 | (Suni et al. 2003) |
FI-Jok | 23.5135 | 60.8986 | 2000-2003 | CRO | Dfc | 645 | (Lohila 2004) |
FI-Lom | 24.2092 | 67.9972 | 2007-2009 | WET | Dfc | 502 | (Aurela et al. 2015) |
FI-Sod | 26.6378 | 67.3619 | 2001-2014 | ENF | Dfc | 2660 | (Thum et al. 2007) |
FR-Fon | 2.7801 | 48.4764 | 2005-2014 | DBF | Cfb | 2821 | (Delpierre et al. 2015) |
FR-Gri | 1.9519 | 48.8442 | 2004-2013 | CRO | Cfb | NA | (Loubet et al. 2011) |
FR-LBr | -0.7693 | 44.7171 | 1996-2008 | ENF | Cfb | 3528 | (Berbigier, Bonnefond, and Mellmann 2001) |
FR-Pue | 3.5958 | 43.7414 | 2000-2014 | EBF | Cwb | 4678 | (Rambal et al. 2004) |
GF-Guy | -52.9249 | 5.2788 | 2004-2014 | EBF | Am | 3695 | (Bonal et al. 2008) |
IT-BCi | 14.9574 | 40.5238 | 2004-2014 | CRO | Cwb | NA | (Vitale et al. 2015) |
IT-CA1 | 12.0266 | 42.3804 | 2011-2014 | DBF | Cwb | 1021 | (Sabbatini et al. 2016a) |
IT-CA2 | 12.0260 | 42.3772 | 2011-2014 | CRO | Cwb | 998 | (Sabbatini et al. 2016b) |
IT-CA3 | 12.0222 | 42.3800 | 2011-2014 | DBF | Cwb | 875 | (Sabbatini et al. 2016c) |
IT-Col | 13.5881 | 41.8494 | 1996-2014 | DBF | Cfa | 3276 | (Valentini et al. 1996) |
IT-Cp2 | 12.3573 | 41.7043 | 2012-2014 | EBF | Cwb | 756 | (Fares et al. 2014) |
IT-Cpz | 12.3761 | 41.7052 | 1997-2009 | EBF | Cwb | 2560 | (Garbulsky et al. 2008) |
IT-Isp | 8.6336 | 45.8126 | 2013-2014 | DBF | Cfb | 557 | (Ferréa et al. 2012) |
IT-La2 | 11.2853 | 45.9542 | 2000-2002 | ENF | Cfb | 470 | (B. Marcolla, Pitacco, and Cescatti 2003a) |
IT-Lav | 11.2813 | 45.9562 | 2003-2014 | ENF | Cfb | 3799 | (B. Marcolla, Pitacco, and Cescatti 2003b) |
IT-MBo | 11.0458 | 46.0147 | 2003-2013 | GRA | Dfb | 3203 | (Marcolla et al. 2011) |
IT-Noe | 8.1515 | 40.6061 | 2004-2014 | CSH | Cwb | 3041 | (Papale et al. 2014) |
IT-PT1 | 9.0610 | 45.2009 | 2002-2004 | DBF | Cfa | 813 | (Migliavacca et al. 2009) |
IT-Ren | 11.4337 | 46.5869 | 1998-2013 | ENF | Dfc | 3180 | (Montagnani et al. 2009) |
IT-Ro1 | 11.9300 | 42.4081 | 2000-2008 | DBF | Cwb | NA | (Rey et al. 2002) |
IT-Ro2 | 11.9209 | 42.3903 | 2002-2012 | DBF | Cwb | 2641 | (Tedeschi et al. 2006) |
IT-SR2 | 10.2910 | 43.7320 | 2013-2014 | ENF | Cwb | 658 | (Hoshika et al. 2017) |
IT-SRo | 10.2844 | 43.7279 | 1999-2012 | ENF | Cwb | 4075 | (Chiesi et al. 2005) |
IT-Tor | 7.5781 | 45.8444 | 2008-2014 | GRA | Dfc | 1351 | (Galvagno et al. 2013) |
JP-MBF | 142.3186 | 44.3869 | 2003-2005 | DBF | Dfb | 459 | (Matsumoto et al. 2008a) |
JP-SMF | 137.0788 | 35.2617 | 2002-2006 | MF | Cfa | 1273 | (Matsumoto et al. 2008b) |
NL-Hor | 5.0713 | 52.2404 | 2004-2011 | GRA | Cfb | 2113 | (Jacobs et al. 2007) |
NL-Loo | 5.7436 | 52.1666 | 1996-2013 | ENF | Cfb | 5417 | (Moors 2012) |
NO-Adv | 15.9230 | 78.1860 | 2011-2014 | WET | ET | 100 | (???) |
NO-Blv | 11.8311 | 78.9216 | 2008-2009 | SNO | ET | 62 | (Lüers et al. 2014) |
RU-Che | 161.3414 | 68.6130 | 2002-2005 | WET | Dfc | 285 | (Merbold, Kutsch, et al. 2009) |
RU-Cok | 147.4943 | 70.8291 | 2003-2014 | OSH | Dfc | 962 | (Molen et al. 2007) |
RU-Fyo | 32.9221 | 56.4615 | 1998-2014 | ENF | Dfb | 4397 | (Kurbatova et al. 2008) |
RU-Ha1 | 90.0022 | 54.7252 | 2002-2004 | GRA | Dfc | 516 | (Marchesini et al. 2007) |
SD-Dem | 30.4783 | 13.2829 | 2005-2009 | SAV | BWh | 736 | (Ardo et al. 2008) |
SN-Dhr | -15.4322 | 15.4028 | 2010-2013 | SAV | BWh | 631 | (Tagesson et al. 2014) |
US-AR1 | -99.4200 | 36.4267 | 2009-2012 | GRA | Cfa | 994 | (Raz-Yaseef et al. 2015b) |
US-AR2 | -99.5975 | 36.6358 | 2009-2012 | GRA | Cfa | 875 | (Raz-Yaseef et al. 2015c) |
US-ARb | -98.0402 | 35.5497 | 2005-2006 | GRA | Cfa | 408 | (Raz-Yaseef et al. 2015a) |
US-ARc | -98.0400 | 35.5465 | 2005-2006 | GRA | Cfa | 478 | (Raz-Yaseef et al. 2015d) |
US-ARM | -97.4888 | 36.6058 | 2003-2012 | CRO | Cfa | 2450 | (Fischer et al. 2007) |
US-Blo | -120.6328 | 38.8953 | 1997-2007 | ENF | Cwc | 2246 | (Goldstein et al. 2000) |
US-Cop | -109.3900 | 38.0900 | 2001-2007 | GRA | BSk | 1017 | (Bowling et al. 2010) |
US-GBT | -106.2397 | 41.3658 | 1999-2006 | ENF | Dfc | 533 | (Zeller and Nikolov 2000) |
US-GLE | -106.2399 | 41.3665 | 2004-2014 | ENF | Dfb | 2146 | (Frank et al. 2014) |
US-Ha1 | -72.1715 | 42.5378 | 1991-2012 | DBF | Dfb | 4810 | (Urbanski et al. 2007) |
US-KS2 | -80.6715 | 28.6086 | 2003-2006 | CSH | Cfa | 1258 | (Powell et al. 2006) |
US-Los | -89.9792 | 46.0827 | 2000-2014 | WET | Dfb | 2040 | (Sulman et al. 2009) |
US-Me1 | -121.5000 | 44.5794 | 2004-2005 | ENF | Cwc | 271 | (Irvine, Law, and Hibbard 2007) |
US-Me2 | -121.5574 | 44.4523 | 2002-2014 | ENF | Cwc | 3399 | (Irvine et al. 2008) |
US-Me6 | -121.6078 | 44.3233 | 2010-2014 | ENF | Cwc | 1244 | (Ruehr, Martin, and Law 2012) |
US-MMS | -86.4131 | 39.3232 | 1999-2014 | DBF | Cfa | 3610 | (Dragoni et al. 2011) |
US-Myb | -121.7651 | 38.0498 | 2010-2014 | WET | Cwb | 1111 | (Matthes et al. 2014) |
US-Ne1 | -96.4766 | 41.1651 | 2001-2013 | CRO | Dfa | NA | (Verma et al. 2005a) |
US-Ne2 | -96.4701 | 41.1649 | 2001-2013 | CRO | Dfa | NA | (Verma et al. 2005b) |
US-Ne3 | -96.4397 | 41.1797 | 2001-2013 | CRO | Dfa | NA | (Verma et al. 2005c) |
US-NR1 | -105.5464 | 40.0329 | 1998-2014 | ENF | Dfc | 4205 | (Monson et al. 2002) |
US-ORv | -83.0183 | 40.0201 | 2011-2011 | WET | Dfa | NA | (Morin et al. 2014) |
US-PFa | -90.2723 | 45.9459 | 1995-2014 | MF | Dfb | 4593 | (Desai et al. 2015) |
US-Prr | -147.4876 | 65.1237 | 2010-2013 | ENF | Dfc | 515 | (Nakai et al. 2013) |
US-SRG | -110.8277 | 31.7894 | 2008-2014 | GRA | BSk | 2099 | (R. L. Scott et al. 2015a) |
US-SRM | -110.8661 | 31.8214 | 2004-2014 | WSA | BSk | 3075 | (Scott et al. 2009) |
US-Syv | -89.3477 | 46.2420 | 2001-2014 | MF | Dfb | 1977 | (Desai et al. 2005) |
