El alumno deberá realizar los ejercicios 5.3.1, 5.3.2 y 5.3.3 del libro de texto (inicia en página 190). Además deberá realizar el ejercicio 4.6.5 sobre KNN ubicado en la página 163 del libro de texto.

mean((mpg-predict(lm.fit3,Auto))[-train]^2)
[1] 19.2574

5.3.2 LOOCV

cv.error=rep(0,5)
for(i in 1:5){
  glm.fit=glm(mpg~poly(horsepower, i), data=Auto)
  cv.error[i] = cv.glm(Auto, glm.fit)$delta[1]
}
cv.error
[1] 24.23151 19.24821 19.33498 19.42443 19.03321

5.3.3 k-fold Cross-Validation

set.seed(17)
cv.error.10=rep(0,10)
for(i in 1:10){
  glm.fit=glm(mpg~poly(horsepower, i),data=Auto)
  cv.error.10[i]=cv.glm(Auto, glm.fit, K=10)$delta
}
number of items to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement length
cv.error.10
 [1] 24.20520 19.18924 19.30662 19.33799 18.87911 19.02103 18.89609 19.71201
 [9] 18.95140 19.50196

5.3.4 The Bootstrap

boot(Portfolio, alpha.fn, R=1000)

ORDINARY NONPARAMETRIC BOOTSTRAP


Call:
boot(data = Portfolio, statistic = alpha.fn, R = 1000)


Bootstrap Statistics :
     original     bias    std. error
t1* 0.6596797 0.01211578   0.3073555
summary(lm(mpg~horsepower+I(horsepower^2),data=Auto))$coef
                    Estimate   Std. Error   t value      Pr(>|t|)
(Intercept)     56.900099702 1.8004268063  31.60367 1.740911e-109
horsepower      -0.466189630 0.0311246171 -14.97816  2.289429e-40
I(horsepower^2)  0.001230536 0.0001220759  10.08009  2.196340e-21

4.6.5 KNN

library(class)
library(MASS)
library(ISLR)
names(Smarket)
[1] "Year"      "Lag1"      "Lag2"      "Lag3"      "Lag4"      "Lag5"     
[7] 1250    9
summary(Smarket)
      Year           Lag1                Lag2                Lag3          
 Min.   :2001   Min.   :-4.922000   Min.   :-4.922000   Min.   :-4.922000  
 1st Qu.:2002   1st Qu.:-0.639500   1st Qu.:-0.639500   1st Qu.:-0.640000  
 Median :2003   Median : 0.039000   Median : 0.039000   Median : 0.038500  
 Mean   :2003   Mean   : 0.003834   Mean   : 0.003919   Mean   : 0.001716  
 3rd Qu.:2004   3rd Qu.: 0.596750   3rd Qu.: 0.596750   3rd Qu.: 0.596750  
 Max.   :2005   Max.   : 5.733000   Max.   : 5.733000   Max.   : 5.733000  
      Lag4                Lag5              Volume      
 Min.   :-4.922000   Min.   :-4.92200   Min.   :0.3561  
 1st Qu.:-0.640000   1st Qu.:-0.64000   1st Qu.:1.2574  
 Median : 0.038500   Median : 0.03850   Median :1.4229  
 Mean   : 0.001636   Mean   : 0.00561   Mean   :1.4783  
 3rd Qu.: 0.596750   3rd Qu.: 0.59700   3rd Qu.:1.6417  
 Max.   : 5.733000   Max.   : 5.73300   Max.   :3.1525  
     Today           Direction 
 Min.   :-4.922000   Down:602  
 1st Qu.:-0.639500   Up  :648  
 Median : 0.038500             
 Mean   : 0.003138             
 3rd Qu.: 0.596750             
 Max.   : 5.733000  
attach(Smarket)
The following objects are masked from Smarket (pos = 3):

    Direction, Lag1, Lag2, Lag3, Lag4, Lag5, Today, Volume, Year

The following objects are masked from Smarket (pos = 4):

    Direction, Lag1, Lag2, Lag3, Lag4, Lag5, Today, Volume, Year

The following objects are masked from Smarket (pos = 5):

