This is a report focusing on end of life care preferences and their implementation by the clinical care team. In particular, we will focus on the National Quality Forum Measure #1626:
Percentage of vulnerable adults admitted to ICU who survive at least 48 hours who have their care preferences documented within 48 hours OR documentation as to why this was not done.
For our purposeses:
Care preference documentation within 48hrs of admission, age
>74.
Care provider/Patient interactions from the MIMIC-III Intensive Care Unit Database are analyzed within the framework of a hospital admission utilizing a series of Mixed Effects Models. The patient is the random effect, so we can explain the difference in variance explained by patients compared to that explained by other effects (when the patient is introduced to other demographic and clinical variables) in the model.
It is important to note that the use of fixed and random effects is deliberate. A fixed effect is used when a categorical variable contains all levels of interest. A random effect is used when a categorical variable contains only a sample of all levels of interest, the samples which do not exist are unobserved variables and, since their distributions do not exist, they will be estimated. The levels of the random effect are assumed to be independent of each other; this assumption requires a priori knowledge of the phenomenon being modeled.
We will use the Sequential Organ Failure Assessment (SOFA) from Illness Severity Scores (github) to determine the severity of illness at admission.
library("ggplot2") ## Graphing
library("GGally") ## Extension to ggplot
library("reshape2") ## for melt()
library("lme4") ## for Hierachal Models
library("sjPlot") ## Lovely Presentation of Model Output
library("rcompanion") ## Pairwise nominal test
caremeasure_check will go through each hospital admission and keep only those admissions with attendings who have logged a patient note that was captured by MIMIC-III. In addition to checking for an attending physician, it will also check to see if the caremeasure was implimented.
caremeasure_check <- function(dat){
## Create Caremeasure Variable
dat$NQF <- rep(0, each = nrow(dat))
## Temporary data frame
tmp_frame <- data.frame()
## Results frame
res <- data.frame()
## For each hospital admission
for (name in unique(dat$HADM_ID)){
## Subset admission
tmp_frame <- dat[dat$HADM_ID == name, ]
## If any care providers are "Attending"
if (any("Attending" %in% tmp_frame$CG_DESCRIPTION)){
## Check if caremeasure was implemented
if (any(tmp_frame$CIM.machine == 1)){
tmp_frame$NQF <- rep(1, each = nrow(tmp_frame))
}
## add hospital admission to results
res <- rbind(res, tmp_frame)
}
}
## Return control to outer level
return(res)
}
plotDat is a simple plotting function.
plotDat <- function(dat, column, x_col, bs, mn, xl, yl){
tmp <- as.matrix(table(dat[[column]], dat[[x_col]]))
prop <- prop.table(tmp, margin = 2)#2 for column-wise proportions
par(mar = c(5.0, 4.0, 4.0, 15), xpd = TRUE)
barplot(prop, col = cm.colors(length(rownames(prop))), beside = bs, width = 2, main = mn, xlab = xl, ylab = yl)
legend("topright", inset = c(-0.90,0), fill = cm.colors(length(rownames(prop))), legend=rownames(prop))
}
detach_packages will keep only base R packages, and will remove all other supplementary packages to avoid functional conflicts.
The latest dataset with NeuroNER predictions will be used. Multiple clinicians are associated in the database with identical notes, and those notes will be re-introduced to the data set by performing an inner join between old and new data, which will apply labels to the old data (which contains duplicate notes associated with different care providers).
