INTRODUCTION

I installed some packages some to make my estimations. Then I loaded data base.

library(haven)
library(car)
library(stargazer)
library(lmtest)
SDEMT118 <- read_dta(file.choose())

I have deleted some rows.

SDEMT118 <- SDEMT118[SDEMT118$eda > 18,] # solo mayores de edad
SDEMT118 <- SDEMT118[SDEMT118$ingocup > 0,] # solo ingresos mayores a cero
SDEMT118 <- SDEMT118[SDEMT118$anios_esc != 99,] # años de escolaridad distintos a 99 (informacion no disponible)

Encoded some variables to make regression easier.

SDEMT118$mujer <- recode(SDEMT118$sex, "1=0; 2=1") # mujer=1; 0=hombre
table(SDEMT118$mujer)

    0     1 
67727 44933 
SDEMT118$casado <- recode(SDEMT118$e_con, "5=1; 1=0; 2=0; 3=0; 4=0; 6=0; 9=0") # mujer=1; 0= hombre
table(SDEMT118$casado)

    0     1 
61811 50849 

The regression running focusing on important variables.After I summarized with “stargazer” the regression in order for interpret the results more easily.

length of NULL cannot be changedlength of NULL cannot be changedlength of NULL cannot be changedlength of NULL cannot be changedlength of NULL cannot be changed

=================================================
                         Dependent variable:     
                    -----------------------------
                               ingocup           
-------------------------------------------------
mujer                       -1,674.128***        
                              (33.637)           
                                                 
eda                          225.596***          
                               (6.501)           
                                                 
I(eda2)                       -1.897***          
                               (0.073)           
                                                 
anios_esc                    532.111***          
                               (3.877)           
                                                 
casado                       400.821***          
                              (33.925)           
                                                 
hrsocup                       38.751***          
                               (0.908)           
                                                 
Constant                    -5,614.665***        
                              (143.866)          
                                                 
-------------------------------------------------
Observations                   112,660           
R2                              0.186            
Adjusted R2                     0.186            
Residual Std. Error    5,289.041 (df = 112653)   
F Statistic         4,285.675*** (df = 6; 112653)
=================================================
Note:                 *p<0.1; **p<0.05; ***p<0.01
                   0.5 %       99.5 %
(Intercept) -5985.245723 -5244.083605
mujer       -1760.773857 -1587.482721
eda           208.851245   242.340426
I(eda^2)       -2.085561    -1.708883
anios_esc     522.125467   542.096777
casado        313.435587   488.207189
hrsocup        36.410549    41.090605

Making an Hipothesis with our model

attach(SDEMT118)
hist(log(ingocup), ylim = c(0, 40000), col = 2:16, main = "Monthly income")

I can assume that each variable is very significant at the significance level of 5%.

Then I created a graph (histogram) of the “ingocup” variable.


    studentized Breusch-Pagan test

data:  reg
BP = 697.06, df = 6, p-value < 2.2e-16

Doing a Breusch-Pagan test and a White test and interpreting the result.

Breusch-Pegan test

bptest(reg, ~fitted(reg) + I(fitted(reg)^2))

    studentized Breusch-Pagan test

data:  reg
BP = 1110.1, df = 2, p-value < 2.2e-16

White test

reg3 <- coeftest(reg, hccm) 
reg3

t test of coefficients:

               Estimate  Std. Error t value  Pr(>|t|)    
(Intercept) -5.6147e+03  1.4484e+02 -38.766 < 2.2e-16 ***
mujer       -1.6741e+03  3.2742e+01 -51.130 < 2.2e-16 ***
eda          2.2560e+02  6.0300e+00  37.412 < 2.2e-16 ***
I(eda^2)    -1.8972e+00  7.1811e-02 -26.420 < 2.2e-16 ***
anios_esc    5.3211e+02  6.0771e+00  87.560 < 2.2e-16 ***
casado       4.0082e+02  3.5058e+01  11.433 < 2.2e-16 ***
hrsocup      3.8751e+01  1.0034e+00  38.620 < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
stargazer(reg, reg3, type = "text")
length of NULL cannot be changedlength of NULL cannot be changedlength of NULL cannot be changedlength of NULL cannot be changedlength of NULL cannot be changed

