Desarrollar el laboratorio 8.3 sobre métodos basados en arboles de decisión el cual se encuentra de la pagina 324 a la 331 del libro de texto.

8.3.1 Fitting Classification Trees

library(tree)
library(ISLR)
attach(Carseats)
High=ifelse(Sales<=8,"No", "Yes")
Carseats=data.frame(Carseats,High)
str(Carseats)
tree.carseats = tree(High~.-Sales, Carseats)
summary(tree.carseats)
plot(tree.carseats)
text(tree.carseats, pretty=0)
tree.carseats

set.seed(2)
train=sample(1:nrow(Carseats), 200)
Carseats.test=Carseats[-train,]
High.test=High[-train]
tree.carseats=tree(High~.-Sales, Carseats, subset=train)
tree.pred=predict(tree.carseats, Carseats.test, type="class")
table(tree.pred, High.test)
(86+57)/200

set.seed(3)
cv.carseats=cv.tree(tree.carseats, FUN=prune.misclass)
names(cv.carseats)
cv.carseats

par(mfrow=c(1,2))
plot(cv.carseats$size, cv.carseats$dev, type ="b")
plot(cv.carseats$k, cv.carseats$dev, type="b")

prune.carseats=prune.misclass(tree.carseats, best=9)
plot(prune.carseats)
text(prune.carseats, pretty=0)

tree.pred=predict(prune.carseats, Carseats.test, type="class")
table(tree.pred, High.test)
(94+60)/200

prune.carseats=prune.misclass(tree.carseats, best=15)
plot(prune.carseats)
text(prune.carseats, pretty=0)
tree.pred=predict(prune.carseats, Carseats.test, type="class")
table(tree.pred,High.test)
(86+62)/200

8.3.2 Fitting Regressions Trees

yhat=predict(tree.boston, newdata = Boston[-train,])
boston.test=Boston[-train, "medv"]
plot(yhat, boston.test)
abline(0,1)
mean((yhat-boston.test)^2)
[1] 25.04559

