Summary: This case study is based on dummy dataset of an Insurance company who sells policies/products in Travel domain. We have been provided with Premium/Claims datsets for every individual policy no. or customer.

Insights derived: 1- Total sum Assured till date is highest for Delhi region. 2- Highest premium is paid in East zone and median premium almost remains same to approx 600 in every zone 3- Asia silver plan is very less famous amongst customer 4- Individual plans are most higly bought by customers and these plans provide higher sum insured. 5- Premium for Family plans are high compared to Individual plans 6- South zone has highest number of Claims with status as “NO”

Install required packages for data manipulation

library(dplyr)
library(stringr)
library(ggplot2)

Import Claims/Premium datasets

claimsData<-read.csv(file.choose(),na.strings = "")
head(claimsData)
premiumData<-read.csv(file.choose(),na.strings = "")
head(premiumData)

Merge premium and claims datasets

finalData <- claimsData %>%
  inner_join(premiumData, by = "POLICY_NO")
  head(finalData)

Create a subset of policy no., region and sub plan of the policy holders whose claim status = Yes

names(finalData)
subset1 <- finalData %>%
filter(Claim_Status == "Yes") %>%
select(POLICY_NO, REGION, Sub_Plan)%>%
head(subset1)

Create a subset of data for all the regions except Delhi with sumassured more than Rs. 5 lacs and claim status = Yes

subset2 <- finalData %>%
  filter(!str_detect(str_to_upper(REGION), "DELHI") &
  Sum_Assured > 500000 & Claim_Status == "Yes")
subset2

Calculate the sum for variable ‘Sum_Assured’ by ‘REGION’ variable.

Calculate total sum assured for each sub plan

subset4<-finalData%>% group_by(Sub_Plan)%>% summarise(sum=sum(Sum_Assured,na.rm=TRUE))
subset4

Box plot to show premium distribution zonewise

Relation between Sum assured and premium

ggplot(data = finalData,
       aes(
       x = finalData$Sum_Assured,
       y = finalData$Premium,
       color = Plan
       )) +
       geom_point(alpha = 1) +
       scale_x_log10() +
       ggtitle(label = "Premium v/s Sum Assured Planwise comparison") +
       xlab("Sum Assured") +
       ylab("Premium")+
  theme_minimal()

Premium v/s number of people relation

ggplot(data = finalData,
       aes(x = finalData$Premium, fill = Sub_Plan)) +
       scale_x_continuous(limits = c(0, 4000), breaks = seq(0, 4000, 1000)) +
       geom_histogram(binwidth = 50) +
       facet_grid(finalData$Plan ~ ., scales = "free_y") +
       ggtitle("Premium distribution planwise") +
       xlab("Premuim") +
       ylab("Number of people")+
  theme_update()

Claim Status count Zone wise

subset6<-finalData%>% group_by(Claim_Status,ZONE_NAME)%>%summarise(Total_Claims=n())
d<-ggplot(data=subset6,aes(x=Claim_Status,y=Total_Claims))+
  geom_col(aes(fill=ZONE_NAME),position="dodge")+
  ggtitle("Claim Status overview zone wise") +
       xlab("Claim Staus") +
       ylab("Number of people")+
  theme_linedraw()
d