US-Ton | -120.9660 | 38.4316 | 2001-2014 | WSA | Cwb | 4235 | (Baldocchi et al. 2010) |
US-Tw1 | -121.6469 | 38.1074 | 2012-2014 | WET | Cwb | 554 | (Oikawa et al. 2017) |
US-Tw2 | -121.6433 | 38.1047 | 2012-2013 | CRO | Cwb | 285 | (Knox et al. 2016) |
US-Tw3 | -121.6467 | 38.1159 | 2013-2014 | CRO | Cwb | 419 | (Baldocchi, Sturtevant, and Contributors 2015) |
US-Tw4 | -121.6414 | 38.1030 | 2013-2014 | WET | Cwb | 321 | (Baldocchi 2016) |
US-Twt | -121.6530 | 38.1087 | 2009-2014 | CRO | Cwb | 1421 | (Hatala et al. 2012) |
US-UMB | -84.7138 | 45.5598 | 2000-2014 | DBF | Dfb | 3970 | (Gough et al. 2013a) |
US-UMd | -84.6975 | 45.5625 | 2007-2014 | DBF | Dfb | 2034 | (Gough et al. 2013b) |
US-Var | -120.9507 | 38.4133 | 2000-2014 | GRA | Cwb | 2955 | (Ma et al. 2007) |
US-WCr | -90.0799 | 45.8059 | 1999-2014 | DBF | Dfb | 2485 | (Cook et al. 2004) |
US-Whs | -110.0522 | 31.7438 | 2007-2014 | OSH | BSk | 1561 | (R. L. Scott et al. 2015b) |
US-Wi0 | -91.0814 | 46.6188 | 2002-2002 | ENF | Dfb | 175 | (Noormets, Chen, and Crow 2007a) |
US-Wi3 | -91.0987 | 46.6347 | 2002-2004 | DBF | Dfb | 353 | (Noormets, Chen, and Crow 2007b) |
US-Wi4 | -91.1663 | 46.7393 | 2002-2005 | ENF | Dfb | 568 | (Noormets, Chen, and Crow 2007c) |
US-Wi6 | -91.2982 | 46.6249 | 2002-2003 | OSH | Dfb | 175 | (Noormets, Chen, and Crow 2007d) |
US-Wi9 | -91.0814 | 46.6188 | 2004-2005 | ENF | Dfb | 291 | (Noormets, Chen, and Crow 2007e) |
US-Wkg | -109.9419 | 31.7365 | 2004-2014 | GRA | BSk | 2671 | (Scott et al. 2010) |
ZA-Kru | 31.4969 | -25.0197 | 2000-2010 | SAV | BSh | 2001 | (Archibald et al. 2009) |
ZM-Mon | 23.2528 | -15.4378 | 2000-2009 | DBF | Aw | 625 | (Merbold, Ardö, et al. 2009) |
Acosta, Manuel, Marian Pavelka, Leonardo Montagnani, Werner Kutsch, Anders Lindroth, Radosław Juszczak, and Dalibor Janouš. 2013. “Soil Surface CO2 Efflux Measurements in Norway Spruce Forests: Comparison Between Four Different Sites Across Europe from Boreal to Alpine Forest.” Geoderma 192 (January). Elsevier BV: 295–303. doi:10.1016/j.geoderma.2012.08.027.
Ammann, Christof, Christoph Spirig, Jens Leifeld, and Albrecht Neftel. 2009. “Assessment of the Nitrogen and Carbon Budget of Two Managed Temperate Grassland Fields.” Agriculture, Ecosystems & Environment 133 (3-4). Elsevier BV: 150–62. doi:10.1016/j.agee.2009.05.006.
Anthoni, P. M., A. Knohl, C. Rebmann, A. Freibauer, M. Mund, W. Ziegler, O. Kolle, and E.-D. Schulze. 2004. “Forest and Agricultural Land-Use-Dependent CO2 Exchange in Thuringia, Germany.” Global Change Biology 10 (12). Wiley-Blackwell: 2005–19. doi:10.1111/j.1365-2486.2004.00863.x.
Archibald, S. A., A. Kirton, M. R. van der Merwe, R. J. Scholes, C. A. Williams, and N. Hanan. 2009. “Drivers of Inter-Annual Variability in Net Ecosystem Exchange in a Semi-Arid Savanna Ecosystem, South Africa.” Biogeosciences 6 (2). Copernicus GmbH: 251–66. doi:10.5194/bg-6-251-2009.
Ardo, Jonas, Meelis Molder, Bashir A El-Tahir, and Hatim A M Elkhidir. 2008. “Seasonal Variation of Carbon Fluxes in a Sparse Savanna in Semi Arid Sudan.” Carbon Balance and Management 3 (1). Springer Nature: 7. doi:10.1186/1750-0680-3-7.
Aubinet, M, B Chermanne, M Vandenhaute, B Longdoz, M Yernaux, and E Laitat. 2001. “Long Term Carbon Dioxide Exchange Above a Mixed Forest in the Belgian Ardennes.” Agricultural and Forest Meteorology 108 (4). Elsevier BV: 293–315. doi:10.1016/s0168-1923(01)00244-1.
Aurela, Mika, Annalea Lohila, Juha Pekka Tuovinen, Juha Hatakka, Timo Penttilä, and Tuomas Laurila. 2015. “Carbon dioxide and energy flux measurements in four northern-boreal ecosystems at Pallas.” Boreal Environment Research 20 (4): 455–73.
Baldocchi, Dennis. 2016. “AmeriFlux US-Tw4 Twitchell East End Wetland from 2013-Present.” doi:10.17190/AMF/1246151.
Baldocchi, Dennis, Qi Chen, Xingyuan Chen, Siyan Ma, Gretchen Miller, Youngryel Ryu, Jingfeng Xiao, Rebecca Wenk, and John Battles. 2010. “The Dynamics of Energy, Water, and Carbon Fluxes in a Blue Oak (Quercus Douglasii) Savanna in California.” In Ecosystem Function in Savannas, 135–51. CRC Press. doi:10.1201/b10275-10.
Baldocchi, Dennis, Cove Sturtevant, and Fluxnet Contributors. 2015. “Does Day and Night Sampling Reduce Spurious Correlation Between Canopy Photosynthesis and Ecosystem Respiration?” Agricultural and Forest Meteorology 207 (July). Elsevier BV: 117–26. doi:10.1016/j.agrformet.2015.03.010.
Berbigier, Paul, Jean-Marc Bonnefond, and Patricia Mellmann. 2001. “CO2 and Water Vapour Fluxes for 2 Years Above Euroflux Forest Site.” Agricultural and Forest Meteorology 108 (3). Elsevier BV: 183–97. doi:10.1016/s0168-1923(01)00240-4.
Bergeron, Onil, Hank A. Margolis, T. Andrew Black, Carole Coursolle, Allison L. Dunn, Alan G. Barr, and Steven C. Wofsy. 2007. “Comparison of Carbon Dioxide Fluxes over Three Boreal Black Spruce Forests in Canada.” Global Change Biology 13 (1). Wiley-Blackwell: 89–107. doi:10.1111/j.1365-2486.2006.01281.x.
Beringer, Jason, Jorg Hacker, Lindsay B. Hutley, Ray Leuning, Stefan K. Arndt, Reza Amiri, Lutz Bannehr, et al. 2011. “SPECIALSavanna Patterns of Energy and Carbon Integrated Across the Landscape.” Bulletin of the American Meteorological Society 92 (11). American Meteorological Society: 1467–85. doi:10.1175/2011bams2948.1.
Beringer, Jason, Lindsay B. Hutley, Jorg M. Hacker, Bruno Neininger, and Kyaw Tha Paw U. 2011a. “Patterns and Processes of Carbon, Water and Energy Cycles Across Northern Australian Landscapes: From Point to Region.” Agricultural and Forest Meteorology 151 (11). Elsevier BV: 1409–16. doi:10.1016/j.agrformet.2011.05.003.
