Cargo los Paquetes
library("tidyverse")
library("forcats")
library("ggthemes")
Renombro la variable ano como edad
df <- df %>%
rename(edad = ano) %>%
gather(key = "anno", value = "valor", X2017:X2018)
Saco la X de los años
df$anno <- df$anno %>%
forcats::fct_recode(., "2017" = "X2017", "2018" = "X2018")
Grafico en linea (solo comparo 1 valor de diferentes años por eso grafico lineal) para cada uno de los topicos

En caso de graficar una variable puedo filtrar por topico, como por ej por fluor
View(df)
df %>%
filter(Topico == "fluor") %>%
ggplot(aes(x = anno, y = valor, color = Topico, group = Topico)) +
geom_line() +
Error: Incomplete expression: filter(Topico == "fluor") >
ggplot(aes(x = anno, y = valor, color = Topico, group = Topico)) +
geom_line() +
facet_wrap(~edad)
Esto hace posible ver cada columna en un marco de datos.
glimpse(df)
Observations: 36
Variables: 4
$ edad <fctr> <1, <1, <1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, <1, <1, <1, 1, 1, 1, 2, ...
$ Topico <fctr> Dieta, Higiene, fluor, Dieta, Higiene, fluor, Dieta, Higiene, fluor, Dieta, Higie...
$ anno <fctr> 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 201...
$ valor <dbl> 85.7, 28.6, 28.6, 85.7, 28.6, 28.6, 38.9, 55.6, 55.6, 44.4, 66.7, 100.0, 35.0, 75....
Filtro por topico para “Dieta”
Filtro por topico para “Fluor”
Filtro por topico para “Higiene”
Comparo en boxplot años y filtro de edad

Los analisis de ANOVA
anova1 <- aov(valor~anno+edad, data = df)
summary(anova1)
Df Sum Sq Mean Sq F value Pr(>F)
anno 1 1982 1981.7 3.731 0.0632 .
edad 5 2257 451.5 0.850 0.5259
Residuals 29 15404 531.2
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(anova1)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = valor ~ anno + edad, data = df)
$anno
diff lwr upr p adj
2018-2017 14.83889 -0.8732959 30.55107 0.0632396
$edad
diff lwr upr p adj
2-1 0.400000 -40.16378 40.96378 1.0000000
3-1 12.216667 -28.34711 52.78044 0.9386410
4-1 8.250000 -32.31378 48.81378 0.9886308
5-1 10.700000 -29.86378 51.26378 0.9644577
<1-1 -10.783333 -51.34711 29.78044 0.9632760
3-2 11.816667 -28.74711 52.38044 0.9463590
4-2 7.850000 -32.71378 48.41378 0.9909293
5-2 10.300000 -30.26378 50.86378 0.9697693
<1-2 -11.183333 -51.74711 29.38044 0.9572315
4-3 -3.966667 -44.53044 36.59711 0.9996478
5-3 -1.516667 -42.08044 39.04711 0.9999970
<1-3 -23.000000 -63.56378 17.56378 0.5250260
5-4 2.450000 -38.11378 43.01378 0.9999672
<1-4 -19.033333 -59.59711 21.53044 0.7088426
<1-5 -21.483333 -62.04711 19.08044 0.5960020
El analisis de ANOVA2
anova2 <- aov(valor~edad+anno+edad:anno, data=df)
summary(anova2)
Df Sum Sq Mean Sq F value Pr(>F)
edad 5 2257 451.5 0.745 0.597
anno 1 1982 1981.7 3.272 0.083 .
