setwd("C:/Users/nazan/Desktop/ANLY510/Semester Long Labs  Datafiles-20180511")
Lab1Part3=read.csv("Lab1Part3.csv")
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
glimpse(Lab1Part3) ###To check if variables are define correctly
## Observations: 63
## Variables: 4
## $ FocusGroup <int> 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, ...
## $ Kids       <fct> alot, alot, alot, alot, alot, alot, alot, alot, alo...
## $ Animals    <fct> alot, alot, alot, alot, alot, alot, alot, none, non...
## $ Perception <int> 81, 67, 77, 89, 100, 99, 65, 30, 43, 22, 15, 10, 76...
plot(density(Lab1Part3$Perception)) ###Take a look at data and see how it is distributed (looks like we might have some negative skew so lets check it with test)

library(moments)
agostino.test(Lab1Part3$Perception) ###P-value is larger than alpha==> fail to reject null hypothesis.(no sign of skew)
## 
##  D'Agostino skewness test
## 
## data:  Lab1Part3$Perception
## skew = -0.48027, z = -1.64040, p-value = 0.1009
## alternative hypothesis: data have a skewness

Checking variances(Chaeck if they are equal across factors(The test has the null hypothesis that the variances are equal and the alterntive hypothesis that they are not equal,P-values are larger than alpha==>Fail to reject null hypothesis==>Variances are equal))

Lab1Part3$FocusGroup <- factor(Lab1Part3$FocusGroup) ###Transforming FocusGroup variable from numeric to factor
bartlett.test(Lab1Part3$Perception~Lab1Part3$FocusGroup)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Lab1Part3$Perception by Lab1Part3$FocusGroup
## Bartlett's K-squared = 2.9909, df = 6, p-value = 0.81
bartlett.test(Lab1Part3$Perception~Lab1Part3$Kids)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Lab1Part3$Perception by Lab1Part3$Kids
## Bartlett's K-squared = 1.3937, df = 2, p-value = 0.4982
bartlett.test(Lab1Part3$Perception~Lab1Part3$Animals)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Lab1Part3$Perception by Lab1Part3$Animals
## Bartlett's K-squared = 4.5682, df = 2, p-value = 0.1019

Looks everythings are what we want==>Run ANOVA(including FocusGroup as a blocking factor)

model=aov(Perception~Kids*Animals+FocusGroup,data=Lab1Part3)
model
## Call:
##    aov(formula = Perception ~ Kids * Animals + FocusGroup, data = Lab1Part3)
## 
## Terms:
##                      Kids   Animals FocusGroup Kids:Animals Residuals
## Sum of Squares   1152.889 20275.937   2688.825     1859.397 12222.889
## Deg. of Freedom         2         2          6            4        48
## 
## Residual standard error: 15.95755
## Estimated effects may be unbalanced
summary(model) ###It seems the main effect of Animals is significant
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## Kids          2   1153     576   2.264    0.115    
## Animals       2  20276   10138  39.812 6.42e-11 ***
## FocusGroup    6   2689     448   1.760    0.128    
## Kids:Animals  4   1859     465   1.825    0.139    
## Residuals    48  12223     255                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Making a table of findings

library(xtable)
table <- xtable(model)
table
## % latex table generated in R 3.5.0 by xtable 1.8-2 package
## % Thu Jun 28 10:45:43 2018
## \begin{table}[ht]
## \centering
## \begin{tabular}{lrrrrr}
##   \hline
##  & Df & Sum Sq & Mean Sq & F value & Pr($>$F) \\ 
##   \hline
## Kids & 2 & 1152.89 & 576.44 & 2.26 & 0.1150 \\ 
##   Animals & 2 & 20275.94 & 10137.97 & 39.81 & 0.0000 \\ 
##   FocusGroup & 6 & 2688.83 & 448.14 & 1.76 & 0.1276 \\ 
##   Kids:Animals & 4 & 1859.40 & 464.85 & 1.83 & 0.1393 \\ 
##   Residuals & 48 & 12222.89 & 254.64 &  &  \\ 
##    \hline
## \end{tabular}
## \end{table}

Cheking normality of residuals

qqnorm(model$residuals)

shapiro.test(model$residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  model$residuals
## W = 0.98113, p-value = 0.4444

It looks everything is good so move on ==>interpreting results==>Since only the effect of Animals is significant then we need to know which groups differ.

tapply(Lab1Part3$Perception,Lab1Part3$Animals, mean) ###alot is larger,that means has more effect.
##     alot     none     some 
## 84.80952 41.38095 68.90476
tapply(Lab1Part3$Perception,Lab1Part3$Animals, sd)
##     alot     none     some 
## 14.28852 21.76804 14.77127
TukeyHSD(model, "Animals")
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Perception ~ Kids * Animals + FocusGroup, data = Lab1Part3)
## 
## $Animals
##                diff       lwr        upr     p adj
## none-alot -43.42857 -55.33867 -31.518468 0.0000000
## some-alot -15.90476 -27.81487  -3.994659 0.0062266
## some-none  27.52381  15.61371  39.433913 0.0000031

From means it seems alot has more effect and is more significant than some and none. Some also has more effect rather than none.