———. 2011b. “Patterns and Processes of Carbon, Water and Energy Cycles Across Northern Australian Landscapes: From Point to Region.” Agricultural and Forest Meteorology 151 (11). Elsevier BV: 1409–16. doi:10.1016/j.agrformet.2011.05.003.
Beringer, Jason, Lindsay B. Hutley, Ian McHugh, Stefan K. Arndt, David Campbell, Helen A. Cleugh, James Cleverly, et al. 2016. “An introduction to the Australian and New Zealand flux tower network - OzFlux.” Biogeosciences 13 (21). Copernicus GmbH: 5895–5916. doi:10.5194/bg-13-5895-2016.
———. 2016a. “An Introduction to the Australian and New Zealand Flux Tower Network OzFlux.” Biogeosciences 13 (21). Copernicus GmbH: 5895–5916. doi:10.5194/bg-13-5895-2016.
———. 2016b. “An Introduction to the Australian and New Zealand Flux Tower Network OzFlux.” Biogeosciences 13 (21). Copernicus GmbH: 5895–5916. doi:10.5194/bg-13-5895-2016.
———. 2016c. “An Introduction to the Australian and New Zealand Flux Tower Network OzFlux.” Biogeosciences 13 (21). Copernicus GmbH: 5895–5916. doi:10.5194/bg-13-5895-2016.
Beringer, Jason, Stephen J. Livesley, Jennifer Randle, and Lindsay B. Hutley. 2013. “Carbon Dioxide Fluxes Dominate the Greenhouse Gas Exchanges of a Seasonal Wetland in the Wetdry Tropics of Northern Australia.” Agricultural and Forest Meteorology 182-183 (December). Elsevier BV: 239–47. doi:10.1016/j.agrformet.2013.06.008.
Bonal, Damien, Alexandre Bosc, Stéphane Ponton, Jean-Yves Goret, Benoît Burban, Patrick Gross, Jean-Marc Bonnefond, et al. 2008. “Impact of Severe Dry Season on Net Ecosystem Exchange in the Neotropical Rainforest of French Guiana.” Global Change Biology 14 (8). Wiley-Blackwell: 1917–33. doi:10.1111/j.1365-2486.2008.01610.x.
Bowling, D. R., S. Bethers-Marchetti, C. K. Lunch, E. E. Grote, and J. Belnap. 2010. “Carbon, Water, and Energy Fluxes in a Semiarid Cold Desert Grassland During and Following Multiyear Drought.” Journal of Geophysical Research 115 (G4). Wiley-Blackwell. doi:10.1029/2010jg001322.
Bristow, M., L. B. Hutley, J. Beringer, S. J. Livesley, A. C. Edwards, and S. K. Arndt. 2016. “Quantifying the Relative Importance of Greenhouse Gas Emissions from Current and Future Savanna Land Use Change Across Northern Australia.” Biogeosciences Discussions, May. Copernicus GmbH, 1–47. doi:10.5194/bg-2016-191.
Carrara, Arnaud, Ivan A. Janssens, Jorge Curiel Yuste, and Reinhart Ceulemans. 2004. “Seasonal Changes in Photosynthesis, Respiration and NEE of a Mixed Temperate Forest.” Agricultural and Forest Meteorology 126 (1-2). Elsevier BV: 15–31. doi:10.1016/j.agrformet.2004.05.002.
Cernusak, Jason Beringer And Lindsay B. Hutley And Nigel J. Tapper And Lucas A. 2007. “Savanna Fires and Their Impact on Net Ecosystem Productivity in North Australia.” Global Change Biology 13 (5). Wiley-Blackwell: 990–1004. doi:10.1111/j.1365-2486.2007.01334.x.
Cernusak, Lucas A., Lindsay B. Hutley, Jason Beringer, Joseph A.M. Holtum, and Benjamin L. Turner. 2011. “Photosynthetic Physiology of Eucalypts Along a Sub-Continental Rainfall Gradient in Northern Australia.” Agricultural and Forest Meteorology 151 (11). Elsevier BV: 1462–70. doi:10.1016/j.agrformet.2011.01.006.
Chen, Shiping, Jiquan Chen, Guanghui Lin, Wenli Zhang, Haixia Miao, Long Wei, Jianhui Huang, and Xingguo Han. 2009. “Energy Balance and Partition in Inner Mongolia Steppe Ecosystems with Different Land Use Types.” Agricultural and Forest Meteorology 149 (11). Elsevier BV: 1800–1809. doi:10.1016/j.agrformet.2009.06.009.
Chiesi, M., F. Maselli, M. Bindi, L. Fibbi, P. Cherubini, E. Arlotta, G. Tirone, G. Matteucci, and G. Seufert. 2005. “Modelling Carbon Budget of Mediterranean Forests Using Ground and Remote Sensing Measurements.” Agricultural and Forest Meteorology 135 (1-4). Elsevier BV: 22–34. doi:10.1016/j.agrformet.2005.09.011.
Cleverly, James, Nicolas Boulain, Randol Villalobos-Vega, Nicole Grant, Ralph Faux, Cameron Wood, Peter G. Cook, Qiang Yu, Andrea Leigh, and Derek Eamus. 2013. “Dynamics of Component Carbon Fluxes in a Semi-Arid Acacia Woodland, Central Australia.” Journal of Geophysical Research: Biogeosciences 118 (3). Wiley-Blackwell: 1168–85. doi:10.1002/jgrg.20101.
Cleverly, James, Derek Eamus, Eva Van Gorsel, Chao Chen, Rizwana Rumman, Qunying Luo, Natalia Restrepo Coupe, et al. 2016. “Productivity and evapotranspiration of two contrasting semiarid ecosystems following the 2011 global carbon land sink anomaly.” Agricultural and Forest Meteorology 220 (April): 151–59. doi:10.1016/j.agrformet.2016.01.086.
Cook, Bruce D., Kenneth J. Davis, Weiguo Wang, Ankur Desai, Bradford W. Berger, Ron M. Teclaw, Jonathan G. Martin, et al. 2004. “Carbon Exchange and Venting Anomalies in an Upland Deciduous Forest in Northern Wisconsin, USA.” Agricultural and Forest Meteorology 126 (3-4). Elsevier BV: 271–95. doi:10.1016/j.agrformet.2004.06.008.
Delpierre, Nicolas, Daniel Berveiller, Elena Granda, and Eric Dufrêne. 2015. “Wood Phenology, Not Carbon Input, Controls the Interannual Variability of Wood Growth in a Temperate Oak Forest.” New Phytologist 210 (2). Wiley-Blackwell: 459–70. doi:10.1111/nph.13771.
Desai, Ankur R., Paul V. Bolstad, Bruce D. Cook, Kenneth J. Davis, and Eileen V. Carey. 2005. “Comparing Net Ecosystem Exchange of Carbon Dioxide Between an Old-Growth and Mature Forest in the Upper Midwest, USA.” Agricultural and Forest Meteorology 128 (1-2). Elsevier BV: 33–55. doi:10.1016/j.agrformet.2004.09.005.
Desai, Ankur R., Ke Xu, Hanqin Tian, Peter Weishampel, Jonathan Thom, Dan Baumann, Arlyn E. Andrews, Bruce D. Cook, Jennifer Y. King, and Randall Kolka. 2015. “Landscape-Level Terrestrial Methane Flux Observed from a Very Tall Tower.” Agricultural and Forest Meteorology 201 (February). Elsevier BV: 61–75. doi:10.1016/j.agrformet.2014.10.017.
Dietiker, Dominique, Nina Buchmann, and Werner Eugster. 2010. “Testing the Ability of the DNDC Model to Predict CO2 and Water Vapour Fluxes of a Swiss Cropland Site.” Agriculture, Ecosystems & Environment 139 (3). Elsevier BV: 396–401. doi:10.1016/j.agee.2010.09.002.
Dragoni, Danilo, Hans Peter Schmid, Craig A. Wayson, Henry Potter, C. Susan B. Grimmond, and James C. Randolph. 2011. “Evidence of Increased Net Ecosystem Productivity Associated with a Longer Vegetated Season in a Deciduous Forest in South-Central Indiana, USA.” Global Change Biology 17 (2). Wiley-Blackwell: 886–97. doi:10.1111/j.1365-2486.2010.02281.x.
Dunn, Allison L., Carol C. Barford, Steven C. Wofsy, Michael L. Goulden, and Bruce C. Daube. 2007. “A Long-Term Record of Carbon Exchange in a Boreal Black Spruce Forest: Means, Responses to Interannual Variability, and Decadal Trends.” Global Change Biology 13 (3). Wiley-Blackwell: 577–90. doi:10.1111/j.1365-2486.2006.01221.x.
