Cargamos las librerias necesarias:
library(tree)
package ‘tree’ was built under R version 3.4.4
library(ISLR)
attach(Carseats)
High=ifelse(Sales<=8, "No","Yes")
Carseats = data.frame(Carseats,High)
Utilizacion de la funcion tree():
summary(tree.carseats)
Classification tree:
tree(formula = High ~ . - Sales, data = Carseats)
Variables actually used in tree construction:
[1] "ShelveLoc" "Price" "Income"
[4] "CompPrice" "Population" "Advertising"
[7] "Age" "US"
Number of terminal nodes: 27
Residual mean deviance: 0.4575 = 170.7 / 373
Misclassification error rate: 0.09 = 36 / 400
Graficamos tree.carseats
plot(tree.carseats )
text(tree.carseats ,pretty =0)
Las ramas que perfilan a ser nodos terminales se indican con *
tree.carseats
node), split, n, deviance, yval, (yprob)
* denotes terminal node
1) root 400 541.500 No ( 0.59000 0.41000 )
2) ShelveLoc: Bad,Medium 315 390.600 No ( 0.68889 0.31111 )
4) Price < 92.5 46 56.530 Yes ( 0.30435 0.69565 )
8) Income < 57 10 12.220 No ( 0.70000 0.30000 )
16) CompPrice < 110.5 5 0.000 No ( 1.00000 0.00000 ) *
17) CompPrice > 110.5 5 6.730 Yes ( 0.40000 0.60000 ) *
9) Income > 57 36 35.470 Yes ( 0.19444 0.80556 )
18) Population < 207.5 16 21.170 Yes ( 0.37500 0.62500 ) *
19) Population > 207.5 20 7.941 Yes ( 0.05000 0.95000 ) *
5) Price > 92.5 269 299.800 No ( 0.75465 0.24535 )
10) Advertising < 13.5 224 213.200 No ( 0.81696 0.18304 )
20) CompPrice < 124.5 96 44.890 No ( 0.93750 0.06250 )
40) Price < 106.5 38 33.150 No ( 0.84211 0.15789 )
80) Population < 177 12 16.300 No ( 0.58333 0.41667 )
160) Income < 60.5 6 0.000 No ( 1.00000 0.00000 ) *
161) Income > 60.5 6 5.407 Yes ( 0.16667 0.83333 ) *
81) Population > 177 26 8.477 No ( 0.96154 0.03846 ) *
41) Price > 106.5 58 0.000 No ( 1.00000 0.00000 ) *
21) CompPrice > 124.5 128 150.200 No ( 0.72656 0.27344 )
42) Price < 122.5 51 70.680 Yes ( 0.49020 0.50980 )
84) ShelveLoc: Bad 11 6.702 No ( 0.90909 0.09091 ) *
85) ShelveLoc: Medium 40 52.930 Yes ( 0.37500 0.62500 )
170) Price < 109.5 16 7.481 Yes ( 0.06250 0.93750 ) *
171) Price > 109.5 24 32.600 No ( 0.58333 0.41667 )
342) Age < 49.5 13 16.050 Yes ( 0.30769 0.69231 ) *
343) Age > 49.5 11 6.702 No ( 0.90909 0.09091 ) *
43) Price > 122.5 77 55.540 No ( 0.88312 0.11688 )
86) CompPrice < 147.5 58 17.400 No ( 0.96552 0.03448 ) *
87) CompPrice > 147.5 19 25.010 No ( 0.63158 0.36842 )
174) Price < 147 12 16.300 Yes ( 0.41667 0.58333 )
348) CompPrice < 152.5 7 5.742 Yes ( 0.14286 0.85714 ) *
349) CompPrice > 152.5 5 5.004 No ( 0.80000 0.20000 ) *
175) Price > 147 7 0.000 No ( 1.00000 0.00000 ) *
11) Advertising > 13.5 45 61.830 Yes ( 0.44444 0.55556 )
22) Age < 54.5 25 25.020 Yes ( 0.20000 0.80000 )
44) CompPrice < 130.5 14 18.250 Yes ( 0.35714 0.64286 )
88) Income < 100 9 12.370 No ( 0.55556 0.44444 ) *
89) Income > 100 5 0.000 Yes ( 0.00000 1.00000 ) *
45) CompPrice > 130.5 11 0.000 Yes ( 0.00000 1.00000 ) *
23) Age > 54.5 20 22.490 No ( 0.75000 0.25000 )
46) CompPrice < 122.5 10 0.000 No ( 1.00000 0.00000 ) *
47) CompPrice > 122.5 10 13.860 No ( 0.50000 0.50000 )
94) Price < 125 5 0.000 Yes ( 0.00000 1.00000 ) *
95) Price > 125 5 0.000 No ( 1.00000 0.00000 ) *
3) ShelveLoc: Good 85 90.330 Yes ( 0.22353 0.77647 )
6) Price < 135 68 49.260 Yes ( 0.11765 0.88235 )
12) US: No 17 22.070 Yes ( 0.35294 0.64706 )
24) Price < 109 8 0.000 Yes ( 0.00000 1.00000 ) *
25) Price > 109 9 11.460 No ( 0.66667 0.33333 ) *
13) US: Yes 51 16.880 Yes ( 0.03922 0.96078 ) *
7) Price > 135 17 22.070 No ( 0.64706 0.35294 )
14) Income < 46 6 0.000 No ( 1.00000 0.00000 ) *
15) Income > 46 11 15.160 Yes ( 0.45455 0.54545 ) *
set.seed (2)
train=sample (1: nrow(Carseats ), 200)
Carseats.test=Carseats [-train ,]
High.test=High[-train ]
tree.carseats =tree(High~.-Sales ,Carseats ,subset =train )
tree.pred=predict(tree.carseats ,Carseats.test ,type ="class")
table(tree.pred ,High.test)
High.test
tree.pred No Yes
No 86 27
Yes 30 57
(86+57)/200
[1] 0.715
set.seed (3)
cv.carseats =cv.tree(tree.carseats ,FUN=prune.misclass )
