MLRQ3 <- read.csv("D:\\DataScience\\Assignments\\MultiLinearRegression\\Computer_Data.csv")
attach(MLRQ3)
colnames(MLRQ3)
##  [1] "X"       "price"   "speed"   "hd"      "ram"     "screen"  "cd"     
##  [8] "multi"   "premium" "ads"     "trend"
contrasts(MLRQ3$cd)
##     yes
## no    0
## yes   1
MLRQ3$copyofcd <- NA
MLRQ3$copyofcd[MLRQ3$cd=="no"]=0
MLRQ3$copyofcd[MLRQ3$cd=="yes"]=1


contrasts(MLRQ3$multi)
##     yes
## no    0
## yes   1
MLRQ3$copyofmulti <- NA
MLRQ3$copyofmulti[MLRQ3$multi=="no"]=0
MLRQ3$copyofmulti[MLRQ3$multi=="yes"]=1


contrasts(MLRQ3$premium)
##     yes
## no    0
## yes   1
MLRQ3$copyofpremium <- NA
MLRQ3$copyofpremium[MLRQ3$premium=="no"]=0
MLRQ3$copyofpremium[MLRQ3$premium=="yes"]=1

dataQ3 <- MLRQ3[c("price","speed","hd","ram","screen","ads","trend","copyofcd","copyofmulti","copyofpremium")]


View(dataQ3)
summary(dataQ3)
##      price          speed              hd              ram        
##  Min.   : 949   Min.   : 25.00   Min.   :  80.0   Min.   : 2.000  
##  1st Qu.:1794   1st Qu.: 33.00   1st Qu.: 214.0   1st Qu.: 4.000  
##  Median :2144   Median : 50.00   Median : 340.0   Median : 8.000  
##  Mean   :2220   Mean   : 52.01   Mean   : 416.6   Mean   : 8.287  
##  3rd Qu.:2595   3rd Qu.: 66.00   3rd Qu.: 528.0   3rd Qu.: 8.000  
##  Max.   :5399   Max.   :100.00   Max.   :2100.0   Max.   :32.000  
##      screen           ads            trend          copyofcd     
##  Min.   :14.00   Min.   : 39.0   Min.   : 1.00   Min.   :0.0000  
##  1st Qu.:14.00   1st Qu.:162.5   1st Qu.:10.00   1st Qu.:0.0000  
##  Median :14.00   Median :246.0   Median :16.00   Median :0.0000  
##  Mean   :14.61   Mean   :221.3   Mean   :15.93   Mean   :0.4646  
##  3rd Qu.:15.00   3rd Qu.:275.0   3rd Qu.:21.50   3rd Qu.:1.0000  
##  Max.   :17.00   Max.   :339.0   Max.   :35.00   Max.   :1.0000  
##   copyofmulti     copyofpremium   
##  Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:1.0000  
##  Median :0.0000   Median :1.0000  
##  Mean   :0.1395   Mean   :0.9022  
##  3rd Qu.:0.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000
plot(dataQ3)

cor(dataQ3)
##                     price       speed          hd         ram       screen
## price          1.00000000  0.30097646  0.43025779  0.62274824  0.296041474
## speed          0.30097646  1.00000000  0.37230410  0.23476050  0.189074122
## hd             0.43025779  0.37230410  1.00000000  0.77772630  0.232801530
## ram            0.62274824  0.23476050  0.77772630  1.00000000  0.208953740
## screen         0.29604147  0.18907412  0.23280153  0.20895374  1.000000000
## ads            0.05454047 -0.21523206 -0.32322200 -0.18166971 -0.093919429
## trend         -0.19998694  0.40543833  0.57779013  0.27684384  0.188614445
## copyofcd       0.19734334  0.25825980  0.50357041  0.43850441  0.129487662
## copyofmulti   -0.01665139  0.08417193  0.09280483  0.04549689 -0.001740414
## copyofpremium -0.08069636  0.11420791  0.19692359  0.19714459  0.018745223
##                       ads       trend    copyofcd  copyofmulti
## price          0.05454047 -0.19998694  0.19734334 -0.016651388
## speed         -0.21523206  0.40543833  0.25825980  0.084171934
## hd            -0.32322200  0.57779013  0.50357041  0.092804830
## ram           -0.18166971  0.27684384  0.43850441  0.045496894
## screen        -0.09391943  0.18861444  0.12948766 -0.001740414
## ads            1.00000000 -0.31855251 -0.06109108 -0.030394260
## trend         -0.31855251  1.00000000  0.44578018  0.210907431
## copyofcd      -0.06109108  0.44578018  1.00000000  0.432179298
## copyofmulti   -0.03039426  0.21090743  0.43217930  1.000000000
## copyofpremium -0.15202274  0.04210738  0.21607660  0.124774741
##               copyofpremium
## price           -0.08069636
## speed            0.11420791
## hd               0.19692359
## ram              0.19714459
## screen           0.01874522
## ads             -0.15202274
## trend            0.04210738
## copyofcd         0.21607660
## copyofmulti      0.12477474
## copyofpremium    1.00000000
#cor2pcor(cor(dataQ3))
attach(dataQ3)
## The following objects are masked from MLRQ3:
## 
##     ads, hd, price, ram, screen, speed, trend
modelQ3 <- lm(price~speed+hd+ram+screen+ads+trend+copyofcd+copyofmulti+copyofpremium)
  
 summary(modelQ3)
## 
## Call:
## lm(formula = price ~ speed + hd + ram + screen + ads + trend + 
##     copyofcd + copyofmulti + copyofpremium)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1093.77  -174.24   -11.49   146.49  2001.05 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    307.98798   60.35341   5.103 3.44e-07 ***
## speed            9.32028    0.18506  50.364  < 2e-16 ***
## hd               0.78178    0.02761  28.311  < 2e-16 ***
## ram             48.25596    1.06608  45.265  < 2e-16 ***
## screen         123.08904    3.99950  30.776  < 2e-16 ***
## ads              0.65729    0.05132  12.809  < 2e-16 ***
## trend          -51.84958    0.62871 -82.470  < 2e-16 ***
## copyofcd        60.91671    9.51559   6.402 1.65e-10 ***
## copyofmulti    104.32382   11.41268   9.141  < 2e-16 ***
## copyofpremium -509.22473   12.34225 -41.259  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 275.3 on 6249 degrees of freedom
## Multiple R-squared:  0.7756, Adjusted R-squared:  0.7752 
## F-statistic:  2399 on 9 and 6249 DF,  p-value: < 2.2e-16
plot(modelQ3)

#x<- stepAIC(modelQ3)