Question 1
The American Community Survey distributes downloadable data about United States communities. Download the 2006 microdata survey about housing for the state of Idaho using download.file() from here:
https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06hid.csv
fileUrl1 <- "https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06hid.csv"
download.file(fileUrl1, destfile = "./Dataset/Quiz1-01.csv", method = "curl")
and load the data into R. The code book, describing the variable names is here: https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2FPUMSDataDict06.pdf
quiz1Data <- read.csv("./Dataset/Quiz1-01.csv")
head(quiz1Data)
How many properties are worth $1,000,000 or more?
Answer
sum(quiz1Data$VAL == 24, na.rm = TRUE)
[1] 53
Question 2
Use the data you loaded from Question 1. Consider the variable FES in the code book. Which of the “tidy data” principles does this variable violate?
Answer
Tidy data has one variable per column.
Question 3
Download the Excel spreadsheet on Natural Gas Aquisition Program here:
https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2FDATA.gov_NGAP.xlsx (original data source: http://catalog.data.gov/dataset/natural-gas-acquisition-program)
fileUrl1 <- "https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2FDATA.gov_NGAP.xlsx"
download.file(fileUrl1, destfile = "./Dataset/Quiz1-03.xlsx", method = "curl")
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
0 0 0 0 0 0 0 0 --:--:-- 0:00:01 --:--:-- 0
0 0 0 0 0 0 0 0 --:--:-- 0:00:02 --:--:-- 0
100 16197 100 16197 0 0 5436 0 0:00:02 0:00:02 --:--:-- 5435
dateDownloaded <- date()
dateDownloaded
[1] "Wed Jun 20 21:33:55 2018"
Read rows 18-23 and columns 7-15 into R and assign the result to a variable called: dat
library(xlsx)
col <- 7:15
row <- 18:23
dat <- read.xlsx("./Dataset/Quiz1-03.xlsx", sheetIndex=1, colIndex = col, rowIndex = row)
dat
What is the value of:
Answer
sum(dat$Zip*dat$Ext, na.rm=T)
[1] 36534720
Question 4
Read the XML data on Baltimore restaurants from here:
https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Frestaurants.xml
library(XML)
fileUrl3 <- "https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Frestaurants.xml"
BalResto <- xmlTreeParse(sub("s", "", fileUrl3), useInternal=TRUE)
rootNode <- xmlRoot(BalResto)
How many restaurants have zipcode 21231?
Answer
zip <- xpathSApply(rootNode, "//zipcode", xmlValue)
sum(zip == 21231)
[1] 127
Question 5
The American Community Survey distributes downloadable data about United States communities. Download the 2006 microdata survey about housing for the state of Idaho using download.file() from here:
https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06pid.csv
fileUrl4 <- "https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06pid.csv"
download.file(fileUrl4, destfile = "./Dataset/Quiz1-05.csv", method = "curl")
using the fread() command load the data into an R object: DT
library(data.table)
DT <- fread("./Dataset/Quiz1-05.csv")
DT
The following are ways to calculate the average value of the variable: pwgtp15
broken down by sex. Using the data.table package, which will deliver the fastest user time?