8.3.3 Bagging and Random Forests

8.3.4 Boosting

boost.boston=gbm(medv~., data=Boston[train,], distribution="gaussian", n.trees=5000, interaction.depth = 4, shrinkage=0.2, verbose = F)
yhat.boost=predict(boost.boston, newdata=Boston[-train,],n.trees = 5000)
mean((yhat.boost-boston.test)^2)
[1] 11.64544
LS0tDQp0aXRsZTogIkxhYiA1Ig0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KDQpEZXNhcnJvbGxhciBlbCBsYWJvcmF0b3JpbyA4LjMgc29icmUgbcOpdG9kb3MgYmFzYWRvcyBlbiBhcmJvbGVzIGRlIGRlY2lzacOzbiBlbCBjdWFsIHNlIGVuY3VlbnRyYSBkZSBsYSBwYWdpbmEgMzI0IGEgbGEgMzMxIGRlbCBsaWJybyBkZSB0ZXh0by4NCg0KOC4zLjEgRml0dGluZyBDbGFzc2lmaWNhdGlvbiBUcmVlcw0KDQpgYGB7cn0NCmxpYnJhcnkodHJlZSkNCmxpYnJhcnkoSVNMUikNCmF0dGFjaChDYXJzZWF0cykNCkhpZ2g9aWZlbHNlKFNhbGVzPD04LCJObyIsICJZZXMiKQ0KQ2Fyc2VhdHM9ZGF0YS5mcmFtZShDYXJzZWF0cyxIaWdoKQ0Kc3RyKENhcnNlYXRzKQ0KdHJlZS5jYXJzZWF0cyA9IHRyZWUoSGlnaH4uLVNhbGVzLCBDYXJzZWF0cykNCnN1bW1hcnkodHJlZS5jYXJzZWF0cykNCnBsb3QodHJlZS5jYXJzZWF0cykNCnRleHQodHJlZS5jYXJzZWF0cywgcHJldHR5PTApDQp0cmVlLmNhcnNlYXRzDQoNCnNldC5zZWVkKDIpDQp0cmFpbj1zYW1wbGUoMTpucm93KENhcnNlYXRzKSwgMjAwKQ0KQ2Fyc2VhdHMudGVzdD1DYXJzZWF0c1stdHJhaW4sXQ0KSGlnaC50ZXN0PUhpZ2hbLXRyYWluXQ0KdHJlZS5jYXJzZWF0cz10cmVlKEhpZ2h+Li1TYWxlcywgQ2Fyc2VhdHMsIHN1YnNldD10cmFpbikNCnRyZWUucHJlZD1wcmVkaWN0KHRyZWUuY2Fyc2VhdHMsIENhcnNlYXRzLnRlc3QsIHR5cGU9ImNsYXNzIikNCnRhYmxlKHRyZWUucHJlZCwgSGlnaC50ZXN0KQ0KKDg2KzU3KS8yMDANCg0Kc2V0LnNlZWQoMykNCmN2LmNhcnNlYXRzPWN2LnRyZWUodHJlZS5jYXJzZWF0cywgRlVOPXBydW5lLm1pc2NsYXNzKQ0KbmFtZXMoY3YuY2Fyc2VhdHMpDQpjdi5jYXJzZWF0cw0KDQpwYXIobWZyb3c9YygxLDIpKQ0KcGxvdChjdi5jYXJzZWF0cyRzaXplLCBjdi5jYXJzZWF0cyRkZXYsIHR5cGUgPSJiIikNCnBsb3QoY3YuY2Fyc2VhdHMkaywgY3YuY2Fyc2VhdHMkZGV2LCB0eXBlPSJiIikNCg0KcHJ1bmUuY2Fyc2VhdHM9cHJ1bmUubWlzY2xhc3ModHJlZS5jYXJzZWF0cywgYmVzdD05KQ0KcGxvdChwcnVuZS5jYXJzZWF0cykNCnRleHQocHJ1bmUuY2Fyc2VhdHMsIHByZXR0eT0wKQ0KDQp0cmVlLnByZWQ9cHJlZGljdChwcnVuZS5jYXJzZWF0cywgQ2Fyc2VhdHMudGVzdCwgdHlwZT0iY2xhc3MiKQ0KdGFibGUodHJlZS5wcmVkLCBIaWdoLnRlc3QpDQooOTQrNjApLzIwMA0KDQpwcnVuZS5jYXJzZWF0cz1wcnVuZS5taXNjbGFzcyh0cmVlLmNhcnNlYXRzLCBiZXN0PTE1KQ0KcGxvdChwcnVuZS5jYXJzZWF0cykNCnRleHQocHJ1bmUuY2Fyc2VhdHMsIHByZXR0eT0wKQ0KdHJlZS5wcmVkPXByZWRpY3QocHJ1bmUuY2Fyc2VhdHMsIENhcnNlYXRzLnRlc3QsIHR5cGU9ImNsYXNzIikNCnRhYmxlKHRyZWUucHJlZCxIaWdoLnRlc3QpDQooODYrNjIpLzIwMA0KDQpgYGANCg0KOC4zLjIgRml0dGluZyBSZWdyZXNzaW9ucyBUcmVlcw0KDQpgYGB7cn0NCmxpYnJhcnkoTUFTUykNCnNldC5zZWVkKDEpDQp0cmFpbiA9IHNhbXBsZSgxOm5yb3coQm9zdG9uKSwgbnJvdyhCb3N0b24pLzIpDQp0cmVlLmJvc3RvbiA9IHRyZWUobWVkdn