    Direction, Lag1, Lag2, Lag3, Lag4, Lag5, Today, Volume, Year
train = (Year<2005)
Direction.2005 = Direction[-train]
train.X=cbind(Lag1, Lag2)[train,]
test.X=cbind(Lag1, Lag2)[!train,]
train.Direction = Direction[train]
set.seed(1)
knn.pred=knn(train.X, test.X, train.Direction, k=1)
table(knn.pred, Direction.2005)
Error in table(knn.pred, Direction.2005) : 
  all arguments must have the same length
table(knn.pred, Direction.2005)
Error in table(knn.pred, Direction.2005) : 
  object 'Direction.2005' not found
LS0tDQp0aXRsZTogIkxhYjIiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpFbCBhbHVtbm8gZGViZXLDoSByZWFsaXphciBsb3MgZWplcmNpY2lvcyA1LjMuMSwgNS4zLjIgeSA1LjMuMyBkZWwgbGlicm8gZGUgdGV4dG8gKGluaWNpYSBlbiBww6FnaW5hIDE5MCkuDQpBZGVtw6FzIGRlYmVyw6EgcmVhbGl6YXIgZWwgZWplcmNpY2lvIDQuNi41IHNvYnJlIEtOTiB1YmljYWRvIGVuIGxhIHDDoWdpbmEgMTYzIGRlbCBsaWJybyBkZSB0ZXh0by4NCg0KYGBge3J9DQpsaWJyYXJ5KElTTFIpDQpzZXQuc2VlZCgxKQ0KdHJhaW4gPSBzYW1wbGUoMzkyLDE5NikNCg0KbG0uZml0PWxtKG1wZ35ob3JzZXBvd2VyLCBkYXRhPUF1dG8sIHN1YnNldD10cmFpbikNCg0KYXR0YWNoKEF1dG8pDQptZWFuKChtcGctcHJlZGljdChsbS5maXQsQXV0bykpWy10cmFpbl1eMikNCg0KbG0uZml0Mj1sbShtcGd+cG9seShob3JzZXBvd2VyLDIpLGRhdGE9QXV0bywgc3Vic2V0PXRyYWluKQ0KbWVhbigobXBnLXByZWRpY3QobG0uZml0MixBdXRvKSlbLXRyYWluXV4yKQ0KDQpsbS5maXQzPWxtKG1wZ35wb2x5KGhvcnNlcG93ZXIsMyksZGF0YT1BdXRvLCBzdWJzZXQ9dHJhaW4pDQptZWFuKChtcGctcHJlZGljdChsbS5maXQzLEF1dG8pKVstdHJhaW5dXjIpDQoNCnNldC5zZWVkKDIpDQp0cmFpbj1zYW1wbGUoMzkyLDE5NikNCmxtLmZpdD1sbShtcGd+aG9yc2Vwb3dlciwgc3Vic2V0PXRyYWluKQ0KbWVhbigobXBnLXByZWRpY3QobG0uZml0LEF1dG8pKVstdHJhaW5dXjIpDQoNCmxtLmZpdDI9bG0obXBnfnBvbHkoaG9yc2Vwb3dlciwyKSwgc3Vic2V0PXRyYWluKQ0KbWVhbigobXBnLXByZWRpY3QobG0uZml0MixBdXRvKSlbLXRyYWluXV4yKQ0KDQpsbS5maXQzPWxtKG1wZ35wb2x5KGhvcnNlcG93ZXIsMyksIHN1YnNldD10cmFpbikNCm1lYW4oKG1wZy1wcmVkaWN0KGxtLmZpdDMsQXV0bykpWy10cmFpbl1eMikNCg0KYGBgDQoNCjUuMy4yIExPT0NWDQoNCmBgYHtyfQ0KZ2xtLmZpdD1nbG0obXBnfmhvcnNlcG93ZXIsIGRhdGE9QXV0bykNCmNvZWYoZ2xtLmZpdCkNCg0KbG0uZml0PWxtKG1wZ35ob3JzZXBvd2VyLCBkYXRhPUF1dG8pDQpjb2VmKGxtLmZpdCkNCg0KbGlicmFyeShib290KQ0KZ2xtLmZpdCA9IGdsbShtcGd+aG9yc2Vwb3dlciwgZGF0YT1BdXRvKQ0KY3YuZXJyPWN2LmdsbShBdXRvLCBnbG0uZml0KQ0KY3YuZXJyJGRlbHRhDQoNCmN2LmVycm9yPXJlcCgwLDUpDQpmb3IoaSBpbiAxOjUpew0KICBnbG0uZml0PWdsbShtcGd+cG9seShob3JzZXBvd2VyLCBpKSwgZGF0YT1BdXRvKQ0KICBjdi5lcnJvcltpXSA9IGN2LmdsbShBdXRvLCBnbG0uZml0KSRkZWx0YVsxXQ0KfQ0KDQpjdi5lcnJvcg0KDQpgYGANCg0KNS4zLjMgay1mb2xkIENyb3NzLVZhbGlkYXRpb24NCg0KYGBge3J9DQpzZXQuc2VlZCgxNykNCmN2LmVycm9yLjEwPXJlcCgwLDEwKQ0KZm9yKGkgaW4gMToxMCl7DQogIGdsbS5maXQ9Z2xtKG1wZ35wb2x5KGhvcnNlcG93ZXIsIGkpLGRhdGE9QXV0bykNCiAgY3YuZXJyb3IuMTBbaV09Y3YuZ2xtKEF1dG8sIGdsbS5maXQsIEs9MTApJGRlbHRhDQp9DQpjdi5lcnJvci4xMA0KYGBgDQoNCjUuMy40IFRoZSBCb290c3RyYXANCg0KYGBge3J9DQphbHBoYS5mbj0gZnVuY3Rpb24oZGF0YSwgaW5kZXgpew0KICBYPWRhdGEkWFtpbmRleF0NCiAgWT1kYXRhJFlbaW5kZXhdDQogIHJldHVybigodmFyKFkpLWNvdihYLFkpKS92YXIoWCkrdmFyKFkpLTIqY292KFgsWSkpDQp9DQoNCmFscGhhLmZuKFBvcnRmb2xpbywgMToxMDApDQoNCnNldC5zZWVkKDEpDQphbHBoYS5mbihQb3J0Zm9saW8sIHNhbXBsZSgxMDAsMTAwLCByZXBsYWNlPVQpKQ0KDQpib290KFBvcnRmb2xpbywgYWxwaGEuZm4sIFI9MTAwMCkNCg0KYGBgDQoNCg0KYGBge3J9DQpib290LmZuPWZ1bmN0aW9uKGRhdGEsIGluZGV4KQ0KICByZXR1cm4oY29lZihsbShtcGd+aG9yc2Vwb3dlciwgZGF0YT1kYXRhLCBzdWJzZXQ9aW5kZXgpKSkNCmJvb3QuZm4oQXV0bywgMTozOTIpDQoNCnNldC5zZWVkKDEpDQpib290LmZuKEF1dG8sIHNhbXBsZSgzOTIsIDM5MiwgcmVwbGFjZT1UKSkNCmJvb3QuZm4oQXV0bywgc2FtcGxlKDM5MiwgMzkyLCByZXBsYWNlPVQpKQ0KDQpib290KEF1dG8sIGJvb3QuZm4sIDEwMDApDQoNCnN1bW1hcnkobG0obXBnfmhvcnNlcG93ZXIsIGRhdGE9QXV0bykpJGNvZWYNCg0KYm9vdC5mbiA9IGZ1bmN0aW9uKGRhdGEsIGluZGV4KQ0KICBjb2VmZmljaWVudHMobG0obXBnfmhvcnNlcG93ZXIrSShob3JzZXBvd2VyXjIpLCBkYXRhPWRhdGEsIHN1YnNldD1pbmRleCkpDQoNCnNldC5zZWVkKDEpDQpib290KEF1dG8sYm9vdC5mbiwxMDAwKQ0Kc3VtbWFyeShsbShtcGd+aG9yc2Vwb3dlcitJKGhvcnNlcG93ZXJeMiksZGF0YT1BdXRvKSkkY29lZg0KYGBgDQoNCjQuNi41IEtOTg0KDQpgYGB7cn0NCmxpYnJhcnkoY2xhc3MpDQpsaWJyYXJ5KE1BU1MpDQpsaWJyYXJ5KElTTFIpDQpuYW1lcyhTbWFya2V0KQ0KZGltKFNtYXJrZXQpDQpzdW1tYXJ5KFNtYXJrZXQpDQphdHRhY2goU21hcmtldCkNCnRyYWluID0gKFllYXI8MjAwNSkNCkRpcmVjdGlvbi4yMDA1ID0gRGlyZWN0aW9uWy10cmFpbl0NCnRyYWluLlg9Y2JpbmQoTGFnMSwgTGFnMilbdHJhaW4sXQ0KdGVzdC5YPWNiaW5kKExhZzEsIExhZzIpWyF0cmFpbixdDQp0cmFpbi5EaXJlY3Rpb24gPSBEaXJlY3Rpb25bdHJhaW5dDQoNCnNldC5zZWVkKDEpDQprbm4ucHJlZD1rbm4odHJhaW4uWCwgdGVzdC5YLCB0cmFpbi5EaXJlY3Rpb24sIGs9MSkNCnRhYmxlKGtubi5wcmVkLCBEaXJlY3Rpb24uMjAwNSkNCig4Mys0MikvMjUyDQoNCg0Ka25uLnByZWQ9a25uKHRyYWluLlgsIHRlc3QuWCwgdHJhaW4uRGlyZWN0aW9uLCBrPTMpDQp0YWJsZShrbm4ucHJlZCwgRGlyZWN0aW9uLjIwMDUpDQoNCm1lYW4oa25uLnByZWQ9PURpcmVjdGlvbi4yMDA1KQ0KDQoNCmBgYA0KDQpgYGB7cn0NCmtubi5wcmVkPWtubih0cmFpbi5YLCB0ZXN0LlgsIHRyYWluLkRpcmVjdGlvbiwgaz0zKQ0KdGFibGUoa25uLnByZWQsIERpcmVjdGlvbi4yMDA1KQ0KbWVhbihrbm4ucHJlZD09KQ0KYGBgDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0K