Dušek, J., H. Čížková, S. Stellner, R. Czerný, and J. Květ. 2012. “Fluctuating Water Table Affects Gross Ecosystem Production and Gross Radiation Use Efficiency in a Sedge-Grass Marsh.” Hydrobiologia 692 (1). Springer Nature: 57–66. doi:10.1007/s10750-012-0998-z.
Etzold, Sophia, Nadine K. Ruehr, Roman Zweifel, Matthias Dobbertin, Andreas Zingg, Peter Pluess, Rudolf Häsler, Werner Eugster, and Nina Buchmann. 2011. “The Carbon Balance of Two Contrasting Mountain Forest Ecosystems in Switzerland: Similar Annual Trends, but Seasonal Differences.” Ecosystems 14 (8). Springer Nature: 1289–1309. doi:10.1007/s10021-011-9481-3.
Fares, S., F. Savi, J. Muller, G. Matteucci, and E. Paoletti. 2014. “Simultaneous Measurements of Above and Below Canopy Ozone Fluxes Help Partitioning Ozone Deposition Between Its Various Sinks in a Mediterranean Oak Forest.” Agricultural and Forest Meteorology 198-199 (November). Elsevier BV: 181–91. doi:10.1016/j.agrformet.2014.08.014.
Ferréa, Chiara, Terenzio Zenone, Roberto Comolli, and Günther Seufert. 2012. “Estimating Heterotrophic and Autotrophic Soil Respiration in a Semi-Natural Forest of Lombardy, Italy.” Pedobiologia 55 (6). Elsevier BV: 285–94. doi:10.1016/j.pedobi.2012.05.001.
Fischer, Marc L., David P. Billesbach, Joseph A. Berry, William J. Riley, and Margaret S. Torn. 2007. “Spatiotemporal Variations in Growing Season Exchanges of CO2, H2O, and Sensible Heat in Agricultural Fields of the Southern Great Plains.” Earth Interactions 11 (17). American Meteorological Society: 1–21. doi:10.1175/ei231.1.
Frank, John M., William J. Massman, Brent E. Ewers, Laurie S. Huckaby, and José F. Negrón. 2014. “Ecosystem CO2/H2O Fluxes Are Explained by Hydraulically Limited Gas Exchange During Tree Mortality from Spruce Bark Beetles.” Journal of Geophysical Research: Biogeosciences 119 (6). Wiley-Blackwell: 1195–1215. doi:10.1002/2013jg002597.
Galvagno, M, G Wohlfahrt, E Cremonese, M Rossini, R Colombo, G Filippa, T Julitta, et al. 2013. “Phenology and Carbon Dioxide Source/Sink Strength of a Subalpine Grassland in Response to an Exceptionally Short Snow Season.” Environmental Research Letters 8 (2). IOP Publishing: 025008. doi:10.1088/1748-9326/8/2/025008.
Garbulsky, Martín F., Josep Peñuelas, Dario Papale, and Iolanda Filella. 2008. “Remote Estimation of Carbon Dioxide Uptake by a Mediterranean Forest.” Global Change Biology 14 (12). Wiley-Blackwell: 2860–7. doi:10.1111/j.1365-2486.2008.01684.x.
Goldstein, A.H., N.E. Hultman, J.M. Fracheboud, M.R. Bauer, J.A. Panek, M. Xu, Y. Qi, A.B. Guenther, and W. Baugh. 2000. “Effects of Climate Variability on the Carbon Dioxide, Water, and Sensible Heat Fluxes Above a Ponderosa Pine Plantation in the Sierra Nevada (CA).” Agricultural and Forest Meteorology 101 (2-3). Elsevier BV: 113–29. doi:10.1016/s0168-1923(99)00168-9.
Gough, Christopher M., Brady S. Hardiman, Lucas E. Nave, Gil Bohrer, Kyle D. Maurer, Christoph S. Vogel, Knute J. Nadelhoffer, and Peter S. Curtis. 2013a. “Sustained Carbon Uptake and Storage Following Moderate Disturbance in a Great Lakes Forest.” Ecological Applications 23 (5). Wiley-Blackwell: 1202–15. doi:10.1890/12-1554.1.
———. 2013b. “Sustained Carbon Uptake and Storage Following Moderate Disturbance in a Great Lakes Forest.” Ecological Applications 23 (5). Wiley-Blackwell: 1202–15. doi:10.1890/12-1554.1.
Goulden, Michael L., Gregory C. Winston, Andrew M. S. McMillan, Marcy E. Litvak, Edward L. Read, Adrian V. Rocha, and J. Rob Elliot. 2006a. “An Eddy Covariance Mesonet to Measure the Effect of Forest Age on Land?atmosphere Exchange.” Global Change Biology 12 (11). Wiley-Blackwell: 2146–62. doi:10.1111/j.1365-2486.2006.01251.x.
———. 2006b. “An Eddy Covariance Mesonet to Measure the Effect of Forest Age on Land?atmosphere Exchange.” Global Change Biology 12 (11). Wiley-Blackwell: 2146–62. doi:10.1111/j.1365-2486.2006.01251.x.
———. 2006c. “An Eddy Covariance Mesonet to Measure the Effect of Forest Age on Land?atmosphere Exchange.” Global Change Biology 12 (11). Wiley-Blackwell: 2146–62. doi:10.1111/j.1365-2486.2006.01251.x.
———. 2006d. “An Eddy Covariance Mesonet to Measure the Effect of Forest Age on Land?atmosphere Exchange.” Global Change Biology 12 (11). Wiley-Blackwell: 2146–62. doi:10.1111/j.1365-2486.2006.01251.x.
———. 2006e. “An Eddy Covariance Mesonet to Measure the Effect of Forest Age on Land?atmosphere Exchange.” Global Change Biology 12 (11). Wiley-Blackwell: 2146–62. doi:10.1111/j.1365-2486.2006.01251.x.
———. 2006f. “An Eddy Covariance Mesonet to Measure the Effect of Forest Age on Land?atmosphere Exchange.” Global Change Biology 12 (11). Wiley-Blackwell: 2146–62. doi:10.1111/j.1365-2486.2006.01251.x.
———. 2006g. “An Eddy Covariance Mesonet to Measure the Effect of Forest Age on Land?atmosphere Exchange.” Global Change Biology 12 (11). Wiley-Blackwell: 2146–62. doi:10.1111/j.1365-2486.2006.01251.x.
Grünwald, Thomas, and Christian Bernhofer. 2007. “A Decade of Carbon, Water and Energy Flux Measurements of an Old Spruce Forest at the Anchor Station Tharandt.” Tellus B 59 (3). Informa UK Limited. doi:10.3402/tellusb.v59i3.17000.
Guan, De-Xin, Jia-Bing Wu, Xiao-Song Zhao, Shi-Jie Han, Gui-Rui Yu, Xiao-Min Sun, and Chang-Jie Jin. 2006. “CO2 Fluxes over an Old, Temperate Mixed Forest in Northeastern China.” Agricultural and Forest Meteorology 137 (3-4). Elsevier BV: 138–49. doi:10.1016/j.agrformet.2006.02.003.
Hatala, Jaclyn A., Matteo Detto, Oliver Sonnentag, Steven J. Deverel, Joseph Verfaillie, and Dennis D. Baldocchi. 2012. “Greenhouse Gas (CO2, CH4, H2O) Fluxes from Drained and Flooded Agricultural Peatlands in the Sacramento-San Joaquin Delta.” Agriculture, Ecosystems & Environment 150 (March). Elsevier BV: 1–18. doi:10.1016/j.agee.2012.01.009.
Hinko-Najera, Nina, Peter Isaac, Jason Beringer, Eva van Gorsel, Cacilia Ewenz, Ian McHugh, Jean-François Exbrayat, Stephen J. Livesley, and Stefan K. Arndt. 2017. “Net ecosystem carbon exchange of a dry temperate eucalypt forest.” Biogeosciences 14 (16): 3781–3800. doi:10.5194/bg-14-3781-2017.
Hommeltenberg, J., H. P. Schmid, M. Drösler, and P. Werle. 2014. “Can a Bog Drained for Forestry Be a Stronger Carbon Sink Than a Natural Bog Forest?” Biogeosciences 11 (13). Copernicus GmbH: 3477–93. doi:10.5194/bg-11-3477-2014.
Hoshika, Yasutomo, Silvano Fares, Flavia Savi, Carsten Gruening, Ignacio Goded, Alessandra De Marco, Pierre Sicard, and Elena Paoletti. 2017. “Stomatal conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests.” Agricultural and Forest Meteorology 234-235: 212–21. doi:10.1016/j.agrformet.2017.01.005.
Hutley, Lindsay B., Jason Beringer, Peter R. Isaac, Jorg M. Hacker, and Lucas A. Cernusak. 2011. “A Sub-Continental Scale Living Laboratory: Spatial Patterns of Savanna Vegetation over a Rainfall Gradient in Northern Australia.” Agricultural and Forest Meteorology 151 (11). Elsevier BV: 1417–28. doi:10.1016/j.agrformet.2011.03.002.