edad:anno 5 867 173.4 0.286 0.916
Residuals 24 14537 605.7
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(anova2)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = valor ~ edad + anno + edad:anno, data = df)
$edad
diff lwr upr p adj
2-1 0.400000 -43.53412 44.33412 1.0000000
3-1 12.216667 -31.71745 56.15079 0.9524397
4-1 8.250000 -35.68412 52.18412 0.9914121
5-1 10.700000 -33.23412 54.63412 0.9727464
<1-1 -10.783333 -54.71745 33.15079 0.9718243
3-2 11.816667 -32.11745 55.75079 0.9585444
4-2 7.850000 -36.08412 51.78412 0.9931629
5-2 10.300000 -33.63412 54.23412 0.9768809
<1-2 -11.183333 -55.11745 32.75079 0.9670961
4-3 -3.966667 -47.90079 39.96745 0.9997386
5-3 -1.516667 -45.45079 42.41745 0.9999978
<1-3 -23.000000 -66.93412 20.93412 0.5948606
5-4 2.450000 -41.48412 46.38412 0.9999757
<1-4 -19.033333 -62.96745 24.90079 0.7607514
<1-5 -21.483333 -65.41745 22.45079 0.6602912
$anno
diff lwr upr p adj
2018-2017 14.83889 -2.092782 31.77056 0.0830285
$`edad:anno`
diff lwr upr p adj
2:2017-1:2017 2.400000e+00 -70.05497 74.85497 1.0000000
3:2017-1:2017 2.273333e+01 -49.72164 95.18831 0.9896866
4:2017-1:2017 1.736667e+01 -55.08831 89.82164 0.9989268
5:2017-1:2017 2.416667e+01 -48.28831 96.62164 0.9835705
<1:2017-1:2017 2.842171e-14 -72.45497 72.45497 1.0000000
1:2018-1:2017 3.013333e+01 -42.32164 102.58831 0.9266311
2:2018-1:2017 2.853333e+01 -43.92164 100.98831 0.9478344
3:2018-1:2017 3.183333e+01 -40.62164 104.28831 0.8987232
4:2018-1:2017 2.926667e+01 -43.18831 101.72164 0.9387132
5:2018-1:2017 2.736667e+01 -45.08831 99.82164 0.9603492
<1:2018-1:2017 8.566667e+00 -63.88831 81.02164 0.9999990
3:2017-2:2017 2.033333e+01 -52.12164 92.78831 0.9958016
4:2017-2:2017 1.496667e+01 -57.48831 87.42164 0.9997270
5:2017-2:2017 2.176667e+01 -50.68831 94.22164 0.9926798
<1:2017-2:2017 -2.400000e+00 -74.85497 70.05497 1.0000000
1:2018-2:2017 2.773333e+01 -44.72164 100.18831 0.9566725
2:2018-2:2017 2.613333e+01 -46.32164 98.58831 0.9710885
3:2018-2:2017 2.943333e+01 -43.02164 101.88831 0.9365005
4:2018-2:2017 2.686667e+01 -45.58831 99.32164 0.9649984
5:2018-2:2017 2.496667e+01 -47.48831 97.42164 0.9791227
<1:2018-2:2017 6.166667e+00 -66.28831 78.62164 1.0000000
4:2017-3:2017 -5.366667e+00 -77.82164 67.08831 1.0000000
5:2017-3:2017 1.433333e+00 -71.02164 73.88831 1.0000000
<1:2017-3:2017 -2.273333e+01 -95.18831 49.72164 0.9896866
1:2018-3:2017 7.400000e+00 -65.05497 79.85497 0.9999998
2:2018-3:2017 5.800000e+00 -66.65497 78.25497 1.0000000
3:2018-3:2017 9.100000e+00 -63.35497 81.55497 0.9999981