## Latest Dataset of NeuroNER Predictions
dat <- read.csv("~/nqf_caregivers/data/20180607_EOL_data_ICU.csv", header = T, stringsAsFactors = F)
dim(dat)
## [1] 10250 57
## Note: Notes had been logged by multiple Care providers, we will reintroduce those annotations
## Load Labeled Note Data for NQF Caremeasure Cohort (From NOTEEVENTS table)
tmp <- read.csv("~/nqf_caregivers/data/note_labels_over75.csv", header = T, stringsAsFactors = F)
dim(tmp)
## [1] 11575 25
## Keep only TEXT and ROW_ID from tmp
tmp <- tmp[ ,c("ROW_ID", "TEXT")]
## Inner join
dat <- merge(tmp, dat, by = "TEXT")
## Clean tmp
rm(tmp)
## Check column names
colnames(dat)
## [1] "TEXT" "ROW_ID.x" "SUBJECT_ID"
## [4] "HADM_ID" "ROW_ID.y" "CHARTDATE"
## [7] "CHARTTIME" "STORETIME" "CATEGORY"
## [10] "DESCRIPTION" "CGID" "ISERROR"
## [13] "ADMITTIME" "DISCHTIME" "DEATHTIME"
## [16] "ADMISSION_TYPE" "ADMISSION_LOCATION" "DISCHARGE_LOCATION"
## [19] "INSURANCE" "LANGUAGE" "RELIGION"
## [22] "MARITAL_STATUS" "ETHNICITY" "EDREGTIME"
## [25] "EDOUTTIME" "DIAGNOSIS" "HOSPITAL_EXPIRE_FLAG"
## [28] "HAS_CHARTEVENTS_DATA" "GENDER" "DOB"
## [31] "DOD" "DOD_HOSP" "DOD_SSN"
## [34] "EXPIRE_FLAG" "ICUSTAY_ID" "DBSOURCE"
## [37] "FIRST_CAREUNIT" "LAST_CAREUNIT" "FIRST_WARDID"
## [40] "LAST_WARDID" "INTIME" "OUTTIME"
## [43] "LOS" "AGE" "ADMISSION_NUMBER"
## [46] "DAYS_UNTIL_DEATH" "TIME_SINCE_ADMIT" "CGID.1"
## [49] "HADM_ID.1" "FAM.machine" "CIM.machine"
## [52] "LIM.machine" "CAR.machine" "COD.machine"
## [55] "check.CGID" "check.dadm_id" "CIM.or.FAM"
## [58] "Died.in.Hospital"
## What is HADM_ID.1?
head(table(dat$HADM_ID.1))
##
## #N/A 100102 100153 100347 100391 100525
## 32 8 3 12 15 2
## What is HADM_ID?
head(table(dat$HADM_ID))
##
## 100102 100153 100347 100391 100525 100575
## 8 3 12 15 2 11
## #N/A? Clean HADM_ID.1
dat$HADM_ID.1 <- NULL
## What is CGID.1?
head(table(dat$CGID.1))
##
## #N/A 14010 14022 14037 14045 14056
## 32 22 1 93 37 14
## What is CGID
head(table(dat$CGID))
##
## 14010 14022 14037 14045 14056 14080
## 22 1 93 37 14 6
## #N/A? Clean CGID.1
dat$CGID.1 <- NULL
## What is check.CGID
head(table(dat$check.CGID))
## 0
## 11575
## Clean it
dat$check.CGID <- NULL
## What is check.dadm_id?
head(table(dat$check.dadm_id))
## 0
## 11575
## Clean it
dat$check.dadm_id <- NULL
## Clean column names
dat$ROW_ID.y <- NULL
colnames(dat)[which(colnames(dat) == "ROW_ID.x")] <- "ROW_ID"
## Load CAREGIVERS Table for join on CGID
cg <- read.csv("~/nqf_caregivers/data/mimic/CAREGIVERS.csv",
header = T, stringsAsFactors = F)
## Change column name of "NOTEEVENTS.DESCRIPTION" to explicitly mention that it describes the note
colnames(dat)[which(colnames(dat) == "DESCRIPTION")] <- "NOTE_DESCRIPTION"
## Change column name of "CAREGIVERS. DESCRIPTION" to explicitly mention that it describes the careprovider
colnames(cg)[which(colnames(cg) == "DESCRIPTION")] <- "CG_DESCRIPTION"
## Remove ROW_ID from CG
cg$ROW_ID <- NULL
## Remove TEXT
dat$TEXT <- NULL
## Merge to caregivers
dat <- merge(dat, cg, by = "CGID")
dim(dat)
## [1] 11575 54
## Clean CG
rm(cg)
sofa <- read.csv("~/nqf_caregivers/data/sofa.csv", header = T, stringsAsFactors = F)
#oasis <- read.csv("~/nqf_caregivers/data/oasis.csv", header = T, stringsAsFactors = F)