Imer, D., L. Merbold, W. Eugster, and N. Buchmann. 2013. “Temporal and Spatial Variations of Soil CO2, CH4 and N2O Fluxes at Three Differently Managed Grasslands.” Biogeosciences 10 (9). Copernicus GmbH: 5931–45. doi:10.5194/bg-10-5931-2013.
Irvine, J., B. E. Law, and K. A. Hibbard. 2007. “Postfire Carbon Pools and Fluxes in Semiarid Ponderosa Pine in Central Oregon.” Global Change Biology 13 (8). Wiley-Blackwell: 1748–60. doi:10.1111/j.1365-2486.2007.01368.x.
Irvine, J., B. E. Law, J. G. Martin, and D. Vickers. 2008. “Interannual Variation in Soil CO2 Efflux and the Response of Root Respiration to Climate and Canopy Gas Exchange in Mature Ponderosa Pine.” Global Change Biology 14 (12). Wiley-Blackwell: 2848–59. doi:10.1111/j.1365-2486.2008.01682.x.
Jacobs, C. M. J., A. F. G. Jacobs, F. C. Bosveld, D. M. D. Hendriks, A. Hensen, P. S. Kroon, E. J. Moors, L. Nol, A. Schrier-Uijl, and E. M. Veenendaal. 2007. “Variability of Annual CO2 Exchange from Dutch Grasslands.” Biogeosciences 4 (5). Copernicus GmbH: 803–16. doi:10.5194/bg-4-803-2007.
Kato, Tomomichi, Yanhong Tang, Song Gu, Mitsuru Hirota, Mingyuan Du, Yingnian Li, and Xinquan Zhao. 2006. “Temperature and Biomass Influences on Interannual Changes in CO2 Exchange in an Alpine Meadow on the Qinghai-Tibetan Plateau.” Global Change Biology 12 (7). Wiley-Blackwell: 1285–98. doi:10.1111/j.1365-2486.2006.01153.x.
Kilinc, Musa, Jason Beringer, Lindsay B. Hutley, Nigel J. Tapper, and David A. McGuire. 2013. “Carbon and Water Exchange of the Worlds Tallest Angiosperm Forest.” Agricultural and Forest Meteorology 182-183 (December). Elsevier BV: 215–24. doi:10.1016/j.agrformet.2013.07.003.
Knohl, Alexander, Ernst-Detlef Schulze, Olaf Kolle, and Nina Buchmann. 2003. “Large Carbon Uptake by an Unmanaged 250-Year-Old Deciduous Forest in Central Germany.” Agricultural and Forest Meteorology 118 (3-4). Elsevier BV: 151–67. doi:10.1016/s0168-1923(03)00115-1.
Knox, Sara Helen, Jaclyn Hatala Matthes, Cove Sturtevant, Patricia Y. Oikawa, Joseph Verfaillie, and Dennis Baldocchi. 2016. “Biophysical Controls on Interannual Variability in Ecosystem-Scale CO2and CH4exchange in a California Rice Paddy.” Journal of Geophysical Research: Biogeosciences 121 (3). Wiley-Blackwell: 978–1001. doi:10.1002/2015jg003247.
Kurbatova, J., C. Li, A. Varlagin, X. Xiao, and N. Vygodskaya. 2008. “Modeling Carbon Dynamics in Two Adjacent Spruce Forests with Different Soil Conditions in Russia.” Biogeosciences 5 (4). Copernicus GmbH: 969–80. doi:10.5194/bg-5-969-2008.
Leuning, Ray, Helen A. Cleugh, Steven J. Zegelin, and Dale Hughes. 2005. “Carbon and Water Fluxes over a Temperate Eucalyptus Forest and a Tropical Wet/Dry Savanna in Australia: Measurements and Comparison with MODIS Remote Sensing Estimates.” Agricultural and Forest Meteorology 129 (3-4). Elsevier BV: 151–73. doi:10.1016/j.agrformet.2004.12.004.
Lindauer, M., H.P. Schmid, R. Grote, M. Mauder, R. Steinbrecher, and B. Wolpert. 2014. “Net Ecosystem Exchange over a Non-Cleared Wind-Throw-Disturbed Upland Spruce ForestMeasurements and Simulations.” Agricultural and Forest Meteorology 197 (October). Elsevier BV: 219–34. doi:10.1016/j.agrformet.2014.07.005.
Lohila, Annalea. 2004. “Annual CO2 Exchange of a Peat Field Growing Spring Barley or Perennial Forage Grass.” Journal of Geophysical Research 109 (D18). Wiley-Blackwell. doi:10.1029/2004jd004715.
Loubet, Benjamin, Patricia Laville, Simon Lehuger, Eric Larmanou, Christophe Fléchard, Nicolas Mascher, Sophie Genermont, et al. 2011. “Carbon, Nitrogen and Greenhouse Gases Budgets over a Four Years Crop Rotation in Northern France.” Plant and Soil 343 (1-2). Springer Nature: 109–37. doi:10.1007/s11104-011-0751-9.
Lund, Magnus, Julie M. Falk, Thomas Friborg, Herbert N. Mbufong, Charlotte Sigsgaard, Henrik Soegaard, and Mikkel P. Tamstorf. 2012. “Trends in CO2 Exchange in a High Arctic Tundra Heath, 2000-2010.” Journal of Geophysical Research: Biogeosciences 117 (G2). Wiley-Blackwell: n/a–n/a. doi:10.1029/2011jg001901.
Lüers, J., S. Westermann, K. Piel, and J. Boike. 2014. “Annual CO2 Budget and Seasonal CO2 Exchange Signals at a High Arctic Permafrost Site on Spitsbergen, Svalbard Archipelago.” Biogeosciences 11 (22). Copernicus GmbH: 6307–22. doi:10.5194/bg-11-6307-2014.
Ma, Siyan, Dennis D. Baldocchi, Liukang Xu, and Ted Hehn. 2007. “Inter-Annual Variability in Carbon Dioxide Exchange of an Oak/Grass Savanna and Open Grassland in California.” Agricultural and Forest Meteorology 147 (3-4). Elsevier BV: 157–71. doi:10.1016/j.agrformet.2007.07.008.
Marchesini, L. Belelli, D. Papale, M. Reichstein, N. Vuichard, N. Tchebakova, and R. Valentini. 2007. “Carbon Balance Assessment of a Natural Steppe of Southern Siberia by Multiple Constraint Approach.” Biogeosciences Discussions 4 (1). Copernicus GmbH: 165–208. doi:10.5194/bgd-4-165-2007.
Marcolla, B., A. Pitacco, and A. Cescatti. 2003a. “Canopy Architecture and Turbulence Structure in a Coniferous Forest.” Boundary-Layer Meteorology 108 (1). Springer Nature: 39–59. doi:10.1023/a:1023027709805.
———. 2003b. “Canopy Architecture and Turbulence Structure in a Coniferous Forest.” Boundary-Layer Meteorology 108 (1). Springer Nature: 39–59. doi:10.1023/a:1023027709805.
Marcolla, Barbara, Alessandro Cescatti, Giovanni Manca, Roberto Zorer, Mauro Cavagna, Alessandro Fiora, Damiano Gianelle, Mirco Rodeghiero, Matteo Sottocornola, and Roberto Zampedri. 2011. “Climatic Controls and Ecosystem Responses Drive the Inter-Annual Variability of the Net Ecosystem Exchange of an Alpine Meadow.” Agricultural and Forest Meteorology 151 (9). Elsevier BV: 1233–43. doi:10.1016/j.agrformet.2011.04.015.
Matsumoto, Kazuho, Takeshi Ohta, Taro Nakai, Takashi Kuwada, Ken’ichi Daikoku, Shin’ichi Iida, Hironori Yabuki, et al. 2008a. “Energy Consumption and Evapotranspiration at Several Boreal and Temperate Forests in the Far East.” Agricultural and Forest Meteorology 148 (12). Elsevier BV: 1978–89. doi:10.1016/j.agrformet.2008.09.008.
———. 2008b. “Energy Consumption and Evapotranspiration at Several Boreal and Temperate Forests in the Far East.” Agricultural and Forest Meteorology 148 (12). Elsevier BV: 1978–89. doi:10.1016/j.agrformet.2008.09.008.
Matthes, Jaclyn Hatala, Cove Sturtevant, Joseph Verfaillie, Sara Knox, and Dennis Baldocchi. 2014. “Parsing the Variability in CH4flux at a Spatially Heterogeneous Wetland: Integrating Multiple Eddy Covariance Towers with High-Resolution Flux Footprint Analysis.” Journal of Geophysical Research: Biogeosciences 119 (7). Wiley-Blackwell: 1322–39. doi:10.1002/2014jg002642.
