Computing Quartiles of a sample in R
rr <- read.csv("C://Users//MAHE//Desktop//Quartile.csv",header=TRUE)
quantile(rr$Final.Grade)
## 0% 25% 50% 75% 100%
## 13 72 88 92 100
To know which quartile each point belongs to
q <- quantile(rr$Final.Grade)
rr$q <- cut(rr$Final.Grade, q)
levels(rr$q) <- c("q1","q2","q3","q4")
rr
## Final.Grade q
## 1 91 q3
## 2 89 q3
## 3 67 q1
## 4 73 q2
## 5 92 q3
## 6 84 q2
## 7 94 q4
## 8 100 q4
## 9 74 q2
## 10 52 q1
## 11 59 q1
## 12 40 q1
## 13 91 q3
## 14 13 <NA>
## 15 64 q1
## 16 85 q2
## 17 74 q2
## 18 39 q1
## 19 70 q1
## 20 70 q1
## 21 72 q1
## 22 71 q1
## 23 88 q2
## 24 95 q4
## 25 84 q2
## 26 97 q4
## 27 94 q4
## 28 93 q4
## 29 47 q1
## 30 88 q2
## 31 93 q4
## 32 89 q3
## 33 98 q4
## 34 82 q2
## 35 84 q2
## 36 88 q2
## 37 94 q4
## 38 70 q1
## 39 82 q2
## 40 98 q4
## 41 86 q2
## 42 93 q4
## 43 82 q2
## 44 72 q1
## 45 88 q2
## 46 88 q2
## 47 77 q2
## 48 88 q2
## 49 92 q3
## 50 95 q4
## 51 91 q3
## 52 96 q4
## 53 88 q2
## 54 72 q1
## 55 90 q3
## 56 88 q2
## 57 88 q2
Plotting PDF of a sample
library(ggplot2)
ggplot(rr,
aes(x=rr$Final.Grade, fill = "green")) +
geom_density(alpha=.3)

x <- rr$Final.Grade
h<-hist(rr$Final.Grade, breaks=10, col="red", xlab="Miles Per Gallon",
main="Histogram for marks")
xfit<-seq(min(x),max(x),length=40)
yfit<-dnorm(xfit,mean=mean(x),sd=sd(x))
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit, yfit, col="blue", lwd=2)

d <- density(rr$Final.Grade)
plot(d, main="Density of marks")
polygon(d, col="red", border="blue")
