setwd(“C:/Users/ENE/Documents/ejerciciosR”) getwd()
library(readr)
misdatos <- read_csv("C:/Users/ENE/Documents/ejerciciosR/resultados_ageb_urbana_10_cpv2010.csv")
## Parsed with column specification:
## cols(
## .default = col_character(),
## entidad = col_integer(),
## pobtot = col_integer(),
## vivtot = col_integer()
## )
## See spec(...) for full column specifications.
misdatos
## # A tibble: 30,876 x 198
## entidad nom_ent mun nom_mun loc nom_loc ageb mza pobtot pobmas
## <int> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <int> <chr>
## 1 10 Durango 000 Total d~ 0000 Total d~ 0000 000 1.63e6 803890
## 2 10 Durango 001 CanatlC!n 0000 Total d~ 0000 000 3.14e4 15633
## 3 10 Durango 001 CanatlC!n 0001 Total d~ 0000 000 1.15e4 5482
## 4 10 Durango 001 CanatlC!n 0001 Total A~ 0054 000 6.58e2 308
## 5 10 Durango 001 CanatlC!n 0001 CanatlC!n 0054 001 3.70e1 17
## 6 10 Durango 001 CanatlC!n 0001 CanatlC!n 0054 002 1.60e1 6
## 7 10 Durango 001 CanatlC!n 0001 CanatlC!n 0054 003 2.70e1 12
## 8 10 Durango 001 CanatlC!n 0001 CanatlC!n 0054 004 3.80e1 20
## 9 10 Durango 001 CanatlC!n 0001 CanatlC!n 0054 005 3.20e1 16
## 10 10 Durango 001 CanatlC!n 0001 CanatlC!n 0054 006 1.90e1 6
## # ... with 30,866 more rows, and 188 more variables: pobfem <chr>,
## # p_0a2 <chr>, p_0a2_m <chr>, p_0a2_f <chr>, p_3ymas <chr>,
## # p_3ymas_m <chr>, p_3ymas_f <chr>, p_5ymas <chr>, p_5ymas_m <chr>,
## # p_5ymas_f <chr>, p_12ymas <chr>, p_12ymas_m <chr>, p_12ymas_f <chr>,
## # p_15ymas <chr>, p_15ymas_m <chr>, p_15ymas_f <chr>, p_18ymas <chr>,
## # p_18ymas_m <chr>, p_18ymas_f <chr>, p_3a5 <chr>, p_3a5_m <chr>,
## # p_3a5_f <chr>, p_6a11 <chr>, p_6a11_m <chr>, p_6a11_f <chr>,
## # p_8a14 <chr>, p_8a14_m <chr>, p_8a14_f <chr>, p_12a14 <chr>,
## # p_12a14_m <chr>, p_12a14_f <chr>, p_15a17 <chr>, p_15a17_m <chr>,
## # p_15a17_f <chr>, p_18a24 <chr>, p_18a24_m <chr>, p_18a24_f <chr>,
## # p_15a49_f <chr>, p_60ymas <chr>, p_60ymas_m <chr>, p_60ymas_f <chr>,
## # rel_h_m <chr>, pob0_14 <chr>, pob15_64 <chr>, pob65_mas <chr>,
## # prom_hnv <chr>, pnacent <chr>, pnacent_m <chr>, pnacent_f <chr>,
## # pnacoe <chr>, pnacoe_m <chr>, pnacoe_f <chr>, pres2005 <chr>,
## # pres2005_m <chr>, pres2005_f <chr>, presoe05 <chr>, presoe05_m <chr>,
## # presoe05_f <chr>, p3ym_hli <chr>, p3ym_hli_m <chr>, p3ym_hli_f <chr>,
## # p3hlinhe <chr>, p3hlinhe_m <chr>, p3hlinhe_f <chr>, p3hli_he <chr>,
## # p3hli_he_m <chr>, p3hli_he_f <chr>, p5_hli <chr>, p5_hli_nhe <chr>,
## # p5_hli_he <chr>, phog_ind <chr>, pcon_lim <chr>, pclim_mot <chr>,
## # pclim_vis <chr>, pclim_leng <chr>, pclim_aud <chr>, pclim_mot2 <chr>,
## # pclim_men <chr>, pclim_men2 <chr>, psin_lim <chr>, p3a5_noa <chr>,
## # p3a5_noa_m <chr>, p3a5_noa_f <chr>, p6a11_noa <chr>, p6a11_noam <chr>,
## # p6a11_noaf <chr>, p12a14noa <chr>, p12a14noam <chr>, p12a14noaf <chr>,
## # p15a17a <chr>, p15a17a_m <chr>, p15a17a_f <chr>, p18a24a <chr>,
## # p18a24a_m <chr>, p18a24a_f <chr>, p8a14an <chr>, p8a14an_m <chr>,
## # p8a14an_f <chr>, p15ym_an <chr>, p15ym_an_m <chr>, ...
misdatos$nom_mun[which.min(misdatos$pobtot)]
## [1] "CanatlC!n"
todos.los.municipios <- misdatos[which(misdatos$nom_loc == "Total del municipio"),]
tlm <- todos.los.municipios
View(tlm)
summary(tlm$pobtot)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1709 6882 11927 41870 26230 582267
library(ggplot2)
mi.grafica <- ggplot(data = misdatos, aes(nom_mun))
mi.grafica <- mi.grafica + geom_bar (aes(fill = pobtot),col="red")
mi.grafica