Mauder, Matthias, Matthias Cuntz, Clemens Drüe, Alexander Graf, Corinna Rebmann, Hans Peter Schmid, Marius Schmidt, and Rainer Steinbrecher. 2013. “A Strategy for Quality and Uncertainty Assessment of Long-Term Eddy-Covariance Measurements.” Agricultural and Forest Meteorology 169 (February). Elsevier BV: 122–35. doi:10.1016/j.agrformet.2012.09.006.
McHugh, Ian D., Jason Beringer, Shaun C. Cunningham, Patrick J. Baker, Timothy R. Cavagnaro, Ralph Mac Nally, and Ross M. Thompson. 2017. “Interactions Between Nocturnal Turbulent Flux, Storage and Advection at an Ideal Eucalypt Woodland Site.” Biogeosciences 14 (12). Copernicus GmbH: 3027–50. doi:10.5194/bg-14-3027-2017.
Merbold, L., J. Ardö, A. Arneth, R. J. Scholes, Y. Nouvellon, A. de Grandcourt, S. Archibald, et al. 2009. “Precipitation as Driver of Carbon Fluxes in 11 African Ecosystems.” Biogeosciences 6 (6). Copernicus GmbH: 1027–41. doi:10.5194/bg-6-1027-2009.
Merbold, L., W. L. Kutsch, C. Corradi, O. Kolle, C. Rebmann, P. C. Stoy, S. A. Zimov, and E.-D. Schulze. 2009. “Artificial Drainage and Associated Carbon Fluxes (CO2/CH4) in a Tundra Ecosystem.” Global Change Biology 15 (11). Wiley-Blackwell: 2599–2614. doi:10.1111/j.1365-2486.2009.01962.x.
Merbold, Lutz, Werner Eugster, Jacqueline Stieger, Mark Zahniser, David Nelson, and Nina Buchmann. 2014. “Greenhouse Gas Budget (CO2, CH4and N2O) of Intensively Managed Grassland Following Restoration.” Global Change Biology 20 (6). Wiley-Blackwell: 1913–28. doi:10.1111/gcb.12518.
Meyer, W. S., E. Kondrlovà, and G. R. Koerber. 2015. “Evaporation of Perennial Semi-Arid Woodland in Southeastern Australia Is Adapted for Irregular but Common Dry Periods.” Hydrological Processes 29 (17). Wiley-Blackwell: 3714–26. doi:10.1002/hyp.10467.
Migliavacca, Mirco, Michele Meroni, Lorenzo Busetto, Roberto Colombo, Terenzio Zenone, Giorgio Matteucci, Giovanni Manca, and Guenther Seufert. 2009. “Modeling Gross Primary Production of Agro-Forestry Ecosystems by Assimilation of Satellite-Derived Information in a Process-Based Model.” Sensors 9 (2). MDPI AG: 922–42. doi:10.3390/s90200922.
Mkhabela, M.S., B.D. Amiro, A.G. Barr, T.A. Black, I. Hawthorne, J. Kidston, J.H. McCaughey, et al. 2009a. “Comparison of Carbon Dynamics and Water Use Efficiency Following Fire and Harvesting in Canadian Boreal Forests.” Agricultural and Forest Meteorology 149 (5). Elsevier BV: 783–94. doi:10.1016/j.agrformet.2008.10.025.
———. 2009b. “Comparison of Carbon Dynamics and Water Use Efficiency Following Fire and Harvesting in Canadian Boreal Forests.” Agricultural and Forest Meteorology 149 (5). Elsevier BV: 783–94. doi:10.1016/j.agrformet.2008.10.025.
———. 2009c. “Comparison of Carbon Dynamics and Water Use Efficiency Following Fire and Harvesting in Canadian Boreal Forests.” Agricultural and Forest Meteorology 149 (5). Elsevier BV: 783–94. doi:10.1016/j.agrformet.2008.10.025.
Molen, M. K. van der, J. van Huissteden, F. J. W. Parmentier, A. M. R. Petrescu, A. J. Dolman, T. C. Maximov, A. V. Kononov, S. V. Karsanaev, and D. A. Suzdalov. 2007. “The Growing Season Greenhouse Gas Balance of a Continental Tundra Site in the Indigirka Lowlands, NE Siberia.” Biogeosciences 4 (6). Copernicus GmbH: 985–1003. doi:10.5194/bg-4-985-2007.
Monson, R. K., A. A. Turnipseed, J. P. Sparks, P. C. Harley, L. E. Scott-Denton, K. Sparks, and T. E. Huxman. 2002. “Carbon Sequestration in a High-Elevation, Subalpine Forest.” Global Change Biology 8 (5). Wiley-Blackwell: 459–78. doi:10.1046/j.1365-2486.2002.00480.x.
Montagnani, Leonardo, Giovanni Manca, Elisa Canepa, Emilia Georgieva, Manuel Acosta, Christian Feigenwinter, Dalibor Janous, et al. 2009. “A New Mass Conservation Approach to the Study of CO2 Advection in an Alpine Forest.” Journal of Geophysical Research 114 (D7). Wiley-Blackwell. doi:10.1029/2008jd010650.
Moors, E.J. 2012. “Water Use of Forests in The Netherlands.” PhD thesis, Vrije Universiteit Amsterdam.
Morin, T. H., G. Bohrer, R. P. d. M. Frasson, L. Naor-Azreli, S. Mesi, K. C. Stefanik, and K. V. R. Schäfer. 2014. “Environmental Drivers of Methane Fluxes from an Urban Temperate Wetland Park.” Journal of Geophysical Research: Biogeosciences 119 (11). Wiley-Blackwell: 2188–2208. doi:10.1002/2014jg002750.
Moureaux, Christine, Alain Debacq, Bernard Bodson, Bernard Heinesch, and Marc Aubinet. 2006. “Annual Net Ecosystem Carbon Exchange by a Sugar Beet Crop.” Agricultural and Forest Meteorology 139 (1-2). Elsevier BV: 25–39. doi:10.1016/j.agrformet.2006.05.009.
Nakai, Taro, Yongwon Kim, Robert C. Busey, Rikie Suzuki, Shin Nagai, Hideki Kobayashi, Hotaek Park, Konosuke Sugiura, and Akihiko Ito. 2013. “Characteristics of Evapotranspiration from a Permafrost Black Spruce Forest in Interior Alaska.” Polar Science 7 (2). Elsevier BV: 136–48. doi:10.1016/j.polar.2013.03.003.
Noormets, Asko, Jiquan Chen, and Thomas R. Crow. 2007a. “Age-Dependent Changes in Ecosystem Carbon Fluxes in Managed Forests in Northern Wisconsin, USA.” Ecosystems 10 (2). Springer Nature: 187–203. doi:10.1007/s10021-007-9018-y.
———. 2007b. “Age-Dependent Changes in Ecosystem Carbon Fluxes in Managed Forests in Northern Wisconsin, USA.” Ecosystems 10 (2). Springer Nature: 187–203. doi:10.1007/s10021-007-9018-y.
———. 2007c. “Age-Dependent Changes in Ecosystem Carbon Fluxes in Managed Forests in Northern Wisconsin, USA.” Ecosystems 10 (2). Springer Nature: 187–203. doi:10.1007/s10021-007-9018-y.
———. 2007d. “Age-Dependent Changes in Ecosystem Carbon Fluxes in Managed Forests in Northern Wisconsin, USA.” Ecosystems 10 (2). Springer Nature: 187–203. doi:10.1007/s10021-007-9018-y.
———. 2007e. “Age-Dependent Changes in Ecosystem Carbon Fluxes in Managed Forests in Northern Wisconsin, USA.” Ecosystems 10 (2). Springer Nature: 187–203. doi:10.1007/s10021-007-9018-y.
Oikawa, P. Y., G. D. Jenerette, S. H. Knox, C. Sturtevant, J. Verfaillie, I. Dronova, C. M. Poindexter, E. Eichelmann, and D. D. Baldocchi. 2017. “Evaluation of a Hierarchy of Models Reveals Importance of Substrate Limitation for Predicting Carbon Dioxide and Methane Exchange in Restored Wetlands.” Journal of Geophysical Research: Biogeosciences 122 (1). Wiley-Blackwell: 145–67. doi:10.1002/2016jg003438.
Papale, Dario, Mirco Migliavacca, Edoardo Cremonese, Alessandro Cescatti, Giorgio Alberti, Manuela Balzarolo, Luca Belelli Marchesini, et al. 2014. “Carbon, Water and Energy Fluxes of Terrestrial Ecosystems in Italy.” In The Greenhouse Gas Balance of Italy, 11–45. Springer Berlin Heidelberg. doi:10.1007/978-3-642-32424-6\_2.