names(cv.carseats)
[1] "size" "dev" "k" "method"
(cv.carseats)
$size
[1] 19 17 14 13 9 7 3 2 1
$dev
[1] 55 55 53 52 50 56 69 65 80
$k
[1] -Inf 0.0000000 0.6666667 1.0000000 1.7500000
[6] 2.0000000 4.2500000 5.0000000 23.0000000
$method
[1] "misclass"
attr(,"class")
[1] "prune" "tree.sequence"
par(mfrow =c(1,2))
plot(cv.carseats$size ,cv.carseats$dev ,type="b")
plot(cv.carseats$k ,cv.carseats$dev ,type="b")
prune.carseats =prune.misclass (tree.carseats ,best =9)
plot(prune.carseats )
text(prune.carseats ,pretty =0)
Volvemos a aplicar la prediccion para verificar las mejoras al modelo:
tree.pred=predict (prune.carseats , Carseats.test ,type="class")
table(tree.pred ,High.test)
High.test
tree.pred No Yes
No 94 24
Yes 22 60
(94+60)/200
[1] 0.77
Verificamos que pasa si aumentamos el valor de “best”:
prune.carseats =prune.misclass (tree.carseats ,best =15)
plot(prune.carseats )
text(prune.carseats ,pretty =0)
tree.pred=predict (prune.carseats , Carseats.test ,type="class")
table(tree.pred ,High.test)
High.test
tree.pred No Yes
No 86 22
Yes 30 62
(86+62)/200
[1] 0.74
Los datos clasificados son mucho menores.
library (MASS)
set.seed (1)
train = sample (1: nrow(Boston ), nrow(Boston )/2)
tree.boston =tree(medv~.,Boston ,subset =train)
summary (tree.boston)
Regression tree:
tree(formula = medv ~ ., data = Boston, subset = train)
Variables actually used in tree construction:
[1] "lstat" "rm" "dis"
Number of terminal nodes: 8
Residual mean deviance: 12.65 = 3099 / 245
Distribution of residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-14.10000 -2.04200 -0.05357 0.00000 1.96000 12.60000
plot(tree.boston )
text(tree.boston ,pretty =0)
cv.boston =cv.tree(tree.boston)
plot(cv.boston$size ,cv.boston$dev ,type='b')
prune.boston =prune.tree(tree.boston ,best =5)
plot(prune.boston )
text(prune.boston ,pretty =0)
yhat=predict (tree.boston ,newdata =Boston [-train ,])
boston.test=Boston [-train ," medv"]
plot(yhat ,boston.test)
abline (0,1)
mean((yhat-boston.test)^2)
[1] NaN
library (randomForest)
package ‘randomForest’ was built under R version 3.4.4randomForest 4.6-14
Type rfNews() to see new features/changes/bug fixes.
set.seed (1)
bag.boston =randomForest(medv~.,data=Boston ,subset =train ,
mtry=13, importance =TRUE)
bag.boston
Call:
randomForest(formula = medv ~ ., data = Boston, mtry = 13, importance = TRUE, subset = train)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 13
Mean of squared residuals: 11.15723
% Var explained: 86.49
yhat.bag = predict (bag.boston ,newdata =Boston [-train ,])
plot(yhat.bag , boston.test)
abline (0,1)
mean(( yhat.bag -boston.test)^2)
[1] NaN
bag.boston =randomForest(medv~.,data=Boston ,subset =train ,
mtry=13, ntree =25)
yhat.bag = predict (bag.boston ,newdata =Boston [-train ,])
Utilizando un valor menor de mtry:
rf.boston =randomForest(medv~.,data=Boston ,subset =train ,
mtry=6, importance =TRUE)
yhat.rf = predict (rf.boston ,newdata =Boston [-train ,])
Utilizamos la funcion de Importancia:
importance (rf.boston )
%IncMSE IncNodePurity
crim 12.737863 1073.37722
zn 3.236628 45.82059
indus 8.120422 1057.00386
chas 2.657232 64.85290
nox 12.600970 1012.56120
rm 32.050830 6712.16728
age 10.363822 553.96843
dis 13.871202 1346.69822
rad 3.682449 87.34525
tax 9.674698 438.10378
ptratio 12.020855 835.18327
black 6.853937 338.71460
lstat 28.260594 6948.44911
Graficamos:
varImpPlot (rf.boston )
library (gbm)
set.seed (1)
boost.boston =gbm(medv~.,data=Boston [train ,], distribution=
"gaussian",n.trees =5000 , interaction.depth =4)
Desplegamos el summary:
summary(boost.boston)
par(mfrow =c(1,2))
plot(boost.boston ,i="rm")
plot(boost.boston ,i="lstat")
yhat.boost=predict (boost.boston ,newdata =Boston [-train ,],
n.trees =5000)
boost.boston =gbm(medv~.,data=Boston [train ,], distribution=
"gaussian",n.trees =5000 , interaction.depth =4, shrinkage =0.2,
verbose =F)
yhat.boost=predict (boost.boston ,newdata =Boston [-train ,],
n.trees =5000)
mean(( yhat.boost -boston.test)^2)
[1] NaN