4:2018-3:2017 6.533333e+00 -65.92164 78.98831 0.9999999
5:2018-3:2017 4.633333e+00 -67.82164 77.08831 1.0000000
<1:2018-3:2017 -1.416667e+01 -86.62164 58.28831 0.9998381
5:2017-4:2017 6.800000e+00 -65.65497 79.25497 0.9999999
<1:2017-4:2017 -1.736667e+01 -89.82164 55.08831 0.9989268
1:2018-4:2017 1.276667e+01 -59.68831 85.22164 0.9999410
2:2018-4:2017 1.116667e+01 -61.28831 83.62164 0.9999845
3:2018-4:2017 1.446667e+01 -57.98831 86.92164 0.9998022
4:2018-4:2017 1.190000e+01 -60.55497 84.35497 0.9999706
5:2018-4:2017 1.000000e+01 -62.45497 82.45497 0.9999949
<1:2018-4:2017 -8.800000e+00 -81.25497 63.65497 0.9999987
<1:2017-5:2017 -2.416667e+01 -96.62164 48.28831 0.9835705
1:2018-5:2017 5.966667e+00 -66.48831 78.42164 1.0000000
2:2018-5:2017 4.366667e+00 -68.08831 76.82164 1.0000000
3:2018-5:2017 7.666667e+00 -64.78831 80.12164 0.9999997
4:2018-5:2017 5.100000e+00 -67.35497 77.55497 1.0000000
5:2018-5:2017 3.200000e+00 -69.25497 75.65497 1.0000000
<1:2018-5:2017 -1.560000e+01 -88.05497 56.85497 0.9995974
1:2018-<1:2017 3.013333e+01 -42.32164 102.58831 0.9266311
2:2018-<1:2017 2.853333e+01 -43.92164 100.98831 0.9478344
3:2018-<1:2017 3.183333e+01 -40.62164 104.28831 0.8987232
4:2018-<1:2017 2.926667e+01 -43.18831 101.72164 0.9387132
5:2018-<1:2017 2.736667e+01 -45.08831 99.82164 0.9603492
<1:2018-<1:2017 8.566667e+00 -63.88831 81.02164 0.9999990
2:2018-1:2018 -1.600000e+00 -74.05497 70.85497 1.0000000
3:2018-1:2018 1.700000e+00 -70.75497 74.15497 1.0000000
4:2018-1:2018 -8.666667e-01 -73.32164 71.58831 1.0000000
5:2018-1:2018 -2.766667e+00 -75.22164 69.68831 1.0000000
<1:2018-1:2018 -2.156667e+01 -94.02164 50.88831 0.9932022
3:2018-2:2018 3.300000e+00 -69.15497 75.75497 1.0000000
4:2018-2:2018 7.333333e-01 -71.72164 73.18831 1.0000000
5:2018-2:2018 -1.166667e+00 -73.62164 71.28831 1.0000000
<1:2018-2:2018 -1.996667e+01 -92.42164 52.48831 0.9963941
4:2018-3:2018 -2.566667e+00 -75.02164 69.88831 1.0000000
5:2018-3:2018 -4.466667e+00 -76.92164 67.98831 1.0000000
<1:2018-3:2018 -2.326667e+01 -95.72164 49.18831 0.9876653
5:2018-4:2018 -1.900000e+00 -74.35497 70.55497 1.0000000
<1:2018-4:2018 -2.070000e+01 -93.15497 51.75497 0.9951321
<1:2018-5:2018 -1.880000e+01 -91.25497 53.65497 0.9978422