===============================================================
                                Dependent variable:            
                    -------------------------------------------
                               ingocup                         
                                 OLS               coefficient 
                                                      test     
                                 (1)                   (2)     
---------------------------------------------------------------
mujer                       -1,674.128***         -1,674.128***
                              (33.637)              (32.742)   
                                                               
eda                          225.596***            225.596***  
                               (6.501)               (6.030)   
                                                               
I(eda2)                       -1.897***             -1.897***  
                               (0.073)               (0.072)   
                                                               
anios_esc                    532.111***            532.111***  
                               (3.877)               (6.077)   
                                                               
casado                       400.821***            400.821***  
                              (33.925)              (35.058)   
                                                               
hrsocup                       38.751***             38.751***  
                               (0.908)               (1.003)   
                                                               
Constant                    -5,614.665***         -5,614.665***
                              (143.866)             (144.836)  
                                                               
---------------------------------------------------------------
Observations                   112,660                         
R2                              0.186                          
Adjusted R2                     0.186                          
Residual Std. Error    5,289.041 (df = 112653)                 
F Statistic         4,285.675*** (df = 6; 112653)              
===============================================================
Note:                               *p<0.1; **p<0.05; ***p<0.01

conclusion: There is heteroskedasticity given the fact that 2.2e-16 < 0.05 So I’m going to adjust using-robust estandar errors.

attach(SDEMT118)
The following objects are masked from SDEMT118 (pos = 3):

    ageb, ambito1, ambito2, anios_esc, buscar5c, busqueda, c_inac5c, c_ocu11c, c_res,
    casado, cd_a, clase1, clase2, clase3, con, cp_anoc, cs_ad_des, cs_ad_mot, cs_nr_mot,
    cs_nr_ori, cs_p12, cs_p13_1, cs_p13_2, cs_p14_c, cs_p15, cs_p16, cs_p17, cs_p20_des,
    cs_p22_des, d_ant_lab, d_cexp_est, d_sem, dispo, domestico, dur_des, dur_est, dur9c,
    e_con, eda, eda12c, eda19c, eda5c, eda7c, emp_ppal, emple7c, ent, est, est_d, fac,
    h_mud, hij5c, hrsocup, imssissste, ing_x_hrs, ing7c, ingocup, l_nac_c, loc, ma48me1sm,
    medica5c, mh_col, mh_fil2, mujer, mun, n_ent, n_hij, n_hog, n_pro_viv, n_ren,
    nac_anio, nac_dia, nac_mes, niv_ins, nodispo, p14apoyos, par_c, per, pnea_est,
    pos_ocu, pre_asa, r_def, rama, rama_est1, rama_est2, remune2c, s_clasifi, salario,
    scian, sec_ins, seg_soc, sex, sub_o, t_loc, t_tra, tcco, tip_con, tpg_p8a, trans_ppal,
    tue_ppal, tue1, tue2, tue3, upm, ur, v_sel, zona
marrfem <- as.numeric(mujer==1 & casado ==1) #married female
singmal <- as.numeric(mujer==0 & casado==0) #single male
singfem <- as.numeric(mujer==1 & casado==0) #single female
reg2 <- lm(log(ingocup) ~ marrfem + singmal + singfem + eda + I(eda^2) + anios_esc + hrsocup)
stargazer(reg2, type = "text")
length of NULL cannot be changedlength of NULL cannot be changedlength of NULL cannot be changedlength of NULL cannot be changedlength of NULL cannot be changed

=================================================
                         Dependent variable:     
                    -----------------------------
                            log(ingocup)         
-------------------------------------------------
marrfem                       -0.352***          
                               (0.006)           
                                                 
singmal                       -0.085***          
                               (0.005)           
                                                 
singfem                       -0.319***          
                               (0.005)           
                                                 
eda                           0.040***           
                               (0.001)           
                                                 
I(eda2)                      -0.0004***          
                              (0.00001)          
                                                 
anios_esc                     0.074***           
                              (0.0005)           
                                                 
hrsocup                       0.011***           
                              (0.0001)           
                                                 
Constant                      6.617***           
                               (0.019)           
                                                 