LS0tDQp0aXRsZTogIkluc3VyYW5jZSBjYXNlIHN0dWR5IG9uIGRhdGEgbWFuaXB1bGF0aW9uIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NClN1bW1hcnk6IFRoaXMgY2FzZSBzdHVkeSBpcyBiYXNlZCBvbiBkdW1teSBkYXRhc2V0IG9mIGFuIEluc3VyYW5jZSBjb21wYW55IHdobyBzZWxscyBwb2xpY2llcy9wcm9kdWN0cyBpbiBUcmF2ZWwgZG9tYWluLiBXZSBoYXZlIGJlZW4gcHJvdmlkZWQgd2l0aCBQcmVtaXVtL0NsYWltcyBkYXRzZXRzIGZvciBldmVyeSBpbmRpdmlkdWFsIHBvbGljeSBuby4gb3IgY3VzdG9tZXIuDQoNCkluc2lnaHRzIGRlcml2ZWQ6DQogMS0gVG90YWwgc3VtIEFzc3VyZWQgdGlsbCBkYXRlIGlzIGhpZ2hlc3QgZm9yIERlbGhpIHJlZ2lvbi4NCiAyLSBIaWdoZXN0IHByZW1pdW0gaXMgcGFpZCBpbiBFYXN0IHpvbmUgYW5kIG1lZGlhbiBwcmVtaXVtIGFsbW9zdCByZW1haW5zIHNhbWUgdG8gYXBwcm94IDYwMCAgICAgICAgaW4gZXZlcnkgem9uZSANCiAzLSBBc2lhIHNpbHZlciBwbGFuIGlzIHZlcnkgbGVzcyBmYW1vdXMgYW1vbmdzdCBjdXN0b21lcg0KIDQtIEluZGl2aWR1YWwgcGxhbnMgYXJlIG1vc3QgaGlnbHkgYm91Z2h0IGJ5IGN1c3RvbWVycyBhbmQgdGhlc2UgcGxhbnMgcHJvdmlkZSBoaWdoZXIgc3VtICAgICAgICAgICBpbnN1cmVkLg0KIDUtIFByZW1pdW0gZm9yIEZhbWlseSBwbGFucyBhcmUgaGlnaCBjb21wYXJlZCB0byBJbmRpdmlkdWFsIHBsYW5zDQogNi0gU291dGggem9uZSBoYXMgaGlnaGVzdCBudW1iZXIgb2YgQ2xhaW1zIHdpdGggc3RhdHVzIGFzICJOTyIgDQoNCg0KIEluc3RhbGwgcmVxdWlyZWQgcGFja2FnZXMgZm9yIGRhdGEgbWFuaXB1bGF0aW9uDQpgYGB7ciBJbnNhdGxsIHBhY2thZ2VzfQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkoc3RyaW5ncikNCmxpYnJhcnkoZ2dwbG90MikNCmBgYA0KDQogSW1wb3J0IENsYWltcy9QcmVtaXVtIGRhdGFzZXRzDQoNCmBgYHtyIEltcG9ydCBjc3YgZGF0YX0NCmNsYWltc0RhdGE8LXJlYWQuY3N2KGZpbGUuY2hvb3NlKCksbmEuc3RyaW5ncyA9ICIiKQ0KaGVhZChjbGFpbXNEYXRhKQ0KcHJlbWl1bURhdGE8LXJlYWQuY3N2KGZpbGUuY2hvb3NlKCksbmEuc3RyaW5ncyA9ICIiKQ0KaGVhZChwcmVtaXVtRGF0YSkNCg0KYGBgDQoNCiBNZXJnZSBwcmVtaXVtIGFuZCBjbGFpbXMgZGF0YXNldHMNCmBgYHtyIE1lcmdlIHVzaW5nIElubmVyIGpvaW4gb2YgZHBseXJ9DQpmaW5hbERhdGEgPC0gY2xhaW1zRGF0YSAlPiUNCiAgaW5uZXJfam9pbihwcmVtaXVtRGF0YSwgYnkgPSAiUE9MSUNZX05PIikNCiAgaGVhZChmaW5hbERhdGEpDQpgYGANCg0KIENyZWF0ZSBhIHN1YnNldCBvZiBwb2xpY3kgbm8uLCByZWdpb24gYW5kIHN1YiBwbGFuIG9mIHRoZSBwb2xpY3kgaG9sZGVycyB3aG9zZSBjbGFpbSBzdGF0dXMgPSBZZXMNCmBgYHtyIFVzZSBmaWx0ZXIsc2VsZWN0IGZ1bmN0aW9uIG9mIGRwbHlyfQ0KbmFtZXMoZmluYWxEYXRhKQ0Kc3Vic2V0MSA8LSBmaW5hbERhdGEgJT4lDQpmaWx0ZXIoQ2xhaW1fU3RhdHVzID09ICJZZXMiKSAlPiUNCnNlbGVjdChQT0xJQ1lfTk8sIFJFR0lPTiwgU3ViX1BsYW4pJT4lDQpoZWFkKHN1YnNldDEpDQoNCmBgYA0KIENyZWF0ZSBhIHN1YnNldCBvZiBkYXRhIGZvciBhbGwgdGhlIHJlZ2lvbnMgZXhjZXB0IERlbGhpIHdpdGggc3VtYXNzdXJlZCBtb3JlIHRoYW4gUnMuIDUgbGFjcyBhbmQgY2xhaW0gc3RhdHVzID0gWWVzDQpgYGB7ciBVc2UgZmlsdGVyIHdpdGggbXVsdGlwbGUgY29uZGl0aW9uc30NCnN1YnNldDIgPC0gZmluYWxEYXRhICU+JQ0KICBmaWx0ZXIoIXN0cl9kZXRlY3Qoc3RyX3RvX3VwcGVyKFJFR0lPTiksICJERUxISSIpICYNCiAgU3VtX0Fzc3VyZWQgPiA1MDAwMDAgJiBDbGFpbV9TdGF0dXMgPT0gIlllcyIpDQpzdWJzZXQyDQpgYGANCg0KIENhbGN1bGF0ZSB0aGUgc3VtIGZvciB2YXJpYWJsZSAnU3VtX0Fzc3VyZWQnIGJ5ICdSRUdJT04nIHZhcmlhYmxlLg0KYGBge3IgfQ0Kc3Vic2V0MyA8LQ0KICBmaW5hbERhdGEgJT4lIGdyb3VwX2J5KFJFR0lPTikgJT4lIHN1bW1hcmlzZShzdW0gPSBzdW0oU3VtX0Fzc3VyZWQsIG5hLnJtID0NCiAgVFJVRSkpJT4lYXJyYW5nZShkZXNjKHN1bSkpDQogIHN1YnNldDMNCmBgYA0KDQogQ2FsY3VsYXRlIHRvdGFsIHN1bSBhc3N1cmVkIGZvciBlYWNoIHN1YiBwbGFuDQpgYGB7cn0NCnN1YnNldDQ8LWZpbmFsRGF0YSU+JSBncm91cF9ieShTdWJfUGxhbiklPiUgc3VtbWFyaXNlKHN1bT1zdW0oU3VtX0Fzc3VyZWQsbmEucm09VFJVRSkpDQpzdWJzZXQ0DQpgYGANCg0KIEJveCBwbG90IHRvIHNob3cgcHJlbWl1bSBkaXN0cmlidXRpb24gem9uZXdpc2UNCmBgYHtyfQ0KZ2dwbG90KGRhdGEgPSBmaW5hbERhdGEsIGFlcyh4ID0gZmluYWxEYXRhJFpPTkVfTkFNRSwgeSA9IGZpbmFsRGF0YSRQcmVtaXVtKSkgKw0KICBnZW9tX2JveHBsb3QoYWVzKGNvbG9yPVpPTkVfTkFNRSkpICsNCiAgc2NhbGVfeV9jb250aW51b3VzKGxpbWl0cyA9IGMoMCwgMTAwMCksIGJyZWFrcyA9IHNlcSgwLCAxMDAwLCAxMDApKSArDQogIGdndGl0bGUobGFiZWwgPSAiWm9uZXdpc2UgcHJlbWl1bSBkaXN0cmlidXRpb24iKSArDQogIHhsYWIoIlpvbmVzIikgKw0KICB5bGFiKCJQcmVtaXVtIikrDQogIHRoZW1lX2J3KCkNCmBgYA0KDQogUmVsYXRpb24gYmV0d2VlbiBTdW0gYXNzdXJlZCBhbmQgcHJlbWl1bSANCmBgYHtyfQ0KZ2dwbG90KGRhdGEgPSBmaW5hbERhdGEsDQogICAgICAgYWVzKA0KICAgICAgIHggPSBmaW5hbERhdGEkU3VtX0Fzc3VyZWQsDQogICAgICAgeSA9IGZpbmFsRGF0YSRQcmVtaXVtLA0KICAgICAgIGNvbG9yID0gUGxhbg0KICAgICAgICkpICsNCiAgICAgICBnZW9tX3BvaW50KGFscGhhID0gMSkgKw0KICAgICAgIHNjYWxlX3hfbG9nMTAoKSArDQogICAgICAgZ2d0aXRsZShsYWJlbCA9ICJQcmVtaXVtIHYvcyBTdW0gQXNzdXJlZCBQbGFud2lzZSBjb21wYXJpc29uIikgKw0KICAgICAgIHhsYWIoIlN1bSBBc3N1cmVkIikgKw0KICAgICAgIHlsYWIoIlByZW1pdW0iKSsNCiAgdGhlbWVfbWluaW1hbCgpDQpgYGANCg0KDQogUHJlbWl1bSB2L3MgbnVtYmVyIG9mIHBlb3BsZSByZWxhdGlvbg0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IGZpbmFsRGF0YSwNCiAgICAgICBhZXMoeCA9IGZpbmFsRGF0YSRQcmVtaXVtLCBmaWxsID0gU3ViX1BsYW4pKSArDQogICAgICAgc2NhbGVfeF9jb250aW51b3VzKGxpbWl0cyA9IGMoMCwgNDAwMCksIGJyZWFrcyA9IHNlcSgwLCA0MDAwLCAxMDAwKSkgKw0KICAgICAgIGdlb21faGlzdG9ncmFtKGJpbndpZHRoID0gNTApICsNCiAgICAgICBmYWNldF9ncmlkKGZpbmFsRGF0YSRQbGFuIH4gLiwgc2NhbGVzID0gImZyZWVfeSIpICsNCiAgICAgICBnZ3RpdGxlKCJQcmVtaXVtIGRpc3RyaWJ1dGlvbiBwbGFud2lzZSIpICsNCiAgICAgICB4bGFiKCJQcmVtdWltIikgKw0KICAgICAgIHlsYWIoIk51bWJlciBvZiBwZW9wbGUiKSsNCiAgdGhlbWVfdXBkYXRlKCkNCmBgYA0KDQogQ2xhaW0gU3RhdHVzIGNvdW50IFpvbmUgd2lzZQ0KYGBge3J9DQpzdWJzZXQ2PC1maW5hbERhdGElPiUgZ3JvdXBfYnkoQ2xhaW1fU3RhdHVzLFpPTkVfTkFNRSklPiVzdW1tYXJpc2UoVG90YWxfQ2xhaW1zPW4oKSkNCmQ8LWdncGxvdChkYXRhPXN1YnNldDYsYWVzKHg9Q2xhaW1fU3RhdHVzLHk9VG90YWxfQ2xhaW1zKSkrDQogIGdlb21fY29sKGFlcyhmaWxsPVpPTkVfTkFNRSkscG9zaXRpb249ImRvZGdlIikrDQogIGdndGl0bGUoIkNsYWltIFN0YXR1cyBvdmVydmlldyB6b25lIHdpc2UiKSArDQogICAgICAgeGxhYigiQ2xhaW0gU3RhdXMiKSArDQogICAgICAgeWxhYigiTnVtYmVyIG9mIHBlb3BsZSIpKw0KICB0aGVtZV9saW5lZHJhdygpDQpkDQpgYGANCg0KDQoNCg0KDQoNCg0KDQo=