4uLCBCb3N0b24sIHN1YnNldD10cmFpbikNCnN1bW1hcnkodHJlZS5ib3N0b24pDQoNCnBsb3QodHJlZS5ib3N0b24pDQp0ZXh0KHRyZWUuYm9zdG9uLCBwcmV0dHk9MCkNCg0KY3YuYm9zdG9uPWN2LnRyZWUodHJlZS5ib3N0b24pDQpwbG90KGN2LmJvc3RvbiRzaXplLCBjdi5ib3N0b24kZGV2LCB0eXBlPSdiJykNCg0KcHJ1bmUuYm9zdG9uPXBydW5lLnRyZWUodHJlZS5ib3N0b24sIGJlc3Q9NSkNCnBsb3QocHJ1bmUuYm9zdG9uKQ0KdGV4dChwcnVuZS5ib3N0b24sIHByZXR0eT0wKQ0KDQp5aGF0PXByZWRpY3QodHJlZS5ib3N0b24sIG5ld2RhdGEgPSBCb3N0b25bLXRyYWluLF0pDQpib3N0b24udGVzdD1Cb3N0b25bLXRyYWluLCAibWVkdiJdDQpwbG90KHloYXQsIGJvc3Rvbi50ZXN0KQ0KYWJsaW5lKDAsMSkNCm1lYW4oKHloYXQtYm9zdG9uLnRlc3QpXjIpDQoNCmBgYA0KDQoNCjguMy4zIEJhZ2dpbmcgYW5kIFJhbmRvbSBGb3Jlc3RzDQoNCmBgYHtyfQ0KbGlicmFyeShyYW5kb21Gb3Jlc3QpDQpzZXQuc2VlZCgxKQ0KYmFnLmJvc3Rvbj1yYW5kb21Gb3Jlc3QobWVkdn4uLCBkYXRhPUJvc3Rvbiwgc3Vic2V0PXRyYWluLG10cnk9MTMsIGltcG9ydGFuY2U9VFJVRSkNCmJhZy5ib3N0b24NCg0KeWhhdC5iYWcgPSBwcmVkaWN0KGJhZy5ib3N0b24sIG5ld2RhdGE9Qm9zdG9uWy10cmFpbixdKQ0KcGxvdCh5aGF0LmJhZywgYm9zdG9uLnRlc3QpDQphYmxpbmUoMCwxKQ0KbWVhbigoeWhhdC5iYWctYm9zdG9uLnRlc3QpXjIpDQoNCg0KYmFnLmJvc3Rvbj1yYW5kb21Gb3Jlc3QobWVkdn4uLCBkYXRhPUJvc3Rvbiwgc3Vic2V0PXRyYWluLCBtdHJ5PTEzLCBudHJlZT0yNSkNCnloYXQuYmFnID0gcHJlZGljdChiYWcuYm9zdG9uLCBuZXdkYXRhPUJvc3RvblstdHJhaW4sXSkNCm1lYW4oKHloYXQuYmFnLWJvc3Rvbi50ZXN0KV4yKQ0KDQpzZXQuc2VlZCgxKQ0KcmYuYm9zdG9uPXJhbmRvbUZvcmVzdChtZWR2fi4sZGF0YT1Cb3N0b24sIHN1YnNldD10cmFpbixtdHJ5PTYsaW1wb3J0YW5jZT1UUlVFKQ0KeWhhdC5yZj1wcmVkaWN0KHJmLmJvc3RvbixuZXdkYXRhPUJvc3RvblstdHJhaW4sXSkNCm1lYW4oKHloYXQucmYtYm9zdG9uLnRlc3QpXjIpDQoNCmltcG9ydGFuY2UocmYuYm9zdG9uKQ0KDQp2YXJJbXBQbG90KHJmLmJvc3RvbikNCg0KDQpgYGANCg0KDQoNCiMjOC4zLjQgQm9vc3RpbmcNCg0KYGBge3J9DQpsaWJyYXJ5KGdibSkNCnNldC5zZWVkKDEpDQpib29zdC5ib3N0b249Z2JtKG1lZHZ+LiwgZGF0YT1Cb3N0b25bdHJhaW4sXSwgZGlzdHJpYnV0aW9uPSJnYXVzc2lhbiIsIG4udHJlZXM9NTAwLCBpbnRlcmFjdGlvbi5kZXB0aD00KQ0Kc3VtbWFyeShib29zdC5ib3N0b24pDQoNCnBhcihtZnJvdz1jKDEsMikpDQpwbG90KGJvb3N0LmJvc3RvbiwgaT0icm0iKQ0KcGxvdChib29zdC5ib3N0b24sIGk9ImxzdGF0IikNCg0KeWhhdC5ib29zdD1wcmVkaWN0KGJvb3N0LmJvc3RvbiwgbmV3ZGF0YT1Cb3N0b25bLXRyYWluLF0sbi50cmVlcz01MDAwKQ0KbWVhbigoeWhhdC5ib29zdC1ib3N0b24udGVzdCleMikNCg0KYm9vc3QuYm9zdG9uPWdibShtZWR2fi4sIGRhdGE9Qm9zdG9uW3RyYWluLF0sIGRpc3RyaWJ1dGlvbj0iZ2F1c3NpYW4iLCBuLnRyZWVzPTUwMDAsIGludGVyYWN0aW9uLmRlcHRoID0gNCwgc2hyaW5rYWdlPTAuMiwgdmVyYm9zZSA9IEYpDQp5aGF0LmJvb3N0PXByZWRpY3QoYm9vc3QuYm9zdG9uLCBuZXdkYXRhPUJvc3RvblstdHJhaW4sXSxuLnRyZWVzID0gNTAwMCkNCm1lYW4oKHloYXQuYm9vc3QtYm9zdG9uLnRlc3QpXjIpDQpgYGANCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg==