sessionInfo()
## R version 3.1.2 (2014-10-31)
## Platform: i386-w64-mingw32/i386 (32-bit)
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## loaded via a namespace (and not attached):
## [1] digest_0.6.9 evaluate_0.9 htmltools_0.3.5 knitr_1.12.3
## [5] magrittr_1.5 Rcpp_0.12.4 rmarkdown_0.9.6 stringi_1.0-1
## [9] stringr_1.0.0 tools_3.1.2 yaml_2.1.13
Set working Direktori pada komputer
setwd("D:/workshopban")
Tipe variabel dalam R terdiri atas numerik, Karakter dan Logika
A1=5
A2="I Love You Full"
A3= LETTERS[1:5]
A4= (1+2==4)
str(A1)
## num 5
A1
## [1] 5
A2
## [1] "I Love You Full"
A3
## [1] "A" "B" "C" "D" "E"
A4
## [1] FALSE
=’ sebagai operator penugasan dalam R
x=c(1,2,2,2,2,2,2)
x1=seq(10)
x2=seq(0,1,by=0.1)
x3=rep(1,3)
x4=c(rep(1,3),rep(2,2),rep(-1,4))
x5=rep("Small",3)
Array numerik yang terdiri atas baris dan kolom Cara termudah membangun sebuah matrix adalah dengan fungsi cbind()(column bind)
x=c(2,4)
y=c(6,8)
m1=cbind(x,y)
m1
## x y
## [1,] 2 6
## [2,] 4 8
m2=matrix(c(10,20,30,40),ncol=2)
m2
## [,1] [,2]
## [1,] 10 30
## [2,] 20 40
m3=matrix(c(1,3,2,5,-1,2,2,3,9),ncol=3,byrow=T)
m3
## [,1] [,2] [,3]
## [1,] 1 3 2
## [2,] 5 -1 2
## [3,] 2 3 9
t(m3) # transpose dari m3
## [,1] [,2] [,3]
## [1,] 1 5 2
## [2,] 3 -1 3
## [3,] 2 2 9
m3[2,3] #element dari m3 pada baris 2, kolom 3
## [1] 2
m3[2,] #baris 2
## [1] 5 -1 2
m3[,3] #kolom 3
## [1] 2 2 9
m3[-1,] #submatrix dari m3 tanpa baris pertama
## [,1] [,2] [,3]
## [1,] 5 -1 2
## [2,] 2 3 9
m3[,-1] #submatrix dari m3 tanpa kolom pertama
## [,1] [,2]
## [1,] 3 2
## [2,] -1 2
## [3,] 3 9
m3[-1,-1] #submatrix dari m3 tanpa kolom pertama dan baris pertama
## [,1] [,2]
## [1,] -1 2
## [2,] 3 9
2*m1 #erkalian scalar
## x y
## [1,] 4 12
## [2,] 8 16
m1+m2 #penambahan matrix addition
## x y
## [1,] 12 36
## [2,] 24 48
m1 %*% m2 # perkalian component matrix
## [,1] [,2]
## [1,] 140 300
## [2,] 200 440
solve(m1) #inverse matrix
## [,1] [,2]
## x -1.0 0.75
## y 0.5 -0.25
diag(3) #membangun k by k identity matrix
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
diag(c(2,3,3)) #diagonal matrices
## [,1] [,2] [,3]
## [1,] 2 0 0
## [2,] 0 3 0
## [3,] 0 0 3
eigen(m2) #mencari eigen
## $values
## [1] 53.722813 -3.722813
##
## $vectors
## [,1] [,2]
## [1,] -0.5657675 -0.9093767
## [2,] -0.8245648 0.4159736
Nama<-c("surip","zul","budi","nordin")
Usia<-c(23,34,44,12)
Kelas<-c("A","B","C","D")
Domisili<-c("bdg","cjr","jkt","sby")
Siswa<-data.frame(Nama,Usia,Kelas,Domisili)
Siswa
## Nama Usia Kelas Domisili
## 1 surip 23 A bdg
## 2 zul 34 B cjr
## 3 budi 44 C jkt
## 4 nordin 12 D sby
names(Siswa)
## [1] "Nama" "Usia" "Kelas" "Domisili"
Siswa[,1]
## [1] surip zul budi nordin
## Levels: budi nordin surip zul
Siswa$Usia
## [1] 23 34 44 12
mean(Siswa$Usia)
## [1] 28.25
min(Siswa$Usia)
## [1] 12
table(Siswa$Kelas)
##
## A B C D
## 1 1 1 1
table(Siswa$Kelas,Siswa$Domisili)
##
## bdg cjr jkt sby
## A 1 0 0 0
## B 0 1 0 0
## C 0 0 1 0
## D 0 0 0 1
i<-order(Siswa$Usia);i
## [1] 4 1 2 3
Siswa[i,]
## Nama Usia Kelas Domisili
## 4 nordin 12 D sby
## 1 surip 23 A bdg
## 2 zul 34 B cjr
## 3 budi 44 C jkt
#edit(data.frame(Siswa))
setwd("D:/workshopban")
Dataku = read.csv("data_survey.CSV", header=T, sep=";")
write.table(Dataku[,1], file="data1.dat",sep=",")
# Membuat vector
cars <- c(1, 3, 6, 4, 9)
# Membuat grafik line dengan titik berwarna biru
plot(cars, type="o", col="blue")