#saps <- read.csv("~/nqf_caregivers/data/saps.csv", header = T, stringsAsFactors = F)
colnames(sofa) <- toupper(colnames(sofa))
dat <- merge(dat, sofa, by = c("SUBJECT_ID", "HADM_ID", "ICUSTAY_ID"))
dim(dat)
## [1] 11575 61
## Clean environment
rm(sofa)
## Clean ethnicity to Black/White/Other
dat[(grepl("WHITE|PORTUGUESE", dat$ETHNICITY)),]$ETHNICITY <- "WHITE"
dat[(grepl("ASIAN", dat$ETHNICITY)),]$ETHNICITY <- "OTHER"
dat[(grepl("BLACK", dat$ETHNICITY)),]$ETHNICITY <- "BLACK"
dat[(grepl("HISPANIC", dat$ETHNICITY)),]$ETHNICITY <- "OTHER"
dat[(grepl("MIDDLE|NATIVE|MULTI|DECLINED|UNABLE|OTHER|NOT", dat$ETHNICITY)),]$ETHNICITY <- "OTHER"
## Clean Marital Status to Married, Single, Widowed, Unknown
dat$MARITAL_STATUS[dat$MARITAL_STATUS == ""] <- "UNKNOWN (DEFAULT)"
dat$MARITAL_STATUS[dat$MARITAL_STATUS == "UNKNOWN (DEFAULT)"] <- "UNKNOWN"
dat$MARITAL_STATUS[dat$MARITAL_STATUS == "SEPARATED"] <- "SINGLE"
dat$MARITAL_STATUS[dat$MARITAL_STATUS == "DIVORCED"] <- "SINGLE"
tmp <- caremeasure_check(dat)
cat(length(unique(dat$CGID)) - length(unique(tmp$CGID)), "Clinicians dropped due to no attending data in notes.\n")
## 4 Clinicians dropped due to no attending data in notes.
cat(length(unique(dat$SUBJECT_ID)) - length(unique(tmp$SUBJECT_ID)), "Patients dropped due to no attending data in notes.\n")
## 78 Patients dropped due to no attending data in notes.
cat(length(unique(dat$HADM_ID)) - length(unique(tmp$HADM_ID)), "Hospital Admissions dropped due to no attending data in notes.\n")
## 95 Hospital Admissions dropped due to no attending data in notes.
cat(nrow(dat) - nrow(tmp), "Physician/Patient interactions dropped due to no attending data in notes.\n")
## 416 Physician/Patient interactions dropped due to no attending data in notes.
Data will be collapsed using the aggregate function, so we only view the patient’s hospital admission and whether or not the caremeasure was implemented in the first 48 hours.
temp <- aggregate(cbind(NQF,
AGE,
SOFA) ~
ETHNICITY +
GENDER +
MARITAL_STATUS +
FIRST_CAREUNIT +
HADM_ID +
SUBJECT_ID +
CGID,
data = tmp,
FUN = mean)
plotDat(temp, "NQF", "GENDER", F, "Gender", "Gender", "Frequency")
test <- table(temp$GENDER, temp$NQF)
test
##
## 0 1
## F 674 1816
## M 848 1612
chisq.test(test)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: test
## X-squared = 31.505, df = 1, p-value = 1.989e-08
pairwiseNominalIndependence(
as.matrix(test),
fisher = F, gtest = F, chisq = T, method = "fdr")
## Comparison p.Chisq p.adj.Chisq
## 1 F : M 1.99e-08 1.99e-08
plotDat(temp, "NQF","ETHNICITY", F, "Ethnicity", "Ethnicity", "Frequency")
test <- table(temp$ETHNICITY, temp$NQF)
test
##
## 0 1
## BLACK 119 328
## OTHER 136 366
## WHITE 1267 2734
chisq.test(test)
##
## Pearson's Chi-squared test
##
## data: test
## X-squared = 8.3129, df = 2, p-value = 0.01566
pairwiseNominalIndependence(
as.matrix(test),
fisher = F, gtest = F, chisq = T, method = "fdr")
## Comparison p.Chisq p.adj.Chisq
## 1 BLACK : OTHER 0.9290 0.9290
## 2 BLACK : WHITE 0.0331 0.0627
## 3 OTHER : WHITE 0.0418 0.0627
plotDat(temp, "NQF", "MARITAL_STATUS", F, "Marital Status", "Marital Status", "Frequency")
test <- table(temp$MARITAL_STATUS, temp$NQF)
test
