Aim
The aim of this would be to extract the following as an exposure:
Exposures would be:
There’s an API/ R Web package described here
Let’s try to use it to get this information
library(wbstats)
gdp_percap_data <- wb(indicator= "NY.GDP.PCAP.PP.CD")
now let’s see what we’ve got
require(tidyverse)
gdp_percap_data %>%
ggplot(aes(x = date, y = value, group = country)) +
geom_line(alpha = 0.4) +
scale_y_log10() +
geom_line(aes(x = date, y = value), colour = "red", size = 1.5, data = gdp_percap_data %>% filter(iso2c == "GB"))

Now density in 1990, 2000, 2010
gdp_percap_data %>%
filter(date %in% c(1990, 2000, 2010)) %>%
ggplot(aes(x = value, group = date, fill = date)) +
geom_density(alpha = 0.4) +
scale_x_log10() +
labs(x = "GDP per capita", y = "proportion of countries")

Other indicators
I’m looking for variables that may explain gender inequalities in NCDs (and overall)
https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD
require(wbstats)
require(tidyverse)
str(wb_cachelist, max.level = 1)
List of 7
$ countries :'data.frame': 304 obs. of 18 variables:
$ indicators :'data.frame': 16978 obs. of 7 variables:
$ sources :'data.frame': 43 obs. of 8 variables:
$ datacatalog:'data.frame': 238 obs. of 29 variables:
$ topics :'data.frame': 21 obs. of 3 variables:
$ income :'data.frame': 7 obs. of 3 variables:
$ lending :'data.frame': 4 obs. of 3 variables:
gender_statistics_ids <- wb_cachelist$indicators[wb_cachelist$indicators$source == "Gender Statistics", "indicatorID"]
length(gender_statistics_ids)
[1] 260
So, there are 260 indicators listed as ‘gender statistics’. The details of these are below
wb_cachelist$indicators %>%
filter(indicatorID %in% c(gender_statistics_ids))
LS0tDQp0aXRsZTogIkV4dHJhY3RpbmcgR0RQIHBlciBjYXBpdGEgZm9yIGNvdW50cmllcyB1c2luZyBXb3JsZCBCYW5rIEFQSSINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCiMgQWltIA0KDQpUaGUgYWltIG9mIHRoaXMgd291bGQgYmUgdG8gZXh0cmFjdCB0aGUgZm9sbG93aW5nIGFzIGFuIGV4cG9zdXJlOg0KDQpFeHBvc3VyZXMgd291bGQgYmU6IA0KDQoqIFtHRFAgcGVyIGNhcGl0YV0oaHR0cHM6Ly9kYXRhLndvcmxkYmFuay5vcmcvaW5kaWNhdG9yL05ZLkdEUC5QQ0FQLlBQLkNEKSAgIA0KDQpUaGVyZSdzIGFuIEFQSS8gUiBXZWIgcGFja2FnZSBkZXNjcmliZWQgW2hlcmVdKGh0dHBzOi8vY3Jhbi5yLXByb2plY3Qub3JnL3dlYi9wYWNrYWdlcy93YnN0YXRzL3ZpZ25ldHRlcy9Vc2luZ190aGVfd2JzdGF0c19wYWNrYWdlLmh0bWwpDQoNCkxldCdzIHRyeSB0byB1c2UgaXQgdG8gZ2V0IHRoaXMgaW5mb3JtYXRpb24gDQoNCmBgYHtyfQ0KbGlicmFyeSh3YnN0YXRzKQ0KDQpnZHBfcGVyY2FwX2RhdGEgPC0gd2IoaW5kaWNhdG9yPSAiTlkuR0RQLlBDQVAuUFAuQ0QiKQ0KDQpgYGANCg0Kbm93IGxldCdzIHNlZSB3aGF0IHdlJ3ZlIGdvdCANCg0KYGBge3J9DQpyZXF1aXJlKHRpZHl2ZXJzZSkNCg0KDQpnZHBfcGVyY2FwX2RhdGEgJT4lIA0KICBnZ3Bsb3QoYWVzKHggPSBkYXRlLCB5ID0gdmFsdWUsIGdyb3VwID0gY291bnRyeSkpICsgDQogIGdlb21fbGluZShhbHBoYSA9IDAuNCkgKw0KICBzY2FsZV95X2xvZzEwKCkgKw0KICBnZW9tX2xpbmUoYWVzKHggPSBkYXRlLCB5ID0gdmFsdWUpLCBjb2xvdXIgPSAicmVkIiwgc2l6ZSA9IDEuNSwgZGF0YSA9IGdkcF9wZXJjYXBfZGF0YSAlPiUgZmlsdGVyKGlzbzJjID09ICJHQiIpKSANCg0KDQpgYGANCg0KDQpOb3cgZGVuc2l0eSBpbiAxOTkwLCAyMDAwLCAyMDEwDQoNCmBgYHtyfQ0KZ2RwX3BlcmNhcF9kYXRhICU+JSANCiAgZmlsdGVyKGRhdGUgJWluJSBjKDE5OTAsIDIwMDAsIDIwMTApKSAlPiUgDQogIGdncGxvdChhZXMoeCA9IHZhbHVlLCBncm91cCA9IGRhdGUsIGZpbGwgPSBkYXRlKSkgKyANCiAgZ2VvbV9kZW5zaXR5KGFscGhhID0gMC40KSArIA0KICBzY2FsZV94X2xvZzEwKCkgKyANCiAgbGFicyh4ID0gIkdEUCBwZXIgY2FwaXRhIiwgeSA9ICJwcm9wb3J0aW9uIG9mIGNvdW50cmllcyIpDQoNCmBgYA0KDQojIE90aGVyIGluZGljYXRvcnMgDQoNCkknbSBsb29raW5nIGZvciB2YXJpYWJsZXMgdGhhdCBtYXkgZXhwbGFpbiBnZW5kZXIgaW5lcXVhbGl0aWVzIGluIE5DRHMgKGFuZCBvdmVyYWxsKQ0KDQoNCmh0dHBzOi8vZGF0YS53b3JsZGJhbmsub3JnL2luZGljYXRvci9OWS5HRFAuUENBUC5QUC5DRA0KDQpgYGB7ciBleHBsb3JlX3diX2NhY2hlbGlzdH0NCnJlcXVpcmUod2JzdGF0cykNCnJlcXVpcmUodGlkeXZlcnNlKQ0KDQpzdHIod2JfY2FjaGVsaXN0LCBtYXgubGV2ZWwgPSAxKQ0KDQpnZW5kZXJfc3RhdGlzdGljc19pZHMgPC0gd2JfY2FjaGVsaXN0JGluZGljYXRvcnNbd2JfY2FjaGVsaXN0JGluZGljYXRvcnMkc291cmNlID09ICJHZW5kZXIgU3RhdGlzdGljcyIsICJpbmRpY2F0b3JJRCJdDQoNCmxlbmd0aChnZW5kZXJfc3RhdGlzdGljc19pZHMpDQpgYGANCg0KU28sIHRoZXJlIGFyZSAyNjAgaW5kaWNhdG9ycyBsaXN0ZWQgYXMgJ2dlbmRlciBzdGF0aXN0aWNzJy4gVGhlIGRldGFpbHMgb2YgdGhlc2UgYXJlIGJlbG93DQoNCg0KYGBge3IgZ2V0X2dlbmRlcl9zdGF0c30NCndiX2NhY2hlbGlzdCRpbmRpY2F0b3JzICU+JSANCiAgZmlsdGVyKGluZGljYXRvcklEICVpbiUgYyhnZW5kZXJfc3RhdGlzdGljc19pZHMpKQ0KDQpgYGANCg0KDQoNCg0KDQo=