Impact of Natural Disaster on Public Health and Economy

Synopsis

This data analysis aims to address the following questions:

1.Across the United States, which types of events are most harmful with respect to
population health?

2.Across the United States, which types of events have the greatest economic consequences?

Using the database from the U.S. National Oceanic and Atmospheric Administration’s (NOAA), the findings of this analysis is as follows:

  1. Tornado causes the most death and injuries among the recorded natural events, at 5600 deaths and 91400 injuries respectively.

  2. Floods cause the most economic damage, with total property and crop damage at 15.78 billion USD.

1.Across the United States, which types of events are most harmful with respect to population health?

The criteria of measurement for the extent of the harm is the number of deaths and injuries caused by the natural disasters.

Data Processing

#download the file from source
download.file("https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2",destfile = "stormData.csv")
#unzip and read the file for use
data<- read.csv("./stormData.csv")
#read in dplyr package
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

We first examine the data

head(data)
##   STATE__           BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE
## 1       1  4/18/1950 0:00:00     0130       CST     97     MOBILE    AL
## 2       1  4/18/1950 0:00:00     0145       CST      3    BALDWIN    AL
## 3       1  2/20/1951 0:00:00     1600       CST     57    FAYETTE    AL
## 4       1   6/8/1951 0:00:00     0900       CST     89    MADISON    AL
## 5       1 11/15/1951 0:00:00     1500       CST     43    CULLMAN    AL
## 6       1 11/15/1951 0:00:00     2000       CST     77 LAUDERDALE    AL
##    EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END
## 1 TORNADO         0                                               0
## 2 TORNADO         0                                               0
## 3 TORNADO         0                                               0
## 4 TORNADO         0                                               0
## 5 TORNADO         0                                               0
## 6 TORNADO         0                                               0
##   COUNTYENDN END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES
## 1         NA         0                      14.0   100 3   0          0
## 2         NA         0                       2.0   150 2   0          0
## 3         NA         0                       0.1   123 2   0          0
## 4         NA         0                       0.0   100 2   0          0
## 5         NA         0                       0.0   150 2   0          0
## 6         NA         0                       1.5   177 2   0          0
##   INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES
## 1       15    25.0          K       0                                    
## 2        0     2.5          K       0                                    
## 3        2    25.0          K       0                                    
## 4        2     2.5          K       0                                    
## 5        2     2.5          K       0                                    
## 6        6     2.5          K       0                                    
##   LATITUDE LONGITUDE LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1     3040      8812       3051       8806              1
## 2     3042      8755          0          0              2
## 3     3340      8742          0          0              3
## 4     3458      8626          0          0              4
## 5     3412      8642          0          0              5
## 6     3450      8748          0          0              6

We are interested in only a few of these columns that would be useful for the analysis. “EVTYPE”-type of natural disaster “FATALITIES”-no. of deaths “INJURIES”- no. of injuries “PROPDMG”-incurred property damage “PROPDMGEXP”-order of magnitude for property damage “CROPDMG”-incurred crop damage “CROPDMGEXP”-order of magnitude for crop damage

The sum of fatalities and injuries is grouped by their respective natural causes and in descending order to observe the most damaging natural diasters.

injuries<- aggregate(INJURIES~EVTYPE,data,sum)
injuries<- arrange(injuries,desc(INJURIES))
fatalities<-aggregate(FATALITIES~EVTYPE,data,sum)
fatalities<-arrange(fatalities,desc(FATALITIES))

The number of natural disasters is limited to the top 10 so that the results will not oversaturate the barplots.

injuries<-injuries[1:10,]
fatalities<-fatalities[1:10,]

Results

par(mfrow=c(1,2),mar = c(11, 2, 2, 1), mgp = c(5, 0.5, 0))
barplot(fatalities$FATALITIES,names.arg=fatalities$EVTYPE,las=3,main="Fatalities from Natural Disasters",ylab="No. of Fatalities", col="black")
barplot(injuries$INJURIES,names.arg=injuries$EVTYPE,las=3,main="Injuries from Natural Disasters",ylab="Number of Fatalities",col="red")

2.Across the United States, which types of events have the greatest economic consequences?

Data Processing

In order to calculate the total economic damage, we need to multiply the column values of property and crop damage by their order of magnitude as given by the “PROPDMGEXP” and “CROPDMGEXP” column, with H=10^2, K=10^3, M=10^6 and B=10^9. This gives the actual values of the damage which is stored as new variables: ‘actualprop’ and ‘actualcrop’. An additional column ‘totaldamage’ is created as the sum of both damages.

data$actualprop=0
data[data$PROPDMGEXP=="H",]$actualprop<-data[data$PROPDMGEXP=="H",]$PROPDMG*10^2
data[data$PROPDMGEXP=="K",]$actualprop<-data[data$PROPDMGEXP=="K",]$PROPDMG*10^3
data[data$PROPDMGEXP=="M",]$actualprop<-data[data$PROPDMGEXP=="M",]$PROPDMG*10^6
data[data$PROPDMGEXP=="B",]$actualprop<-data[data$PROPDMGEXP=="B",]$PROPDMG*10^9

data$actualcrop=0
data[data$CROPDMGEXP=="H",]$actualcrop<-data[data$CROPDMGEXP=="H",]$CROPDMG*10^2
data[data$CROPDMGEXP=="K",]$actualcrop<-data[data$CROPDMGEXP=="K",]$CROPDMG*10^3
data[data$CROPDMGEXP=="M",]$actualcrop<-data[data$CROPDMGEXP=="M",]$CROPDMG*10^6
data[data$CROPDMGEXP=="B",]$actualcrop<-data[data$CROPDMGEXP=="B",]$CROPDMG*10^9

data$totaldamage<-data$actualcrop+data$actualprop

The type of damages are aggregated based on the natural disasters.

cropdamage<- aggregate(actualcrop~EVTYPE,data,sum)
cropdamage<- arrange(cropdamage,desc(actualcrop))
propdamage<-aggregate(actualprop~EVTYPE,data,sum)
propdamage<-arrange(propdamage,desc(actualprop))
alldamage<-aggregate(totaldamage~EVTYPE,data,sum)
alldamage<-arrange(alldamage,desc(totaldamage))

The number of natural disasters is limited to the top 10 so that the results will not oversaturate the barplots.

cropdamage<-cropdamage[1:10,]
propdamage<-propdamage[1:10,]
alldamage<-alldamage[1:10,]

Results

par(mfrow=c(1,3),mar = c(15, 4, 3, 2), mgp = c(3, 1, 0))
barplot(cropdamage$actualcrop,names.arg = cropdamage$EVTYPE,las=3, main="Damage to Crops",col="green")
barplot(propdamage$actualprop,names.arg=propdamage$EVTYPE,las=3, main="Damage to Property",col="blue")
barplot(alldamage$totaldamage, names.arg = alldamage$EVTYPE,las=3, main="Total Damage",col="grey")

Conclusion

From the results, we observe that torando inflicts the greatest damage on public health while flood inflicts the biggest economic damage.