I know, this table looks quite strange, but… it demonstrates quite well the great flexibility of the tab_model() function from the sjPlot-package for printing regression models to a (HTML) table, mixing different specific parts for each model.
library(sjPlot)
library(brms)
library(glmmTMB)
library(MASS)
library(lme4)
data(efc)
efc$grp <- as.factor(efc$e15relat)
efc$cluster <- as.factor(efc$n4pstu)
m1 <- glmmTMB(
count ~ spp + mined + (1 | site),
zi = ~ spp + mined,
family = nbinom2,
data = Salamanders
)
m2 <- polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
m3 <-
glmmTMB(
SiblingNegotiation ~ FoodTreatment + ArrivalTime + SexParent + (1 | Nest),
data = Owls,
ziformula = ~ FoodTreatment + ArrivalTime,
family = truncated_poisson()
)
m4 <- brm(neg_c_7 ~ e42dep + c12hour + c172code, data = efc)
m5 <- lmer(neg_c_7 ~ e42dep + c12hour + c172code + (1 | grp) + (1 | cluster), data = efc)
The following table shows, from left to right:
df, which shows the degrees of freedom for each p-value, and the random effects have two tau00 values.In order to better differentiate the model columns, I used an alternating color for each column.
tab_model(
m1, m2, m3, m4, m5,
p.val = "kr",
show.zeroinf = T,
show.se = T,
show.df = T,
show.re.var = T,
# to better distinguish the model columns
CSS = list(
modelcolumn1 = "background-color: #f0f0f0;",
modelcolumn3 = "background-color: #f0f0f0;",
modelcolumn5 = "background-color: #f0f0f0;"
)
)
| Predictors | Incidence Rate Ratios | std. Error | CI | p | Odds Ratios | std. Error | CI | p | Incidence Rate Ratios | std. Error | CI | p | Estimates | std. Error | HDI (50%) | HDI (95%) | Estimates | std. Error | CI | p | df |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| (Intercept) | 0.54 | 0.41 | 0.25 – 1.20 | 0.132 | 66.44 | 0.23 | 42.31 – 104.34 | <0.001 | 6.77 | 0.66 | 5.69 – 7.85 | <0.001 | 75.00 | ||||||||
| sppPR | 0.38 | 0.64 | 0.11 – 1.35 | 0.134 | |||||||||||||||||
| sppDM | 1.19 | 0.24 | 0.75 – 1.88 | 0.468 | |||||||||||||||||
| sppEC-A | 0.68 | 0.34 | 0.35 – 1.33 | 0.258 | |||||||||||||||||
| sppEC-L | 1.63 | 0.24 | 1.02 – 2.60 | 0.041 | |||||||||||||||||
| sppDES-L | 1.80 | 0.23 | 1.15 – 2.82 | 0.010 | |||||||||||||||||
| sppDF | 0.89 | 0.24 | 0.55 – 1.44 | 0.642 | |||||||||||||||||
| minedno | 4.18 | 0.37 | 2.04 – 8.57 | <0.001 | |||||||||||||||||
| InflMedium | 1.76 | 0.10 | 1.44 – 2.16 | <0.001 | |||||||||||||||||
| InflHigh | 3.63 | 0.13 | 2.83 – 4.66 | <0.001 | |||||||||||||||||
| TypeApartment | 0.56 | 0.12 | 0.45 – 0.71 | <0.001 | |||||||||||||||||
| TypeAtrium | 0.69 | 0.16 | 0.51 – 0.94 | 0.018 | |||||||||||||||||
| TypeTerrace | 0.34 | 0.15 | 0.25 – 0.45 | <0.001 | |||||||||||||||||
| ContHigh | 1.43 | 0.10 | 1.19 – 1.73 | <0.001 | |||||||||||||||||
| (Intercept: Low|Medium) | 0.61 | 0.12 | 0.48 – 0.78 | <0.001 | |||||||||||||||||
| (Intercept: Medium|High) | 2.00 | 0.13 | 1.56 – 2.55 | <0.001 | |||||||||||||||||
| FoodTreatmentSatiated | 0.81 | 0.04 | 0.75 – 0.87 | <0.001 | |||||||||||||||||
| ArrivalTime | 0.92 | 0.01 | 0.91 – 0.94 | <0.001 | |||||||||||||||||
| SexParentMale | 0.98 | 0.04 | 0.91 – 1.05 | 0.572 | |||||||||||||||||
| b_Intercept | 6.92 | 0.56 | 6.52 – 7.27 | 5.87 – 8.04 | |||||||||||||||||
| b_e42dep | 1.36 | 0.15 | 1.27 – 1.47 | 1.08 – 1.66 | |||||||||||||||||
| b_c12hour | 0.01 | 0.00 | 0.01 – 0.01 | 0.00 – 0.01 | |||||||||||||||||
| b_c172code | 0.31 | 0.21 | 0.14 – 0.42 | -0.05 – 0.70 | |||||||||||||||||
| e42dep | 1.33 | 0.16 | 1.07 – 1.59 | <0.001 | 636.00 | ||||||||||||||||
| c12hour | 0.01 | 0.00 | 0.00 – 0.01 | 0.021 | 551.00 | ||||||||||||||||
| c172code | 0.32 | 0.20 | -0.01 – 0.65 | 0.115 | 821.00 | ||||||||||||||||
| Zero-Inflated Model | |||||||||||||||||||||
| (Intercept) | 2.48 | 0.63 | 0.73 – 8.51 | 0.147 | 0.00 | 1.31 | 0.00 – 0.02 | <0.001 | |||||||||||||
| sppPR | 3.19 | 1.33 | 0.23 – 43.70 | 0.384 | |||||||||||||||||
| sppDM | 0.39 | 0.80 | 0.08 – 1.88 | 0.241 | |||||||||||||||||
| sppEC-A | 2.84 | 0.71 | 0.70 – 11.49 | 0.144 | |||||||||||||||||
| sppEC-L | 0.57 | 0.73 | 0.14 – 2.37 | 0.439 | |||||||||||||||||
| sppDES-L | 0.41 | 0.75 | 0.09 – 1.79 | 0.236 | |||||||||||||||||
| sppDF | 0.08 | 2.18 | 0.00 – 5.68 | 0.244 | |||||||||||||||||
| minedno | 0.08 | 0.60 | 0.02 – 0.25 | <0.001 | |||||||||||||||||
| FoodTreatmentSatiated | 4.33 | 0.21 | 2.89 – 6.49 | <0.001 | |||||||||||||||||
| ArrivalTime | 1.21 | 0.05 | 1.10 – 1.34 | <0.001 | |||||||||||||||||
| Random Effects | |||||||||||||||||||||
| σ2 | 2.29 | 1.00 | 12.80 | ||||||||||||||||||
| τ00 | 0.14 (site) | 0.06 (Nest) | 0.26 (grp) | ||||||||||||||||||
| τ00 | 0.00 (cluster) | ||||||||||||||||||||
| Observations | 644 | 1681 | 599 | 834 | 825 | ||||||||||||||||
| Marginal R2 / Conditional R2 | 0.429 / 0.511 | NA | NA | 0.156 / 0.020 | 0.141 / 0.158 | ||||||||||||||||