Pilegaard, Kim, Andreas Ibrom, Michael S. Courtney, Poul Hummelshøj, and Niels Otto Jensen. 2011. “Increasing Net CO2 Uptake by a Danish Beech Forest During the Period from 1996 to 2009.” Agricultural and Forest Meteorology 151 (7). Elsevier BV: 934–46. doi:10.1016/j.agrformet.2011.02.013.
Posse, G, N Lewczuk, K Richter, and P Cristiano. 2016. “Carbon and Water Vapor Balance in a Subtropical Pine Plantation.” iForest - Biogeosciences and Forestry 9 (5). Italian Society of Sivilculture; Forest Ecology (SISEF): 736–42. doi:10.3832/ifor1815-009.
Post, H., H. J. Hendricks Franssen, A. Graf, M. Schmidt, and H. Vereecken. 2015. “Uncertainty Analysis of Eddy Covariance CO2 Flux Measurements for Different EC Tower Distances Using an Extended Two-Tower Approach.” Biogeosciences 12 (4). Copernicus GmbH: 1205–21. doi:10.5194/bg-12-1205-2015.
Powell, Thomas L., Rosvel Bracho, Jiahong Li, Sabina Dore, C. Ross Hinkle, and Bert G. Drake. 2006. “Environmental Controls over Net Ecosystem Carbon Exchange of Scrub Oak in Central Florida.” Agricultural and Forest Meteorology 141 (1). Elsevier BV: 19–34. doi:10.1016/j.agrformet.2006.09.002.
Prescher, Anne-Katrin, Thomas Grünwald, and Christian Bernhofer. 2010a. “Land Use Regulates Carbon Budgets in Eastern Germany: From NEE to NBP.” Agricultural and Forest Meteorology 150 (7-8). Elsevier BV: 1016–25. doi:10.1016/j.agrformet.2010.03.008.
———. 2010b. “Land Use Regulates Carbon Budgets in Eastern Germany: From NEE to NBP.” Agricultural and Forest Meteorology 150 (7-8). Elsevier BV: 1016–25. doi:10.1016/j.agrformet.2010.03.008.
Prober, Suzanne M., Kevin R. Thiele, Philip W. Rundel, Colin J. Yates, Sandra L. Berry, Margaret Byrne, Les Christidis, et al. 2012. “Facilitating adaptation of biodiversity to climate change: A conceptual framework applied to the world’s largest Mediterranean-climate woodland.” Climatic Change 110 (1-2): 227–48. doi:10.1007/s10584-011-0092-y.
Rambal, S., R. Joffre, J. M. Ourcival, J. Cavender-Bares, and A. Rocheteau. 2004. “The Growth Respiration Component in Eddy CO2 Flux from a Quercus Ilex Mediterranean Forest.” Global Change Biology 10 (9). Wiley-Blackwell: 1460–9. doi:10.1111/j.1365-2486.2004.00819.x.
Raz-Yaseef, Naama, Dave P. Billesbach, Marc L. Fischer, Sebastien C. Biraud, Stacey A. Gunter, James A. Bradford, and Margaret S. Torn. 2015a. “Vulnerability of Crops and Native Grasses to Summer Drying in the U.S. Southern Great Plains.” Agriculture, Ecosystems & Environment 213 (December). Elsevier BV: 209–18. doi:10.1016/j.agee.2015.07.021.
———. 2015b. “Vulnerability of Crops and Native Grasses to Summer Drying in the U.S. Southern Great Plains.” Agriculture, Ecosystems & Environment 213 (December). Elsevier BV: 209–18. doi:10.1016/j.agee.2015.07.021.
———. 2015c. “Vulnerability of Crops and Native Grasses to Summer Drying in the U.S. Southern Great Plains.” Agriculture, Ecosystems & Environment 213 (December). Elsevier BV: 209–18. doi:10.1016/j.agee.2015.07.021.
———. 2015d. “Vulnerability of Crops and Native Grasses to Summer Drying in the U.S. Southern Great Plains.” Agriculture, Ecosystems & Environment 213 (December). Elsevier BV: 209–18. doi:10.1016/j.agee.2015.07.021.
Reverter, B. R., E. P. Sánchez-Cañete, V. Resco, P. Serrano-Ortiz, C. Oyonarte, and A. S. Kowalski. 2010. “Analyzing the Major Drivers of NEE in a Mediterranean Alpine Shrubland.” Biogeosciences 7 (9). Copernicus GmbH: 2601–11. doi:10.5194/bg-7-2601-2010.
Rey, Ana, Emiliano Pegoraro, Vanessa Tedeschi, Ilaria De Parri, Paul G. Jarvis, and Riccardo Valentini. 2002. “Annual Variation in Soil Respiration and Its Components in a Coppice Oak Forest in Central Italy.” Global Change Biology 8 (9). Wiley-Blackwell: 851–66. doi:10.1046/j.1365-2486.2002.00521.x.
Ruehr, Nadine K., Jonathan G. Martin, and Beverly E. Law. 2012. “Effects of Water Availability on Carbon and Water Exchange in a Young Ponderosa Pine Forest: Above- and Belowground Responses.” Agricultural and Forest Meteorology 164 (October). Elsevier BV: 136–48. doi:10.1016/j.agrformet.2012.05.015.
Sabbatini, S., N. Arriga, T. Bertolini, S. Castaldi, T. Chiti, C. Consalvo, S. Njakou Djomo, B. Gioli, G. Matteucci, and D. Papale. 2016a. “Greenhouse Gas Balance of Cropland Conversion to Bioenergy Poplar Short-Rotation Coppice.” Biogeosciences 13 (1). Copernicus GmbH: 95–113. doi:10.5194/bg-13-95-2016.
———. 2016b. “Greenhouse Gas Balance of Cropland Conversion to Bioenergy Poplar Short-Rotation Coppice.” Biogeosciences 13 (1). Copernicus GmbH: 95–113. doi:10.5194/bg-13-95-2016.
———. 2016c. “Greenhouse Gas Balance of Cropland Conversion to Bioenergy Poplar Short-Rotation Coppice.” Biogeosciences 13 (1). Copernicus GmbH: 95–113. doi:10.5194/bg-13-95-2016.
Schmidt, M., T.G. Reichenau, P. Fiener, and K. Schneider. 2012. “The Carbon Budget of a Winter Wheat Field: An Eddy Covariance Analysis of Seasonal and Inter-Annual Variability.” Agricultural and Forest Meteorology 165 (November). Elsevier BV: 114–26. doi:10.1016/j.agrformet.2012.05.012.
Schroder, Ivan, T Kuske, and Steve Zegelin. 2014. “Eddy Covariance Dataset for Arcturus (2011-2013), Geoscience Australia, Canberra.” doi:102.100.100/14249.
Scott, Russell L., Joel A. Biederman, Erik P. Hamerlynck, and Greg A. Barron-Gafford. 2015a. “The Carbon Balance Pivot Point of Southwestern U.S. Semiarid Ecosystems: Insights from the 21st Century Drought.” Journal of Geophysical Research: Biogeosciences 120 (12). Wiley-Blackwell: 2612–24. doi:10.1002/2015jg003181.
———. 2015b. “The Carbon Balance Pivot Point of Southwestern U.S. Semiarid Ecosystems: Insights from the 21st Century Drought.” Journal of Geophysical Research: Biogeosciences 120 (12). Wiley-Blackwell: 2612–24. doi:10.1002/2015jg003181.
Scott, Russell L., Erik P. Hamerlynck, G. Darrel Jenerette, M. Susan Moran, and Greg A. Barron-Gafford. 2010. “Carbon Dioxide Exchange in a Semidesert Grassland Through Drought-Induced Vegetation Change.” Journal of Geophysical Research 115 (G3). Wiley-Blackwell. doi:10.1029/2010jg001348.
Scott, Russell L., G. Darrel Jenerette, Daniel L. Potts, and Travis E. Huxman. 2009. “Effects of Seasonal Drought on Net Carbon Dioxide Exchange from a Woody-Plant-Encroached Semiarid Grassland.” Journal of Geophysical Research 114 (G4). Wiley-Blackwell. doi:10.1029/2008jg000900.
Serrano-Ortiz, P., S. Marañón-Jiménez, B. R. Reverter, E. P. Sánchez-Cañete, J. Castro, R. Zamora, and A. S. Kowalski. 2011. “Post-fire salvage logging reduces carbon sequestration in Mediterranean coniferous forest.” Forest Ecology and Management 262 (12): 2287–96. doi:10.1016/j.foreco.2011.08.023.