LS0tCnRpdGxlOiAiSW52ZXN0aWdhY2nDs24gbG9jYWwgTWF1bGxpbiIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQojQ2FyZ28gbG9zIFBhcXVldGVzCmBgYHtyfQpsaWJyYXJ5KCJ0aWR5dmVyc2UiKQpsaWJyYXJ5KCJmb3JjYXRzIikKbGlicmFyeSgiZ2d0aGVtZXMiKQpgYGAKI1JlZm9ybWF0ZW8gZWwgZGF0YSBzZXQKYGBge3J9CmRmIDwtIHJlYWQuY3N2KCJsb2NhbF9tYXVsbGluLmNzdiIsIGhlYWRlciA9IFRSVUUsIHNlcD0iLCIpCmBgYAojUmVub21icm8gbGEgdmFyaWFibGUgYW5vIGNvbW8gZWRhZApgYGB7cn0KZGYgPC0gZGYgJT4lIAogIHJlbmFtZShlZGFkID0gYW5vKSAlPiUKICBnYXRoZXIoa2V5ID0gImFubm8iLCB2YWx1ZSA9ICJ2YWxvciIsIFgyMDE3OlgyMDE4KQpgYGAKI1NhY28gbGEgWCBkZSBsb3MgYcOxb3MgCmBgYHtyfQpkZiRhbm5vIDwtIGRmJGFubm8gJT4lIAogIGZvcmNhdHM6OmZjdF9yZWNvZGUoLiwgIjIwMTciID0gIlgyMDE3IiwgIjIwMTgiID0gIlgyMDE4IikKYGBgCgojR3JhZmljbyBlbiBsaW5lYSAoc29sbyBjb21wYXJvIDEgdmFsb3IgZGUgZGlmZXJlbnRlcyBhw7FvcyBwb3IgZXNvIGdyYWZpY28gbGluZWFsKSBwYXJhIGNhZGEgdW5vIGRlIGxvcyB0b3BpY29zIApgYGB7cn0KZGYgJT4lCiAgZ2dwbG90KGFlcyh4ID0gYW5ubywgeSA9IHZhbG9yLCBjb2xvciA9IFRvcGljbywgZ3JvdXAgPSBUb3BpY28pKSArCiAgZ2VvbV9saW5lKCkgKwogIGZhY2V0X3dyYXAofmVkYWQpICsKICB5bGFiKCJQb3JjZW50YWplIGRlIHJpZXNnbyIpICsKICB4bGFiKCJhbm8iKSArCiAgZ2d0aXRsZSgiUG9yY2VudGFqZSBkZSByaWVzZ28gcG9yIGFubyBzZWd1biB0b3BpY28iKQpgYGAKCiNFbiBjYXNvIGRlIGdyYWZpY2FyIHVuYSB2YXJpYWJsZSBwdWVkbyBmaWx0cmFyIHBvciB0b3BpY28sIGNvbW8gcG9yIGVqIHBvciBmbHVvcgpgYGB7cn0KZGYgJT4lCiAgZmlsdGVyKFRvcGljbyA9PSAiZmx1b3IiKSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gYW5ubywgeSA9IHZhbG9yLCBjb2xvciA9IFRvcGljbywgZ3JvdXAgPSBUb3BpY28pKSArCiAgZ2VvbV9saW5lKCkgKwogIGZhY2V0X3dyYXAofmVkYWQpCmBgYAoKI0VzdG8gaGFjZSBwb3NpYmxlIHZlciBjYWRhIGNvbHVtbmEgZW4gdW4gbWFyY28gZGUgZGF0b3MuIApgYGB7cn0KZ2xpbXBzZShkZikKYGBgCiNGaWx0cm8gcG9yIHRvcGljbyBwYXJhICJEaWV0YSIKYGBge3J9CiBkZiAlPiUgCiAgZmlsdGVyKFRvcGljbyA9PSAiRGlldGEiKSAlPiUgCiAgZ3JvdXBfYnkoZWRhZCwgYW5ubykgJT4lIAogIHNwcmVhZChhbm5vLCB2YWxvcikgCmBgYAojRmlsdHJvIHBvciB0b3BpY28gcGFyYSAiRmx1b3IiCmBgYHtyfQogZGYgJT4lIAogIGZpbHRlcihUb3BpY28gPT0gImZsdW9yIikgJT4lIAogIGdyb3VwX2J5KGVkYWQsIGFubm8pICU+JSAKICBzcHJlYWQoYW5ubywgdmFsb3IpIApgYGAKI0ZpbHRybyBwb3IgdG9waWNvIHBhcmEgIkhpZ2llbmUiCmBgYHtyfQogZGYgJT4lIAogIGZpbHRlcihUb3BpY28gPT0gIkhpZ2llbmUiKSAlPiUgCiAgZ3JvdXBfYnkoZWRhZCwgYW5ubykgJT4lIAogIHNwcmVhZChhbm5vLCB2YWxvcikgCmBgYAojQ29tcGFybyBlbiBib3hwbG90IGHDsW9zIHkgZmlsdHJvIGRlIGVkYWQKYGBge3J9CmRmICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBhbm5vLCB5ID0gdmFsb3IsIGZpbGw9ZWRhZCkpICsKICBnZW9tX2JveHBsb3QoKSArCiAgZ2VvbV9qaXR0ZXIoKSArCiAgZ2d0aXRsZSgiUG9yY2VudGFqZSBkZSByaWVzZ28gcG9yIGFubyBzZWd1biBlZGFkIikgKwogIHlsYWIoIlBvcmNlbnRhamUgZGUgcmllc2dvIikrCiAgeGxhYigiYcOxbyIpICsKICBzY2FsZV95X2NvbnRpbnVvdXMobGltaXQgPSBjKDIwLDEwMCkpCmBgYAojTG9zIGFuYWxpc2lzIGRlIEFOT1ZBCmBgYHtyfQphbm92YTEgPC0gYW92KHZhbG9yfmFubm8rZWRhZCwgZGF0YSA9IGRmKQpzdW1tYXJ5KGFub3ZhMSkKYGBgCmBgYHtyfQpUdWtleUhTRChhbm92YTEpCmBgYAojRWwgYW5hbGlzaXMgZGUgQU5PVkEyCmBgYHtyfQphbm92YTIgPC0gYW92KHZhbG9yfmVkYWQrYW5ubytlZGFkOmFubm8sIGRhdGE9ZGYpCnN1bW1hcnkoYW5vdmEyKQpgYGAKCmBgYHtyfQpUdWtleUhTRChhbm92YTIpCmBgYAoK