# Membuat judul grafik
title(main="Autos", col.main="red", font.main=4)
# Membuat vector
cars <- c(1, 3, 6, 4, 9)
# Membuat grafik line dengan titik berwarna biru
plot(cars, type="o", col="blue")
# Membuat judul grafik
title(main="Autos", col.main="red", font.main=4)
# Mendefinisikan vector ke 2
trucks <- c(2, 5, 4, 5, 12)
# Membuat grafik dengan sumbu y memiliki range antara 0 to 12
plot(cars, type="o", col="blue", ylim=c(0,12))
# Membuat grafik trucks dengan garis putus2 berwarna merah
lines(trucks, type="o", pch=22, lty=2, col="red")
# Membuat Judul Grafik
title(main="Autos", col.main="red", font.main=4)
# Membuat Legend
legend("topleft", c("cars","trucks"), cex=0.8, col=c("blue","red"), pch=21:22, lty=1:2);
# Define the cars vector with 5 values
cars <- c(1, 3, 6, 4, 9)
# Graph cars
barplot(cars)
# Graph autos with adjacent bars using rainbow colors
barplot(cars, main="Autos", ylab= "Total", beside=TRUE, col=rainbow(5))
# Membuat vector suvs
suvs <- c(4,4,6,6,16)
# Membuat Histogram untuk suvs
hist(suvs)
# Membuat Histogram dengan warna biru dan sumbu y memiliki range antara 0-2
hist(suvs, col="lightblue", ylim=c(0,2))
# Membuat vector cars
cars <- c(1, 3, 6, 4, 9)
# Membuat pie chart dari cars
pie(cars)
#Membuat pie chart dengan label
pie(cars, main="Cars", col=rainbow(length(cars)), labels=c("Mon","Tue","Wed","Thu","Fri"))
# Membuat persentasi untuk masing2 kategori
car_labels <-round(cars/sum(cars) * 100, 1)
# Meletakan label '%' pada pie chart
car_labels <- paste(car_labels, "%", sep="")
# Membuat pie dengan warna tertentu
pie(cars, main="Cars", col=rainbow(length(cars)), labels=car_labels, cex=0.8)
caff.marital <- matrix(c(652,1537,598,242,36,46,38,21,218,327,106,67),nrow=3,byrow=T)
caff.marital
## [,1] [,2] [,3] [,4]
## [1,] 652 1537 598 242
## [2,] 36 46 38 21
## [3,] 218 327 106 67
#Penamaan kolom dari sebuah tabel
colnames(caff.marital) <- c("0","1-150","151-300",">300")
#Penamaan baris dari sebuah tabel
rownames(caff.marital) <- c("Married","Prev.married","Single")
caff.marital
## 0 1-150 151-300 >300
## Married 652 1537 598 242
## Prev.married 36 46 38 21
## Single 218 327 106 67
#Membuat transpose dari sebuah tabel
t(caff.marital)
## Married Prev.married Single
## 0 652 36 218
## 1-150 1537 46 327
## 151-300 598 38 106
## >300 242 21 67
#Membuat marginal tabel
margin.table(caff.marital,1)
## Married Prev.married Single
## 3029 141 718
margin.table(caff.marital,2)
## 0 1-150 151-300 >300
## 906 1910 742 330
#Membuat proporsi tabel
prop.table(caff.marital,1)
## 0 1-150 151-300 >300
## Married 0.2152526 0.5074282 0.1974249 0.07989435
## Prev.married 0.2553191 0.3262411 0.2695035 0.14893617
## Single 0.3036212 0.4554318 0.1476323 0.09331476
prop.table(caff.marital,2)
## 0 1-150 151-300 >300
## Married 0.7196468 0.80471204 0.80592992 0.73333333
## Prev.married 0.0397351 0.02408377 0.05121294 0.06363636
## Single 0.2406181 0.17120419 0.14285714 0.20303030
#Membuat grafik berdasarkan tabel
total.caff <- margin.table(caff.marital,2)
barplot(total.caff, col="white")
barplot(total.caff, col="red")
barplot(total.caff, col=heat.colors(4))
barplot(total.caff, col=rainbow(4))
barplot(caff.marital, col=rainbow(4))
barplot(caff.marital,col=rainbow(4),beside=T)
X=rep(0,3)
X
## [1] 0 0 0
for (I in 1:3) {
print(I)
}
## [1] 1
## [1] 2
## [1] 3