Shao, Changliang, Jiquan Chen, Linghao Li, Gang Dong, Juanjuan Han, Michael Abraha, and Ranjeet John. 2017. “Grazing effects on surface energy fluxes in a desert steppe on the Mongolian Plateau:” Ecological Applications 27 (2): 485–502. doi:10.1002/eap.1459.
Shi, Peili, Xiaomin Sun, Lingling Xu, Xianzhou Zhang, Yongtao He, Dongqiu Zhang, and Guirui Yu. 2006. “Net Ecosystem CO2 Exchange and Controlling Factors in a SteppeKobresia Meadow on the Tibetan Plateau.” Science in China Series D: Earth Sciences 49 (S2). Springer Nature: 207–18. doi:10.1007/s11430-006-8207-4.
Stevens, Rob M., Caecilia M. Ewenz, Gary Grigson, and Samantha M. Conner. 2011. “Water Use by an Irrigated Almond Orchard.” Irrigation Science 30 (3). Springer Nature: 189–200. doi:10.1007/s00271-011-0270-8.
Stiegler, Christian, Magnus Lund, Torben Røjle Christensen, Mikhail Mastepanov, and Anders Lindroth. 2016. “Two Years with Extreme and Little Snowfall: Effects on Energy Partitioning and Surface Energy Exchange in a High-Arctic Tundra Ecosystem.” The Cryosphere 10 (4). Copernicus GmbH: 1395–1413. doi:10.5194/tc-10-1395-2016.
Sulman, B. N., A. R. Desai, B. D. Cook, N. Saliendra, and D. S. Mackay. 2009. “Contrasting Carbon Dioxide Fluxes Between a Drying Shrub Wetland in Northern Wisconsin, USA, and Nearby Forests.” Biogeosciences 6 (6). Copernicus GmbH: 1115–26. doi:10.5194/bg-6-1115-2009.
Suni, T., J. Rinne, A. Reissel, N. Altimir, P. Keronen, Ü. Rannik, M.D. Maso, M. Kulmala, and T. Vesala. 2003. “Long-term measurements of surface fluxes above a Scots pine forest in Hyytiälä, southern Finland.” Boreal Environ. Res. 4: 287–301.
Tagesson, Torbern, Rasmus Fensholt, Idrissa Guiro, Mads Olander Rasmussen, Silvia Huber, Cheikh Mbow, Monica Garcia, et al. 2014. “Ecosystem Properties of Semiarid Savanna Grassland in West Africa and Its Relationship with Environmental Variability.” Global Change Biology 21 (1). Wiley-Blackwell: 250–64. doi:10.1111/gcb.12734.
Tedeschi, Vanessa, Ana Rey, Giovanni Manca, Riccardo Valentini, Paul G. Jarvis, and Marco Borghetti. 2006. “Soil Respiration in a Mediterranean Oak Forest at Different Developmental Stages After Coppicing.” Global Change Biology 12 (1). Wiley-Blackwell: 110–21. doi:10.1111/j.1365-2486.2005.01081.x.
Thum, Tea, Tuula Aalto, Tuomas Laurila, Mika Aurela, Pasi Kolari, and Pertti Hari. 2007. “Parametrization of Two Photosynthesis Models at the Canopy Scale in a Northern Boreal Scots Pine Forest.” Tellus B 59 (5). Informa UK Limited. doi:10.3402/tellusb.v59i5.17066.
Ulke, Ana Graciela, Natalia Noemí Gattinoni, and Gabriela Posse. 2015. “Analysis and Modelling of Turbulent Fluxes in Two Different Ecosystems in Argentina.” International Journal of Environment and Pollution 58 (1/2). Inderscience Publishers: 52. doi:10.1504/ijep.2015.076583.
Urbanski, S., C. Barford, S. Wofsy, C. Kucharik, E. Pyle, J. Budney, K. McKain, D. Fitzjarrald, M. Czikowsky, and J. W. Munger. 2007. “Factors Controlling CO2 Exchange on Timescales from Hourly to Decadal at Harvard Forest.” Journal of Geophysical Research 112 (G2). Wiley-Blackwell. doi:10.1029/2006jg000293.
Valentini, R., P. Angelis, G. Matteucci, R. Monaco, S. Dore, and G. E. Scarascia Mucnozza. 1996. “Seasonal Net Carbon Dioxide Exchange of a Beech Forest with the Atmosphere.” Global Change Biology 2 (3). Wiley-Blackwell: 199–207. doi:10.1111/j.1365-2486.1996.tb00072.x.
Verma, Shashi B., Achim Dobermann, Kenneth G. Cassman, Daniel T. Walters, Johannes M. Knops, Timothy J. Arkebauer, Andrew E. Suyker, et al. 2005a. “Annual Carbon Dioxide Exchange in Irrigated and Rainfed Maize-Based Agroecosystems.” Agricultural and Forest Meteorology 131 (1-2). Elsevier BV: 77–96. doi:10.1016/j.agrformet.2005.05.003.
———. 2005b. “Annual Carbon Dioxide Exchange in Irrigated and Rainfed Maize-Based Agroecosystems.” Agricultural and Forest Meteorology 131 (1-2). Elsevier BV: 77–96. doi:10.1016/j.agrformet.2005.05.003.
———. 2005c. “Annual Carbon Dioxide Exchange in Irrigated and Rainfed Maize-Based Agroecosystems.” Agricultural and Forest Meteorology 131 (1-2). Elsevier BV: 77–96. doi:10.1016/j.agrformet.2005.05.003.
Vitale, Luca, Paul Di Tommasi, Guido D’Urso, and Vincenzo Magliulo. 2015. “The Response of Ecosystem Carbon Fluxes to LAI and Environmental Drivers in a Maize Crop Grown in Two Contrasting Seasons.” International Journal of Biometeorology 60 (3). Springer Nature: 411–20. doi:10.1007/s00484-015-1038-2.
Wen, X. F., H. M. Wang, J. L. Wang, G. R. Yu, and X. M. Sun. 2010. “Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003-2007.” Biogeosciences 7 (1): 357–69. doi:10.5194/bg-7-357-2010.
Westergaard-Nielsen, Andreas, Magnus Lund, Birger Ulf Hansen, and Mikkel Peter Tamstorf. 2013. “Camera Derived Vegetation Greenness Index as Proxy for Gross Primary Production in a Low Arctic Wetland Area.” ISPRS Journal of Photogrammetry and Remote Sensing 86 (December). Elsevier BV: 89–99. doi:10.1016/j.isprsjprs.2013.09.006.
Wick, B., E. Veldkamp, W. Z. de Mello, M. Keller, and P. Crill. 2005. “Nitrous Oxide Fluxes and Nitrogen Cycling Along a Pasture Chronosequence in Central Amazonia, Brazil.” Biogeosciences 2 (2). Copernicus GmbH: 175–87. doi:10.5194/bg-2-175-2005.
Wohlfahrt, Georg, Albin Hammerle, Alois Haslwanter, Michael Bahn, Ulrike Tappeiner, and Alexander Cernusca. 2008. “Seasonal and Inter-Annual Variability of the Net Ecosystem CO2 Exchange of a Temperate Mountain Grassland: Effects of Weather and Management.” Journal of Geophysical Research 113 (D8). Wiley-Blackwell. doi:10.1029/2007jd009286.
Yan, Junhua, Yiping Zhang, Guirui Yu, Guoyi Zhou, Leiming Zhang, Kun Li, Zhenghong Tan, and Liqing Sha. 2013. “Seasonal and inter-annual variations in net ecosystem exchange of two old-growth forests in southern China.” Agricultural and Forest Meteorology 182-183 (December): 257–65. doi:10.1016/j.agrformet.2013.03.002.
Yee, Mei Sun, Valentijn R.N. Pauwels, Edoardo Daly, Jason Beringer, Christoph Rüdiger, Matthew F. McCabe, and Jeffrey P. Walker. 2015. “A Comparison of Optical and Microwave Scintillometers with Eddy Covariance Derived Surface Heat Fluxes.” Agricultural and Forest Meteorology 213 (November). Elsevier BV: 226–39. doi:10.1016/j.agrformet.2015.07.004.
Zeller, K.F., and N.T. Nikolov. 2000. “Quantifying Simultaneous Fluxes of Ozone, Carbon Dioxide and Water Vapor Above a Subalpine Forest Ecosystem.” Environmental Pollution 107 (1). Elsevier BV: 1–20. doi:10.1016/s0269-7491(99)00156-6.
Zielis, S., S. Etzold, R. Zweifel, W. Eugster, M. Haeni, and N. Buchmann. 2014. “NEP of a Swiss Subalpine Forest Is Significantly Driven Not Only by Current but Also by Previous Years Weather.” Biogeosciences 11 (6). Copernicus GmbH: 1627–35. doi:10.5194/bg-11-1627-2014.