##
## 0 1
## MARRIED 723 1348
## SINGLE 240 752
## UNKNOWN 93 118
## WIDOWED 466 1210
chisq.test(test)
##
## Pearson's Chi-squared test
##
## data: test
## X-squared = 61.29, df = 3, p-value = 3.117e-13
pairwiseNominalIndependence(
as.matrix(test),
fisher = F, gtest = F, chisq = T, method = "fdr")
## Comparison p.Chisq p.adj.Chisq
## 1 MARRIED : SINGLE 2.91e-09 1.75e-08
## 2 MARRIED : UNKNOWN 1.01e-02 1.21e-02
## 3 MARRIED : WIDOWED 3.99e-06 5.98e-06
## 4 SINGLE : UNKNOWN 7.61e-09 2.28e-08
## 5 SINGLE : WIDOWED 4.57e-02 4.57e-02
## 6 UNKNOWN : WIDOWED 1.60e-06 3.20e-06
plotDat(temp, "NQF", "FIRST_CAREUNIT", F, "First Careunit", "First Careunit", "Frequency")
test <- table(temp$FIRST_CAREUNIT, temp$NQF)
test
##
## 0 1
## CCU 191 521
## CSRU 116 80
## MICU 725 2297
## SICU 311 322
## TSICU 179 208
chisq.test(test)
##
## Pearson's Chi-squared test
##
## data: test
## X-squared = 288.53, df = 4, p-value < 2.2e-16
pairwiseNominalIndependence(
as.matrix(test),
fisher = F, gtest = F, chisq = T, method = "fdr")
## Comparison p.Chisq p.adj.Chisq
## 1 CCU : CSRU 4.68e-17 1.01e-16
## 2 CCU : MICU 1.25e-01 1.39e-01
## 3 CCU : SICU 5.05e-17 1.01e-16
## 4 CCU : TSICU 1.17e-10 1.95e-10
## 5 CSRU : MICU 4.13e-27 2.07e-26
## 6 CSRU : SICU 1.74e-02 2.17e-02
## 7 CSRU : TSICU 4.21e-03 6.01e-03
## 8 MICU : SICU 4.98e-37 4.98e-36
## 9 MICU : TSICU 1.69e-20 5.63e-20
## 10 SICU : TSICU 4.08e-01 4.08e-01
boxplot(temp$AGE ~ temp$NQF,
main = "Caremeasure Implementation by Age",
xlab = "Implementation (1 == Yes)",
ylab = "Age (Years)")
t.test(temp$AGE ~ temp$NQF)
##
## Welch Two Sample t-test
##
## data: temp$AGE by temp$NQF
## t = -9.5237, df = 3141.1, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.763049 -1.161041
## sample estimates:
## mean in group 0 mean in group 1
## 83.19766 84.65970
boxplot(temp$SOFA ~ temp$NQF,
main = "Caremeasure Implementation by SOFA Score",
xlab = "Implementation (1 == Yes)",
ylab = "SOFA Score")
t.test(temp$SOFA ~ temp$NQF)
##
## Welch Two Sample t-test
##
## data: temp$SOFA by temp$NQF
## t = -3.131, df = 2999.2, p-value = 0.001759
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.4562171 -0.1048522
## sample estimates:
## mean in group 0 mean in group 1
## 4.664915 4.945449
Continuous data, Age and SOFA, will be standardized in the form:
\[z = \frac{x - \mu}{\sigma}\]
In this way, we can analyze the data in units of their deviation from the mean.
temp$AGE <- (temp$AGE - mean(temp$AGE))/sd(temp$AGE)
temp$SOFA <- (temp$SOFA - mean(temp$SOFA)/sd(temp$SOFA))
## Factor
temp <- within(temp, {
ETHNICITY <- factor(ETHNICITY)
GENDER <- factor(GENDER)
MARITAL_STATUS <- factor(MARITAL_STATUS)
FIRST_CAREUNIT <- factor(FIRST_CAREUNIT)
SUBJECT_ID <- factor(SUBJECT_ID)
CGID <- factor(CGID)
})
m_initial <- glmer(NQF ~ (1 | CGID),
data = temp,
family = binomial,
control = glmerControl(optimizer = "bobyqa"),
nAGQ = 1) ## Default value 1, higher values increase estimate accuracy
## View
summary(m_initial)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: NQF ~ (1 | CGID)
## Data: temp
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 5893.2 5906.2 -2944.6 5889.2 4948
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.4968 -0.9373 0.5306 0.6007 1.5058
