Instrucciones 3.6.1, 3.6.2, 3.6.3, 3.6.4, 3.6.5, 3.6.6 y 3.6.7

3.6.1.

library(MASS)
library(ISLR)

3.6.2

which.max(hatvalues(lm.fit))
375 
375 

3.6.3

summary(lm.fit1)

Call:
lm(formula = medv ~ . - age, data = Boston)

Residuals:
     Min       1Q   Median       3Q      Max 
-15.6054  -2.7313  -0.5188   1.7601  26.2243 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  36.436927   5.080119   7.172 2.72e-12 ***
crim         -0.108006   0.032832  -3.290 0.001075 ** 
zn            0.046334   0.013613   3.404 0.000719 ***
indus         0.020562   0.061433   0.335 0.737989    
chas          2.689026   0.859598   3.128 0.001863 ** 
nox         -17.713540   3.679308  -4.814 1.97e-06 ***
rm            3.814394   0.408480   9.338  < 2e-16 ***
dis          -1.478612   0.190611  -7.757 5.03e-14 ***
rad           0.305786   0.066089   4.627 4.75e-06 ***
tax          -0.012329   0.003755  -3.283 0.001099 **  1.10e-12 ***
black         0.009321   0.002678   3.481 0.000544 ***
lstat        -0.523852   0.047625 -10.999  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.74 on 493 degrees of freedom
Multiple R-squared:  0.7406,    Adjusted R-squared:  0.7343 
F-statistic: 117.3 on 12 and 493 DF,  p-value: < 2.2e-16

3.6.4

summary(lm(medv~lstat*age, data=Boston))

Call:
lm(formula = medv ~ lstat * age, data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-15.806  -4.045  -1.333   2.085  27.552 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) 36.0885359  1.4698355  24.553  < 2e-16 ***
lstat       -1.3921168  0.1674555  -8.313 8.78e-16 ***
age         -0.0007209  0.0198792  -0.036   0.9711    
lstat:age    0.0041560  0.0018518   2.244   0.0252 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.149 on 502 degrees of freedom
Multiple R-squared:  0.5557,    Adjusted R-squared:  0.5531 
F-statistic: 209.3 on 3 and 502 DF,  p-value: < 2.2e-16

3.6.5

summary(lm(medv~log(rm), data=Boston))

Call:
lm(formula = medv ~ log(rm), data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max 
-19.487  -2.875  -0.104   2.837  39.816 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -76.488      5.028  -15.21   <2e-16 ***
log(rm)       54.055      2.739   19.73   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.915 on 504 degrees of freedom
Multiple R-squared:  0.4358,    Adjusted R-squared:  0.4347 
F-statistic: 389.3 on 1 and 504 DF,  p-value: < 2.2e-16

3.6.6

contrasts(ShelveLoc)
       Good Medium
Bad       0      0
Good      1      0
Medium    0      1