Answer
- option a: rowMeans(DT[DT$SEX==1]); rowMeans(DT[DT$SEX==2])
system.time(rowMeans(DT[DT$SEX==1]), rowMeans(DT[DT$SEX==2]))
Error in rowMeans(DT[DT$SEX == 2]) : 'x' must be numeric
- option b: DT[DT$SEX==1,]\(pwgtp15), mean(DT[DT\)SEX==2,]$pwgtp15))
system.time(mean(DT[DT$SEX==1,]$pwgtp15), mean(DT[DT$SEX==2,]$pwgtp15))
user system elapsed
0.052 0.000 0.050
- option c: DT[,mean(pwgtp15),by=SEX])
system.time(DT[,mean(pwgtp15),by=SEX])
user system elapsed
0.004 0.000 0.003
- option d: sapply(split(DT\(pwgtp15,DT\)SEX),mean))
system.time(sapply(split(DT$pwgtp15,DT$SEX),mean))
user system elapsed
0.000 0.000 0.002
- option e: tapply(DT\(pwgtp15,DT\)SEX,mean))
system.time(tapply(DT$pwgtp15,DT$SEX,mean))
user system elapsed
0.000 0.000 0.002
- option f: mean(DT\(pwgtp15,by=DT\)SEX))
system.time(mean(DT$pwgtp15,by=DT$SEX))
user system elapsed
0.000 0.000 0.001
END
LS0tCnRpdGxlOiAiR2V0dGluZyBhbmQgQ2xlYW5pbmcgRGF0YTogV2VlayAxIFF1aXoiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCjxiciAvPgo8YnIgLz4KCi0tLS0tLS0tLQojIyBRdWVzdGlvbiAxCgpUaGUgQW1lcmljYW4gQ29tbXVuaXR5IFN1cnZleSBkaXN0cmlidXRlcyBkb3dubG9hZGFibGUgZGF0YSBhYm91dCBVbml0ZWQgU3RhdGVzIGNvbW11bml0aWVzLiBEb3dubG9hZCB0aGUgMjAwNiBtaWNyb2RhdGEgc3VydmV5IGFib3V0IGhvdXNpbmcgZm9yIHRoZSBzdGF0ZSBvZiBJZGFobyB1c2luZyBkb3dubG9hZC5maWxlKCkgZnJvbSBoZXJlOgoKaHR0cHM6Ly9kMzk2cXVzemE0MG9yYy5jbG91ZGZyb250Lm5ldC9nZXRkYXRhJTJGZGF0YSUyRnNzMDZoaWQuY3N2CgpgYGB7cn0KZmlsZVVybDEgPC0gImh0dHBzOi8vZDM5NnF1c3phNDBvcmMuY2xvdWRmcm9udC5uZXQvZ2V0ZGF0YSUyRmRhdGElMkZzczA2aGlkLmNzdiIKZG93bmxvYWQuZmlsZShmaWxlVXJsMSwgZGVzdGZpbGUgPSAiLi9EYXRhc2V0L1F1aXoxLTAxLmNzdiIsIG1ldGhvZCA9ICJjdXJsIikKYGBgCjxiciAvPgphbmQgbG9hZCB0aGUgZGF0YSBpbnRvIFIuIFRoZSBjb2RlIGJvb2ssIGRlc2NyaWJpbmcgdGhlIHZhcmlhYmxlIG5hbWVzIGlzIGhlcmU6Cmh0dHBzOi8vZDM5NnF1c3phNDBvcmMuY2xvdWRmcm9udC5uZXQvZ2V0ZGF0YSUyRmRhdGElMkZQVU1TRGF0YURpY3QwNi5wZGYKCmBgYHtyfQpxdWl6MURhdGEgPC0gcmVhZC5jc3YoIi4vRGF0YXNldC9RdWl6MS0wMS5jc3YiKQpoZWFkKHF1aXoxRGF0YSkKYGBgCgoKSG93IG1hbnkgcHJvcGVydGllcyBhcmUgd29ydGggJDEsMDAwLDAwMCBvciBtb3JlPwoKPGJyIC8+CgojIyMgQW5zd2VyCgpgYGB7cn0Kc3VtKHF1aXoxRGF0YSRWQUwgPT0gMjQsIG5hLnJtID0gVFJVRSkKCmBgYAoKLS0tCgo8YnIgLz4KCiMjIFF1ZXN0aW9uIDIKClVzZSB0aGUgZGF0YSB5b3UgbG9hZGVkIGZyb20gUXVlc3Rpb24gMS4gQ29uc2lkZXIgdGhlIHZhcmlhYmxlIEZFUyBpbiB0aGUgY29kZSBib29rLiBXaGljaCBvZiB0aGUgInRpZHkgZGF0YSIgcHJpbmNpcGxlcyBkb2VzIHRoaXMgdmFyaWFibGUgdmlvbGF0ZT8KCiMjIyBBbnN3ZXIKCipUaWR5IGRhdGEgaGFzIG9uZSB2YXJpYWJsZSBwZXIgY29sdW1uLioKCgotLS0KCjxiciAvPgoKIyMgUXVlc3Rpb24gMwoKRG93bmxvYWQgdGhlIEV4Y2VsIHNwcmVhZHNoZWV0IG9uIE5hdHVyYWwgR2FzIEFxdWlzaXRpb24gUHJvZ3JhbSBoZXJlOgoKaHR0cHM6Ly9kMzk2cXVzemE0MG9yYy5jbG91ZGZyb250Lm5ldC9nZXRkYXRhJTJGZGF0YSUyRkRBVEEuZ292X05HQVAueGxzeAoob3JpZ2luYWwgZGF0YSBzb3VyY2U6IGh0dHA6Ly9jYXRhbG9nLmRhdGEuZ292L2RhdGFzZXQvbmF0dXJhbC1nYXMtYWNxdWlzaXRpb24tcHJvZ3JhbSkKCmBgYHtyfQpmaWxlVXJsMiA8LSAiaHR0cHM6Ly9kMzk2cXVzemE0MG9yYy5jbG91ZGZyb250Lm5ldC9nZXRkYXRhJTJGZGF0YSUyRkRBVEEuZ292X05HQVAueGxzeCIKZG93bmxvYWQuZmlsZShmaWxlVXJsMiwgZGVzdGZpbGUgPSAiLi9EYXRhc2V0L1F1aXoxLTAzLnhsc3giLCBtZXRob2QgPSAiY3VybCIpCgpkYXRlRG93bmxvYWRlZCA8LSBkYXRlKCkKZGF0ZURvd25sb2FkZWQKYGBgCgo8YnIgLz4KUmVhZCByb3dzIDE4LTIzIGFuZCBjb2x1bW5zIDctMTUgaW50byBSIGFuZCBhc3NpZ24gdGhlIHJlc3VsdCB0byBhIHZhcmlhYmxlIGNhbGxlZDogZGF0CgpgYGB7cn0KbGlicmFyeSh4bHN4KQoKY29sIDwtIDc6MTUKcm93IDwtIDE4OjIzCmRhdCA8LSByZWFkLnhsc3goIi4vRGF0YXNldC9RdWl6MS0wMy54bHN4Iiwgc2hlZXRJbmRleD0xLCBjb2xJbmRleCA9IGNvbCwgcm93SW5kZXggPSByb3cpCmRhdApgYGAKCjxiciAvPgpXaGF0IGlzIHRoZSB2YWx1ZSBvZjoKCiMjIyBBbnN3ZXIKCmBgYHtyfQpzdW0oZGF0JFppcCpkYXQkRXh0LCBuYS5ybT1UKQpgYGAKCi0tLQoKPGJyIC8+CgojIyBRdWVzdGlvbiA0CgpSZWFkIHRoZSBYTUwgZGF0YSBvbiBCYWx0aW1vcmUgcmVzdGF1cmFudHMgZnJvbSBoZXJlOgoKaHR0cHM6Ly9kMzk2cXVzemE0MG9yYy5jbG91ZGZyb250Lm5ldC9nZXRkYXRhJTJGZGF0YSUyRnJlc3RhdXJhbnRzLnhtbAoKYGBge3J9CmxpYnJhcnkoWE1MKQpmaWxlVXJsMyA8LSAiaHR0cHM6Ly9kMzk2cXVzemE0MG9yYy5jbG91ZGZyb250Lm5ldC9nZXRkYXRhJTJGZGF0YSUyRnJlc3RhdXJhbnRzLnhtbCIKQmFsUmVzdG8gPC0geG1sVHJlZVBhcnNlKHN1YigicyIsICIiLCBmaWxlVXJsMyksIHVzZUludGVybmFsPVRSVUUpCnJvb3ROb2RlIDwtIHhtbFJvb3QoQmFsUmVzdG8pCmBgYAoKCjxiciAvPgpIb3cgbWFueSByZXN0YXVyYW50cyBoYXZlIHppcGNvZGUgMjEyMzE/IAoKIyMjIEFuc3dlcgoKYGBge3J9CnppcCA8LSB4cGF0aFNBcHBseShyb290Tm9kZSwgIi8vemlwY29kZSIsIHhtbFZhbHVlKQpzdW0oemlwID09IDIxMjMxKQpgYGAKCi0tLQoKPGJyIC8+CgojIyBRdWVzdGlvbiA1CgpUaGUgQW1lcmljYW4gQ29tbXVuaXR5IFN1cnZleSBkaXN0cmlidXRlcyBkb3dubG9hZGFibGUgZGF0YSBhYm91dCBVbml0ZWQgU3RhdGVzIGNvbW11bml0aWVzLiBEb3dubG9hZCB0aGUgMjAwNiBtaWNyb2RhdGEgc3VydmV5IGFib3V0IGhvdXNpbmcgZm9yIHRoZSBzdGF0ZSBvZiBJZGFobyB1c2luZyBkb3dubG9hZC5maWxlKCkgZnJvbSBoZXJlOgoKaHR0cHM6Ly9kMzk2cXVzemE0MG9yYy5jbG91ZGZyb250Lm5ldC9nZXRkYXRhJTJGZGF0YSUyRnNzMDZwaWQuY3N2CgpgYGB7cn0KZmlsZVVybDQgPC0gImh0dHBzOi8vZDM5NnF1c3phNDBvcmMuY2xvdWRmcm9udC5uZXQvZ2V0ZGF0YSUyRmRhdGElMkZzczA2cGlkLmNzdiIKZG93bmxvYWQuZmlsZShmaWxlVXJsNCwgZGVzdGZpbGUgPSAiLi9EYXRhc2V0L1F1aXoxLTA1LmNzdiIsIG1ldGhvZCA9ICJjdXJsIikKYGBgCgo8YnIgLz4KdXNpbmcgdGhlIGZyZWFkKCkgY29tbWFuZCBsb2FkIHRoZSBkYXRhIGludG8gYW4gUiBvYmplY3Q6IERUCgpgYGB7cn0KbGlicmFyeShkYXRhLnRhYmxlKQpEVCA8LSBmcmVhZCgiLi9EYXRhc2V0L1F1aXoxLTA1LmNzdiIpCkRUCmBgYAoKPGJyIC8+ClRoZSBmb2xsb3dpbmcgYXJlIHdheXMgdG8gY2FsY3VsYXRlIHRoZSBhdmVyYWdlIHZhbHVlIG9mIHRoZSB2YXJpYWJsZTogcHdndHAxNQoKYnJva2VuIGRvd24gYnkgc2V4LiBVc2luZyB0aGUgZGF0YS50YWJsZSBwYWNrYWdlLCB3aGljaCB3aWxsIGRlbGl2ZXIgdGhlIGZhc3Rlc3QgdXNlciB0aW1lPwo8YnIgLz4KCiMjIyBBbnN3ZXIKCjxiciAvPgoKKiBvcHRpb24gYTogcm93TWVhbnMoRFRbRFQkU0VYPT0xXSk7IHJvd01lYW5zKERUW0RUJFNFWD09Ml0pCmBgYHtyfQpzeXN0ZW0udGltZShyb3dNZWFucyhEVFtEVCRTRVg9PTFdKSwgcm93TWVhbnMoRFRbRFQkU0VYPT0yXSkpCiMgUHJvZHVjZSBlcnJvcgpgYGAKKiBvcHRpb24gYjogRFRbRFQkU0VYPT0xLF0kcHdndHAxNSksIG1lYW4oRFRbRFQkU0VYPT0yLF0kcHdndHAxNSkpCmBgYHtyfQpzeXN0ZW0udGltZShtZWFuKERUW0RUJFNFWD09MSxdJHB3Z3RwMTUpLCBtZWFuKERUW0RUJFNFWD09MixdJHB3Z3RwMTUpKQpgYGAKKiBvcHRpb24gYzogRFRbLG1lYW4ocHdndHAxNSksYnk9U0VYXSkKYGBge3J9CnN5c3RlbS50aW1lKERUWyxtZWFuKHB3Z3RwMTUpLGJ5PVNFWF0pCmBgYAoqIG9wdGlvbiBkOiBzYXBwbHkoc3BsaXQoRFQkcHdndHAxNSxEVCRTRVgpLG1lYW4pKQpgYGB7cn0Kc3lzdGVtLnRpbWUoc2FwcGx5KHNwbGl0KERUJHB3Z3RwMTUsRFQkU0VYKSxtZWFuKSkKYGBgCiogb3B0aW9uIGU6IHRhcHBseShEVCRwd2d0cDE1LERUJFNFWCxtZWFuKSkKYGBge3J9CnN5c3RlbS50aW1lKHRhcHBseShEVCRwd2d0cDE1LERUJFNFWCxtZWFuKSkKYGBgCiogb3B0aW9uIGY6IG1lYW4oRFQkcHdndHAxNSxieT1EVCRTRVgpKQpgYGB7cn0Kc3lzdGVtLnRpbWUobWVhbihEVCRwd2d0cDE1LGJ5PURUJFNFWCkpCmBgYAo8YnIgLz4KCi0tLS0tLS0tLQo8Y2VudGVyPioqRU5EKio8L2NlbnRlcj4KKioqKioqKioq