##
## Random effects:
## Groups Name Variance Std.Dev.
## CGID (Intercept) 0.5855 0.7652
## Number of obs: 4950, groups: CGID, 493
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.8776 0.0545 16.1 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Intraclass Correlation
sjstats::icc(m_initial)
##
## Generalized linear mixed model
## Family: binomial (logit)
## Formula: NQF ~ (1 | CGID)
##
## ICC (CGID): 0.151093
m_a <- glmer(NQF ~ GENDER +
AGE +
ETHNICITY +
MARITAL_STATUS +
(1 | CGID),
data = temp,
family = binomial,
control = glmerControl(optimizer = "bobyqa"),
nAGQ = 1)
## View
summary(m_a)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: NQF ~ GENDER + AGE + ETHNICITY + MARITAL_STATUS + (1 | CGID)
## Data: temp
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 5757.0 5815.6 -2869.5 5739.0 4941
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.4809 -0.8908 0.4767 0.6286 1.8961
##
## Random effects:
## Groups Name Variance Std.Dev.
## CGID (Intercept) 0.5535 0.744
## Number of obs: 4950, groups: CGID, 493
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.97803 0.14140 6.917 4.62e-12 ***
## GENDERM -0.31492 0.07306 -4.310 1.63e-05 ***
## AGE 0.30590 0.03498 8.746 < 2e-16 ***
## ETHNICITYOTHER 0.37528 0.16498 2.275 0.02293 *
## ETHNICITYWHITE -0.07192 0.12326 -0.583 0.55959
## MARITAL_STATUSSINGLE 0.43297 0.09686 4.470 7.81e-06 ***
## MARITAL_STATUSUNKNOWN -0.49888 0.16745 -2.979 0.00289 **
## MARITAL_STATUSWIDOWED 0.11617 0.08508 1.365 0.17211
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) GENDER AGE ETHNICITYO ETHNICITYW MARITAL_STATUSS
## GENDERM -0.312
## AGE 0.136 -0.034
## ETHNICITYOT -0.600 -0.072 -0.032
## ETHNICITYWH -0.794 -0.083 -0.087 0.684
## MARITAL_STATUSS -0.326 0.224 0.036 0.082 0.065
## MARITAL_STATUSU -0.152 0.094 -0.086 -0.115 0.030 0.162
## MARITAL_STATUSW -0.437 0.356 -0.162 0.100 0.095 0.392
## MARITAL_STATUSU
## GENDERM
## AGE
## ETHNICITYOT
## ETHNICITYWH
## MARITAL_STATUSS
## MARITAL_STATUSU
## MARITAL_STATUSW 0.219
sjt.glmer(m_a)
| NQF | ||||
| Odds Ratio | CI | p | ||
| Fixed Parts | ||||
| (Intercept) | 2.66 | 2.02 – 3.51 | <.001 | |
| GENDER (M) | 0.73 | 0.63 – 0.84 | <.001 | |
| AGE | 1.36 | 1.27 – 1.45 | <.001 | |
| ETHNICITY (OTHER) | 1.46 | 1.05 – 2.01 | .023 | |
| ETHNICITY (WHITE) | 0.93 | 0.73 – 1.18 | .560 | |
| MARITAL_STATUS (SINGLE) | 1.54 | 1.28 – 1.86 | <.001 | |
| MARITAL_STATUS (UNKNOWN) | 0.61 | 0.44 – 0.84 | .003 | |
| MARITAL_STATUS (WIDOWED) | 1.12 | 0.95 – 1.33 | .172 | |
| Random Parts | ||||
| τ00, CGID | 0.554 | |||
| NCGID | 493 | |||
| ICCCGID | 0.144 | |||
| Observations | 4950 | |||
| Deviance | 5255.467 | |||
m_b <- glmer(NQF ~ SOFA +
(1 | CGID),
data = temp,
family = binomial,
control = glmerControl(optimizer = "bobyqa"),
nAGQ = 1)
## View
summary(m_b)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: NQF ~ SOFA + (1 | CGID)
## Data: temp
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 5890.1 5909.6 -2942.0 5884.1 4947
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.5442 -0.9321 0.5254 0.6102 1.5791