3.6.7

LoadLibraries()
[1] "The libraries have been loaded."
LS0tDQp0aXRsZTogIkxhYiAxIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KSW5zdHJ1Y2Npb25lcw0KMy42LjEsIDMuNi4yLCAzLjYuMywgMy42LjQsIDMuNi41LCAzLjYuNiB5IDMuNi43IA0KDQoNCjMuNi4xLg0KDQpgYGB7cn0NCmxpYnJhcnkoTUFTUykNCmxpYnJhcnkoSVNMUikNCmBgYA0KDQozLjYuMg0KYGBge3J9DQpmaXgoQm9zdG9uKQ0KbmFtZXMoQm9zdG9uKQ0KDQpsbS5maXQgPSBsbShtZWR2fmxzdGF0LCBkYXRhPSBCb3N0b24pDQoNCmF0dGFjaChCb3N0b24pDQpsbS5maXQgPSBsbShtZWR2fmxzdGF0KQ0KDQpsbS5maXQNCnN1bW1hcnkobG0uZml0KQ0KbmFtZXMobG0uZml0KQ0KY29uZmludChsbS5maXQpDQpwcmVkaWN0KGxtLmZpdCwgZGF0YS5mcmFtZShsc3RhdD0oYyg1LDEwLDE1KSkpLGludGVydmFsID0gImNvbmZpZGVuY2UiKQ0KcHJlZGljdChsbS5maXQsIGRhdGEuZnJhbWUobHN0YXQ9KGMoNSwxMCwxNSkpKSxpbnRlcnZhbCA9ICJwcmVkaWN0aW9uIikNCnBsb3QobHN0YXQsIG1lZHYpDQphYmxpbmUobG0uZml0KQ0KcGxvdChsc3RhdCwgbWVkdikNCmFibGluZShsbS5maXQsIGx3ZD0zKQ0KcGxvdChsc3RhdCwgbWVkdikNCmFibGluZShsbS5maXQsIGx3ZD0zLCBjb2w9InJlZCIpDQpwbG90KGxtLmZpdCwgbHdkPTMsIGNvbD0icmVkIikNCnBsb3QobHN0YXQsIG1lZHYsIHBjaD0yMCkNCnBsb3QobHN0YXQsIG1lZHYsIHBjaD0iKyIpDQpwbG90KDE6MjAsMToyMCwgcGNoPTE6MjApDQoNCnBhcihtZnJvdz1jKDIsMikpDQpwbG90KGxtLmZpdCkNCg0KcGxvdChwcmVkaWN0KGxtLmZpdCkscmVzaWR1YWxzKGxtLmZpdCkpDQpwbG90KHByZWRpY3QobG0uZml0KSwgcnN0dWRlbnQobG0uZml0KSkNCg0KcGxvdChoYXR2YWx1ZXMobG0uZml0KSkNCndoaWNoLm1heChoYXR2YWx1ZXMobG0uZml0KSkNCmBgYA0KDQoNCg0KMy42LjMNCg0KYGBge3J9DQpsbS5maXQ9bG0obWVkdn5sc3RhdCthZ2UsIGRhdGE9Qm9zdG9uKQ0Kc3VtbWFyeShsbS5maXQpDQoNCmxtLmZpdD1sbShtZWR2fi4sIGRhdGE9Qm9zdG9uKQ0Kc3VtbWFyeShsbS5maXQpDQoNCmxpYnJhcnkoY2FyKQ0KdmlmKGxtLmZpdCkNCg0KbG0uZml0MT1sbShtZWR2fi4gLWFnZSwgZGF0YT1Cb3N0b24pDQpzdW1tYXJ5KGxtLmZpdDEpDQpsbS5maXQxPXVwZGF0ZShsbS5maXQsfi4tYWdlKQ0KDQpgYGANCg0KMy42LjQNCmBgYHtyfQ0Kc3VtbWFyeShsbShtZWR2fmxzdGF0KmFnZSwgZGF0YT1Cb3N0b24pKQ0KYGBgDQozLjYuNQ0KDQpgYGB7cn0NCmxtLmZpdDI9bG0obWVkdn5sc3RhdCtJKGxzdGF0XjIpKQ0Kc3VtbWFyeShsbS5maXQyKQ0KDQpsbS5maXQ9bG0obWVkdn5sc3RhdCkNCmFub3ZhKGxtLmZpdCxsbS5maXQyKQ0KDQpwYXIobWZyb3c9YygyLDIpKQ0KcGxvdChsbS5maXQyKQ0KDQpsbS5maXQ1PWxtKG1lZHZ+cG9seShsc3RhdCw1KSkNCnN1bW1hcnkobG0uZml0NSkNCg0Kc3VtbWFyeShsbShtZWR2fmxvZyhybSksIGRhdGE9Qm9zdG9uKSkNCg0KDQpgYGANCjMuNi42DQpgYGB7cn0NCmZpeChDYXJzZWF0cykNCm5hbWVzKENhcnNlYXRzKQ0KbG0uZml0PWxtKFNhbGVzfi4gK0luY29tZTpBZHZlcnRpc2luZytQcmljZTpBZ2UsIGRhdGE9Q2Fyc2VhdHMpDQpzdW1tYXJ5KGxtLmZpdCkNCmF0dGFjaChDYXJzZWF0cykNCmNvbnRyYXN0cyhTaGVsdmVMb2MpDQoNCmBgYA0KDQozLjYuNw0KYGBge3J9DQpMb2FkTGlicmFyaWVzID0gZnVuY3Rpb24oKXsNCiAgbGlicmFyeShJU0xSKQ0KICBsaWJyYXJ5KE1BU1MpDQogIHByaW50KCJUaGUgbGlicmFyaWVzIGhhdmUgYmVlbiBsb2FkZWQuIikNCn0NCg0KTG9hZExpYnJhcmllcw0KTG9hZExpYnJhcmllcygpDQoNCmBgYA0KDQoNCg0KDQoNCg0KDQoNCg0K