-------------------------------------------------
Observations                   112,660           
R2                              0.302            
Adjusted R2                     0.302            
Residual Std. Error      0.641 (df = 112652)     
F Statistic         6,971.641*** (df = 7; 112652)
=================================================
Note:                 *p<0.1; **p<0.05; ***p<0.01
coeftest(reg2, vcov = hccm(reg2, type = "hc1"))

t test of coefficients:

               Estimate  Std. Error t value  Pr(>|t|)    
(Intercept)  6.6170e+00  2.0543e-02 322.110 < 2.2e-16 ***
marrfem     -3.5198e-01  6.5972e-03 -53.353 < 2.2e-16 ***
singmal     -8.5322e-02  5.0904e-03 -16.762 < 2.2e-16 ***
singfem     -3.1894e-01  5.3188e-03 -59.964 < 2.2e-16 ***
eda          3.9727e-02  9.0720e-04  43.791 < 2.2e-16 ***
I(eda^2)    -4.1828e-04  1.0797e-05 -38.742 < 2.2e-16 ***
anios_esc    7.4409e-02  5.2588e-04 141.494 < 2.2e-16 ***
hrsocup      1.1132e-02  1.3647e-04  81.573 < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Creating three dummy variables to run the new regression and see what is the effect of being single female/male, and married female/male.

SDEMT118$job <- recode(SDEMT118$emp_ppal, "1=0; 2=1") # empleo informal=1; 0=empleo formal
reg2 <- lm(log(ingocup) ~ job + mujer + eda + I(eda^2) + anios_esc + casado + hrsocup, data=SDEMT118)
stargazer(reg2, type = "text")
length of NULL cannot be changedlength of NULL cannot be changedlength of NULL cannot be changedlength of NULL cannot be changedlength of NULL cannot be changed

=================================================
                         Dependent variable:     
                    -----------------------------
                            log(ingocup)         
-------------------------------------------------
job                           0.400***           
                               (0.004)           
                                                 
mujer                         -0.280***          
                               (0.004)           
                                                 
eda                           0.037***           
                               (0.001)           
                                                 
I(eda2)                      -0.0004***          
                              (0.00001)          
                                                 
anios_esc                     0.057***           
                              (0.0005)           
                                                 
casado                        0.019***           
                               (0.004)           
                                                 
hrsocup                       0.009***           
                              (0.0001)           
                                                 
Constant                      6.678***           
                               (0.017)           
                                                 
-------------------------------------------------
Observations                   112,660           
R2                              0.357            
Adjusted R2                     0.357            
Residual Std. Error      0.615 (df = 112652)     
F Statistic         8,939.598*** (df = 7; 112652)
=================================================
Note:                 *p<0.1; **p<0.05; ***p<0.01

CONCLUSION

SDEMT118$job <- recode(SDEMT118$emp_ppal, "1=0; 2=1") # empleo informal=1; 0=empleo formal