##
## Random effects:
## Groups Name Variance Std.Dev.
## CGID (Intercept) 0.5778 0.7601
## Number of obs: 4950, groups: CGID, 493
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.79505 0.06512 12.209 <2e-16 ***
## SOFA 0.02602 0.01149 2.264 0.0236 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## SOFA -0.552
sjt.glmer(m_b)
| NQF | ||||
| Odds Ratio | CI | p | ||
| Fixed Parts | ||||
| (Intercept) | 2.21 | 1.95 – 2.52 | <.001 | |
| SOFA | 1.03 | 1.00 – 1.05 | .024 | |
| Random Parts | ||||
| τ00, CGID | 0.578 | |||
| NCGID | 493 | |||
| ICCCGID | 0.149 | |||
| Observations | 4950 | |||
| Deviance | 5379.658 | |||
m_2a <- glmer(NQF ~ GENDER +
AGE +
ETHNICITY +
MARITAL_STATUS +
FIRST_CAREUNIT +
(1 | CGID),
data = temp,
family = binomial,
control = glmerControl(optimizer = "bobyqa"),
nAGQ = 1)
## View
summary(m_2a)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## NQF ~ GENDER + AGE + ETHNICITY + MARITAL_STATUS + FIRST_CAREUNIT +
## (1 | CGID)
## Data: temp
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 5664.9 5749.5 -2819.4 5638.9 4937
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.0160 -0.8622 0.4812 0.6305 1.7398
##
## Random effects:
## Groups Name Variance Std.Dev.
## CGID (Intercept) 0.1751 0.4185
## Number of obs: 4950, groups: CGID, 493
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.03931 0.16273 6.387 1.69e-10 ***
## GENDERM -0.30463 0.07225 -4.217 2.48e-05 ***
## AGE 0.31558 0.03454 9.136 < 2e-16 ***
## ETHNICITYOTHER 0.45896 0.16362 2.805 0.005031 **
## ETHNICITYWHITE -0.07250 0.12143 -0.597 0.550477
## MARITAL_STATUSSINGLE 0.42595 0.09563 4.454 8.42e-06 ***
## MARITAL_STATUSUNKNOWN -0.42874 0.16467 -2.604 0.009222 **
## MARITAL_STATUSWIDOWED 0.14082 0.08415 1.674 0.094216 .
## FIRST_CAREUNITCSRU -1.11936 0.18835 -5.943 2.80e-09 ***
## FIRST_CAREUNITMICU 0.18232 0.10414 1.751 0.079980 .
## FIRST_CAREUNITSICU -0.82642 0.13361 -6.185 6.20e-10 ***
## FIRST_CAREUNITTSICU -0.59209 0.15590 -3.798 0.000146 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) GENDER AGE ETHNICITYO ETHNICITYW MARITAL_STATUSS
## GENDERM -0.286
## AGE 0.088 -0.031
## ETHNICITYOT -0.543 -0.068 -0.020
## ETHNICITYWH -0.705 -0.080 -0.083 0.683
## MARITAL_STATUSS -0.288 0.219 0.035 0.092 0.074
## MARITAL_STATUSU -0.105 0.096 -0.085 -0.117 0.022 0.162
## MARITAL_STATUSW -0.370 0.354 -0.167 0.106 0.099 0.390
## FIRST_CAREUNITC -0.259 -0.030 0.008 -0.005 0.009 0.009
## FIRST_CAREUNITM -0.531 0.024 0.063 0.072 0.045 0.006
## FIRST_CAREUNITS -0.408 0.053 0.008 -0.011 0.015 0.001
## FIRST_CAREUNITT -0.388 0.037 0.003 0.036 0.050 0.028
## MARITAL_STATUSU MARITAL_STATUSW FIRST_CAREUNITC
## GENDERM
## AGE
## ETHNICITYOT
## ETHNICITYWH
## MARITAL_STATUSS
## MARITAL_STATUSU
## MARITAL_STATUSW 0.218
## FIRST_CAREUNITC -0.035 -0.055
## FIRST_CAREUNITM -0.024 -0.007 0.409
## FIRST_CAREUNITS -0.049 -0.024 0.392
## FIRST_CAREUNITT -0.082 0.023 0.353
## FIRST_CAREUNITM FIRST_CAREUNITS
## GENDERM
## AGE
## ETHNICITYOT
## ETHNICITYWH
## MARITAL_STATUSS
## MARITAL_STATUSU
## MARITAL_STATUSW
## FIRST_CAREUNITC
## FIRST_CAREUNITM
## FIRST_CAREUNITS 0.601
## FIRST_CAREUNITT 0.511 0.534
sjt.glmer(m_2a)