reg2 <- lm(log(ingocup) ~ job + mujer + eda + I(eda^2) + anios_esc + casado + hrsocup, data=SDEMT118)
stargazer(reg2, type = "text")
LS0tDQp0aXRsZTogICJBTkFMWVNJUyBSRUdSRVNTSU9OIE9GIEVOT0UgREFUQSINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KYXV0aG9yOiBDb250cmVyYXMgSWJhcnJhIEplc3NpY2EgSXR6ZWwNCkdyb3VwOiAiMkVWMDkiDQotLS0NCj4gKipJTlRST0RVQ1RJT04qKg0KDQogKiBJbiB0aGlzIG1vZGVsIEm0bSBnb2luZyB0byBzdHVkeSBzb21lIHZhcmlhYmxlcyB3aGljaCBjb3VsZCBoYXZlIGFuIGltcGFjdCBvbiBzb21lb25lJ3MgbW9udGhseSBpbmNvbWUgYmFzZWQgb24gdGhlIEVOT0UncyBkYXRhIChFbmN1ZXN0YSBOYWNpb25hbCBkZSBPY3VwYWNp824geSBFbXBsZW8pLiANCipBY2NvcmRpbmcgdG8gdGhlIE9MUyBtZXRob2QsIEkgdG9vayBzb21lIHN0ZXBzIHRvIGNhcnJ5IG91dCB0aGlzIGFuYWx5c2lzLiBGaXJzdCBhbmQgZm9yZW1vc3QsIEkgZGVjbGFyZWQgdG8gdmFyaWFibGVzOyBzb21lIG9mIHRoZW0gd2VyZSBjcmVhdGVkIGFzICJkdW1teSB2YXJpYWJsZXMiIGluIG9yZGVyIHRvIHNob3cgdGhlIGltcGFjdCBvZiBlYWNoIG9uZSBvbiBtb250aGx5IGluY29tZS4gVGhlbiBJIGNvbnN0cnVjdGVkIG91ciBlY29ub21ldHJpYyBtb2RlbCwgYmFzZWQgb24gc29tZSBhc3N1bXB0aW9ucy4gQWZ0ZXIgdGhpcywgSSByYW4gcmVncmVzc2lvbiBpbnRlcnByZXRpbmcgdGhlIHJlc3VsdHMgYXQgdGhlIHNhbWUgdGltZS4gDQogDQo+ICAqKl9JIGluc3RhbGxlZCBzb21lIHBhY2thZ2VzIHNvbWUgdG8gbWFrZSBteSBlc3RpbWF0aW9ucy4gVGhlbiBJIGxvYWRlZCBkYXRhIGJhc2UuXyoqDQoNCmBgYHtyIGVjaG89VFJVRX0NCmxpYnJhcnkoaGF2ZW4pDQpsaWJyYXJ5KGNhcikNCmxpYnJhcnkoc3RhcmdhemVyKQ0KbGlicmFyeShsbXRlc3QpDQpTREVNVDExOCA8LSByZWFkX2R0YShmaWxlLmNob29zZSgpKQ0KYGBgDQoNCj4gICoqX0kgaGF2ZSBkZWxldGVkIHNvbWUgcm93cy5fKiogDQoNCmBgYHtyIGVjaG89VFJVRX0NClNERU1UMTE4IDwtIFNERU1UMTE4W1NERU1UMTE4JGVkYSA+IDE4LF0gIyBzb2xvIG1heW9yZXMgZGUgZWRhZA0KU0RFTVQxMTggPC0gU0RFTVQxMThbU0RFTVQxMTgkaW5nb2N1cCA+IDAsXSAjIHNvbG8gaW5ncmVzb3MgbWF5b3JlcyBhIGNlcm8NClNERU1UMTE4IDwtIFNERU1UMTE4W1NERU1UMTE4JGFuaW9zX2VzYyAhPSA5OSxdICMgYfFvcyBkZSBlc2NvbGFyaWRhZCBkaXN0aW50b3MgYSA5OSAoaW5mb3JtYWNpb24gbm8gZGlzcG9uaWJsZSkNCmBgYA0KDQo+ICoqX0VuY29kZWQgc29tZSB2YXJpYWJsZXMgdG8gbWFrZSByZWdyZXNzaW9uIGVhc2llci5fKioNCg0KYGBge3IgZWNobz1UUlVFfQ0KU0RFTVQxMTgkbXVqZXIgPC0gcmVjb2RlKFNERU1UMTE4JHNleCwgIjE9MDsgMj0xIikgIyBtdWplcj0xOyAwPWhvbWJyZQ0KdGFibGUoU0RFTVQxMTgkbXVqZXIpDQoNClNERU1UMTE4JGNhc2FkbyA8LSByZWNvZGUoU0RFTVQxMTgkZV9jb24sICI1PTE7IDE9MDsgMj0wOyAzPTA7IDQ9MDsgNj0wOyA5PTAiKSAjIG11amVyPTE7IDA9IGhvbWJyZQ0KdGFibGUoU0RFTVQxMTgkY2FzYWRvKQ0KYGBgDQoNCj4gICoqX1RoZSByZWdyZXNzaW9uIHJ1bm5pbmcgZm9jdXNpbmcgb24gaW1wb3J0YW50IHZhcmlhYmxlcy5BZnRlciBJIHN1bW1hcml6ZWQgd2l0aCAic3RhcmdhemVyIiB0aGUgcmVncmVzc2lvbiBpbiBvcmRlciBmb3IgaW50ZXJwcmV0IHRoZSByZXN1bHRzIG1vcmUgZWFzaWx5Ll8qKiANCg0KDQoNCmBgYHtyIGVjaG89RkFMU0V9DQpyZWcgPC0gbG0oaW5nb2N1cCB+IG11amVyICsgZWRhICsgSShlZGFeMikgKyBhbmlvc19lc2MgKyBjYXNhZG8gKyBocnNvY3VwLCBkYXRhPVNERU1UMTE4KQ0Kc3RhcmdhemVyKHJlZyAsIHR5cGUgPSAndGV4dCcpDQpjb25maW50KHJlZyAsIGxldmVsID0gMC45OSkNCmBgYA0KDQoqIEluIHRoZSByZWdyZXNzaW9uLCB0aGUgdmFyaWFibGUgKiptdWplcioqIHNob3dzIHVzIHRoYXQgYSB3b21hbiB0ZW5kcyB0byBlYXJuICoqMjguMyUqKiBsZXNzIHRoYW4gYSBtYW4uDQoqIFRoZSBzZWNvbmQgdmFyaWFibGUgKiooZWRhKSoqIHRlbGxzIHVzIHRoYXQgaWYgYSBwZXJzb24gaXMgb2xkZXIgYnkgb25lIG1vcmUgeWVhciwgdGhhdCBwZXJzb24gdGVuZHMgdG8gZWFybiAqKjQlKiogbW9yZS4gDQoqIHRoZSB0aGlyZCB2YXJpYWJsZSAqKkkoZWRhMikqKiBtZWFucyB0aGF0IGF0IGEgY2VydGFpbiBhZ2UsIGxpa2UgaWYgZm9yIGV4YW1wbGUgdGhlIHBlcnNvbiBpcyA2MSBoZSB3aWxsIGVhcm4gKiotMC44JSoqIGxlc3MgdGhhbiB0aGUgcGVyc29uIHdobyBpcyA2MC4gKiooVGhlIGFnZSBvZiA2MCBpcyB0YWtlbiBhcyB0aGUgdHVybmluZyBwb2ludCBvZiB0aGUgYWdlIHZhcmlhYmxlKSoqDQoqIFRoZW4gdGhlIG5leHQgdmFyaWFibGUgKiooYW5pb3NfZXNjKSoqIHNob3dzIHRoYXQgZm9yIG9uZSBtb3JlIHllYXIgb2Ygc2Nob29saW5nLCB0aGUgcGVyc29uIHdpbGwgZWFybiAqKjcuNSUqKiBtb3JlIHRoYW4gYmVmb3JlLiANCiogVGhlIHZhcmlhYmxlICoqKGNhc2FkbykqKiBzYXlzIHRoYXQgYSBwZXJzb24gd2hvIGlzIG1hcnJpZWQgdGVuZHMgdG8gZWFybiAqKjMuOCUqKiBtb3JlIHRoYW4gYSBwZXJzb24gd2hvIGlzIG5vdCAoc2luZ2xlKS4gDQpUaGUgbmV4dCB2YXJpYWJsZSAqKihocnNvY3VwKSoqIHRlbGxzIHVzIHRoYXQgZm9yIG9uZSBtb3JlIGhvdXIgd29ya2VkIHBlciB3ZWVrLCB0aGUgcGVyc29uIHdpbGwgZWFybiAqKjEuMSoqIG1vcmUgaW4gaGlzIG1vbnRobHkgaW5jb21lLiAgDQoqICoqVGhlIFIgc3F1YXJlZCB0ZWxscyB1cyB0aGF0IG91ciBtb2RlbCBleHBsYWlucyBvbmx5IF8zMC4xJV8gb24gdGhlIHZhcmlhdGlvbiBvZiB0aGUgbW9udGhseSBpbmNvbWUuKioNCg0KPiAqKk1ha2luZyBhbiBIaXBvdGhlc2lzIHdpdGggb3VyIG1vZGVsKioNCmBgYHtyfQ0Kc3VtbWFyeShyZWcpDQpgYGANCg0KSSBjYW4gYXNzdW1lIHRoYXQgZWFjaCB2YXJpYWJsZSBpcyB2ZXJ5IHNpZ25pZmljYW50IGF0IHRoZSBzaWduaWZpY2FuY2UgbGV2ZWwgb2YgNSUuDQoNCj4gICoqX1RoZW4gSSBjcmVhdGVkIGEgZ3JhcGggKGhpc3RvZ3JhbSkgb2YgdGhlICJpbmdvY3VwIiB2YXJpYWJsZS5fKioNCg0KYGBge3IgZWNobz1GQUxTRX0NCmF0dGFjaChTREVNVDExOCkNCmhpc3QobG9nKGluZ29jdXApLCB5bGltID0gYygwLCA0MDAwMCksIGNvbCA9IDI6MTYsIG1haW4gPSAiTW9udGhseSBpbmNvbWUiKQ0KYGBgDQo+ICAqKl9Eb2luZyAgYSAgQnJldXNjaC1QYWdhbiAgdGVzdCAgYW5kICBhICBXaGl0ZSAgdGVzdCBhbmQgaW50ZXJwcmV0aW5nICB0aGUgIHJlc3VsdC5fKioNCg0KPiAqKkJyZXVzY2gtUGVnYW4gdGVzdCoqDQoNCmBgYHtyfQ0KYnB0ZXN0KHJlZykNCmBgYA0KDQoNCj4gKipXaGl0ZSB0ZXN0KioNCg0KYGBge3J9DQpicHRlc3QocmVnLCB+Zml0dGVkKHJlZykgKyBJKGZpdHRlZChyZWcpXjIpKQ0KYGBgDQoNCioqY29uY2x1c2lvbjogVGhlcmUgaXMgaGV0ZXJvc2tlZGFzdGljaXR5IGdpdmVuIHRoZSBmYWN0IHRoYXQgMi4yZS0xNiA8IDAuMDUqKg0KU28gSSdtIGdvaW5nIHRvIGFkanVzdCB1c2luZy1yb2J1c3QgZXN0YW5kYXIgZXJyb3JzLg0KDQpgYGB7cn0NCnJlZzMgPC0gY29lZnRlc3QocmVnLCBoY2NtKSANCnJlZzMNCnN0YXJnYXplcihyZWcsIHJlZzMsIHR5cGUgPSAidGV4dCIpDQpgYGANCiogSW4gdGhpcyBjYXNlLCB0aGVyZSBpcyBubyBoZXRlcm9za2VkYXN0aWNpdHkgYW55bW9yZSwgYmVjYXVzZSB3ZSBoYXZlIG1hZGUgbW9yZSByb2J1c3Qgb3VyIGVzdGltYXRlZCBlcnJvcnMgc28gd2UgY2FuIG5vdCByZWplY3QgdGhlIGFzc3VwdGlvbiBvZiBob21vc2tlZGFzdGljaXR5LiANCg0KDQo+ICAqKl9DcmVhdGluZyB0aHJlZSBkdW1teSB2YXJpYWJsZXMgdG8gcnVuIHRoZSBuZXcgcmVncmVzc2lvbiBhbmQgc2VlIHdoYXQgaXMgdGhlIGVmZmVjdCBvZiBiZWluZyBzaW5nbGUgZmVtYWxlL21hbGUsIGFuZCBtYXJyaWVkIGZlbWFsZS9tYWxlLl8qKiANCg0KYGBge3IgZWNobyA9IFRSVUV9DQphdHRhY2goU0RFTVQxMTgpDQptYXJyZmVtIDwtIGFzLm51bWVyaWMobXVqZXI9PTEgJiBjYXNhZG8gPT0xKSAjbWFycmllZCBmZW1hbGUNCnNpbmdtYWwgPC0gYXMubnVtZXJpYyhtdWplcj09MCAmIGNhc2Fkbz09MCkgI3NpbmdsZSBtYWxlDQpzaW5nZmVtIDwtIGFzLm51bWVyaWMobXVqZXI9PTEgJiBjYXNhZG89PTApICNzaW5nbGUgZmVtYWxlDQpyZWcyIDwtIGxtKGxvZyhpbmdvY3VwKSB+IG1hcnJmZW0gKyBzaW5nbWFsICsgc2luZ2ZlbSArIGVkYSArIEkoZWRhXjIpICsgYW5pb3NfZXNjICsgaHJzb2N1cCkNCnN0YXJnYXplcihyZWcyLCB0eXBlID0gInRleHQiKQ0KY29lZnRlc3QocmVnMiwgdmNvdiA9IGhjY20ocmVnMiwgdHlwZSA9ICJoYzEiKSkNCmBgYA0KKiBJIGNhbiBzZWUgaW4gdGhlIGZpcnN0IHZhcmlhYmxlICoqKG1hcnJmZW0pKiogdGhhdCBhIHdvbWFuIHRoYXQgaXMgbWFycmllZCB0ZW5kcyB0byBlYXJuIDM1LjIlIGxlc3MgdGhhdCBhIG1hbiB3aG8gaXMgbWFycmllZC4gDQoqIEluIHRoZSBzZWNvbmQgb25lICoqKHNpbmdtYWwpKiogc2F5cyB0aGF0IGEgbWFuIHdobyBpcyBzaW5nbGUgdGVuZHMgdG8gZWFybiA4LjUlIHRoYW4gYSBtYW4gd2hvIGlzIG1hcnJpZWQuIA0KKiBJbiB0aGUgbGFzdCBvbmUgKiooc2luZ2ZlbSkqKiBJIGNhbiBzZWUgdGhhdCBhIHdvbWFuIHRoYXQgaXMgc2luZ2xlIHRlbmRzIHRvIGVhcm4gMzEuOSUgbGVzcyB0aGFuIGEgbWFuIHRoYXQgaXMgbWFycmllZC4gDQoNCj4gKipDT05DTFVTSU9OKioNCg0KKiBBY29vcmRpbmcgdG8gdGhlIGVjb25vbWljIHRoZW9yeSwgdGhlcmUgYXJlIG5vIHJlZHVuZGFudCB2YXJpYWJsZXMgYmVjYXVzZSBJIGhhdmUgc3BlY2lmaWVkIHRvIHZhcmlhYmxlcyBjb3JyZWN0bHksIGFuZCBtdWNoIGxlc3MgdGhlcmUgaXMgcGVyZmVjdCBjb2xsaW5lYXJpdHkgd2l0aCBpbmRlcGVuZGVudCB2YXJpYWJsZXMuIA0KDQoqIEkgd29uZGVyZWQgaWYgaXQncyBwb3NzaWJsZSB0aGF0IHNvbWUgb3RoZXIgdmFyaWFibGVzIGV4aXN0IHdoaWNoIG1pZ2h0IGhhdmUgYW4gaW5mbHVlbmNlIG9uIG1vbnRobHkgaW5jb21lLCBzbyBhY2NvcmRpbmcgdG8gdGhlIEVOT0UgZGF0YSwgd2UgdG9vayBpbnRvIGFjY291bnQgdGhlIGluZm9ybWFsIGFuZCBmb3JtYWwgam9iIHZhcmlhYmxlICoqKGpvYikqKi4gSSBtYWRlIHRoZSByZWdyZXNzaW9uLCBhbmQgYWNjb3JkaW5nIHRvIHRoaXMsIHRoZSB2YXJpYWJsZSBzaG93cyB0aGF0IGZvciB0aGUgc2ltcGxlIGZhY3Qgb2YgaGF2aW5nIGEgZm9ybWFsIGpvYiwgc29tZW9uZSBjb3VsZCBlYXJuICoqNDAlKiogbW9yZSB0aGF0IHNvbWVvbmUgd2hvIGRvZXNuJ3QuDQoqKkkgdXNlIGR1bW15IHZhcmlibGVzIGZvciB0aGlzIHJlZ3Jlc3Npb24gdG9vLioqDQpgYGB7cn0NClNERU1UMTE4JGpvYiA8LSByZWNvZGUoU0RFTVQxMTgkZW1wX3BwYWwsICIxPTA7IDI9MSIpICMgZW1wbGVvIGluZm9ybWFsPTE7IDA9ZW1wbGVvIGZvcm1hbA0KDQpyZWcyIDwtIGxtKGxvZyhpbmdvY3VwKSB+IGpvYiArIG11amVyICsgZWRhICsgSShlZGFeMikgKyBhbmlvc19lc2MgKyBjYXNhZG8gKyBocnNvY3VwLCBkYXRhPVNERU1UMTE4KQ0Kc3RhcmdhemVyKHJlZzIsIHR5cGUgPSAidGV4dCIpDQpgYGANCg0KIA==