| NQF | ||||
| Odds Ratio | CI | p | ||
| Fixed Parts | ||||
| (Intercept) | 2.83 | 2.06 – 3.89 | <.001 | |
| GENDER (M) | 0.74 | 0.64 – 0.85 | <.001 | |
| AGE | 1.37 | 1.28 – 1.47 | <.001 | |
| ETHNICITY (OTHER) | 1.58 | 1.15 – 2.18 | .005 | |
| ETHNICITY (WHITE) | 0.93 | 0.73 – 1.18 | .550 | |
| MARITAL_STATUS (SINGLE) | 1.53 | 1.27 – 1.85 | <.001 | |
| MARITAL_STATUS (UNKNOWN) | 0.65 | 0.47 – 0.90 | .009 | |
| MARITAL_STATUS (WIDOWED) | 1.15 | 0.98 – 1.36 | .094 | |
| FIRST_CAREUNIT (CSRU) | 0.33 | 0.23 – 0.47 | <.001 | |
| FIRST_CAREUNIT (MICU) | 1.20 | 0.98 – 1.47 | .080 | |
| FIRST_CAREUNIT (SICU) | 0.44 | 0.34 – 0.57 | <.001 | |
| FIRST_CAREUNIT (TSICU) | 0.55 | 0.41 – 0.75 | <.001 | |
| Random Parts | ||||
| τ00, CGID | 0.175 | |||
| NCGID | 493 | |||
| ICCCGID | 0.051 | |||
| Observations | 4950 | |||
| Deviance | 5415.112 | |||
m_2b <- glmer(NQF ~ SOFA +
FIRST_CAREUNIT +
(1 | CGID),
data = temp,
family = binomial,
control = glmerControl(optimizer = "bobyqa"),
nAGQ = 1)
## View
summary(m_2b)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: NQF ~ SOFA + FIRST_CAREUNIT + (1 | CGID)
## Data: temp
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 5811.3 5856.8 -2898.6 5797.3 4943
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.3472 -0.9297 0.5265 0.5967 1.5821
##
## Random effects:
## Groups Name Variance Std.Dev.
## CGID (Intercept) 0.2117 0.4601
## Number of obs: 4950, groups: CGID, 493
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.92838 0.10030 9.256 < 2e-16 ***
## SOFA 0.02114 0.01139 1.856 0.063414 .
## FIRST_CAREUNITCSRU -1.16639 0.18708 -6.235 4.53e-10 ***
## FIRST_CAREUNITMICU 0.11421 0.10315 1.107 0.268210
## FIRST_CAREUNITSICU -0.76890 0.13291 -5.785 7.26e-09 ***
## FIRST_CAREUNITTSICU -0.58082 0.15489 -3.750 0.000177 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) SOFA FIRST_CAREUNITC FIRST_CAREUNITM
## SOFA -0.354
## FIRST_CAREUNITC -0.425 -0.040
## FIRST_CAREUNITM -0.786 -0.022 0.412
## FIRST_CAREUNITS -0.654 0.052 0.396 0.603
## FIRST_CAREUNITT -0.571 0.053 0.360 0.511
## FIRST_CAREUNITS
## SOFA
## FIRST_CAREUNITC
## FIRST_CAREUNITM
## FIRST_CAREUNITS
## FIRST_CAREUNITT 0.545
sjt.glmer(m_2b)
| NQF | ||||
| Odds Ratio | CI | p | ||
| Fixed Parts | ||||
| (Intercept) | 2.53 | 2.08 – 3.08 | <.001 | |
| SOFA | 1.02 | 1.00 – 1.04 | .063 | |
| FIRST_CAREUNIT (CSRU) | 0.31 | 0.22 – 0.45 | <.001 | |
| FIRST_CAREUNIT (MICU) | 1.12 | 0.92 – 1.37 | .268 | |
| FIRST_CAREUNIT (SICU) | 0.46 | 0.36 – 0.60 | <.001 | |
| FIRST_CAREUNIT (TSICU) | 0.56 | 0.41 – 0.76 | <.001 | |
| Random Parts | ||||
| τ00, CGID | 0.212 | |||
| NCGID | 493 | |||
| ICCCGID | 0.060 | |||
| Observations | 4950 | |||
| Deviance | 5534.118 | |||
m_icu <- glmer(NQF ~
GENDER +
AGE +
ETHNICITY +
MARITAL_STATUS +
SOFA +
FIRST_CAREUNIT +
(1 | CGID),
data = temp,
family = binomial,
control = glmerControl(optimizer = "bobyqa"),
nAGQ = 1)
## View
summary(m_icu)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula:
## NQF ~ GENDER + AGE + ETHNICITY + MARITAL_STATUS + SOFA + FIRST_CAREUNIT +
## (1 | CGID)
## Data: temp
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 5657.3 5748.4 -2814.7 5629.3 4936
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.3610 -0.8636 0.4787 0.6292 1.8411
##
## Random effects:
## Groups Name Variance Std.Dev.
## CGID (Intercept) 0.1741 0.4172
## Number of obs: 4950, groups: CGID, 493
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.92976 0.16666 5.579 2.42e-08 ***
## GENDERM -0.32698 0.07268 -4.499 6.83e-06 ***
## AGE 0.32302 0.03469 9.312 < 2e-16 ***
## ETHNICITYOTHER 0.44556 0.16415 2.714 0.006642 **
## ETHNICITYWHITE -0.06682 0.12173 -0.549 0.583039
## MARITAL_STATUSSINGLE 0.43199 0.09573 4.513 6.40e-06 ***
## MARITAL_STATUSUNKNOWN -0.40796 0.16488 -2.474 0.013353 *
## MARITAL_STATUSWIDOWED 0.14841 0.08422 1.762 0.078035 .
## SOFA 0.03611 0.01176 3.071 0.002133 **
## FIRST_CAREUNITCSRU -1.14277 0.18868 -6.057 1.39e-09 ***
## FIRST_CAREUNITMICU 0.17583 0.10423 1.687 0.091600 .
## FIRST_CAREUNITSICU -0.80810 0.13391 -6.035 1.59e-09 ***
## FIRST_CAREUNITTSICU -0.57089 0.15611 -3.657 0.000255 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE) or
## vcov(x) if you need it
sjt.glmer(m_icu)
| NQF | ||||
| Odds Ratio | CI | p | ||
| Fixed Parts | ||||
| (Intercept) | 2.53 | 1.83 – 3.51 | <.001 | |
| GENDER (M) | 0.72 | 0.63 – 0.83 | <.001 | |
| AGE | 1.38 | 1.29 – 1.48 | <.001 | |
| ETHNICITY (OTHER) | 1.56 | 1.13 – 2.15 | .007 | |
| ETHNICITY (WHITE) | 0.94 | 0.74 – 1.19 | .583 | |
| MARITAL_STATUS (SINGLE) | 1.54 | 1.28 – 1.86 | <.001 | |
| MARITAL_STATUS (UNKNOWN) | 0.67 | 0.48 – 0.92 | .013 | |
| MARITAL_STATUS (WIDOWED) | 1.16 | 0.98 – 1.37 | .078 | |
| SOFA | 1.04 | 1.01 – 1.06 | .002 | |
| FIRST_CAREUNIT (CSRU) | 0.32 | 0.22 – 0.46 | <.001 | |
| FIRST_CAREUNIT (MICU) | 1.19 | 0.97 – 1.46 | .092 | |
| FIRST_CAREUNIT (SICU) | 0.45 | 0.34 – 0.58 | <.001 | |
| FIRST_CAREUNIT (TSICU) | 0.57 | 0.42 – 0.77 | <.001 | |
| Random Parts | ||||
| τ00, CGID | 0.174 | |||
| NCGID | 493 | |||
| ICCCGID | 0.050 | |||
| Observations | 4950 | |||
| Deviance | 5406.885 | |||