tidyr trainingThe purpose of this noteboook is to illustrate how the tidyr package can be used to tidy data into a structure that works best in R.
library(dplyr)
library(tidyr)
Tidy data is where:
It can help to think of it in terms of being easy to use in ggplot2. Could each column be a x, y, fill, colour, or facet variable?
Messy data is data where the 3 premises above do not hold true.
table1 #tidy data: each column is a variable & each row is an observation
## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
table2 #messy data: each observation spread across 2 rows
## # A tibble: 12 x 4
## country year type count
## <chr> <int> <chr> <int>
## 1 Afghanistan 1999 cases 745
## 2 Afghanistan 1999 population 19987071
## 3 Afghanistan 2000 cases 2666
## 4 Afghanistan 2000 population 20595360
## 5 Brazil 1999 cases 37737
## 6 Brazil 1999 population 172006362
## 7 Brazil 2000 cases 80488
## 8 Brazil 2000 population 174504898
## 9 China 1999 cases 212258
## 10 China 1999 population 1272915272
## 11 China 2000 cases 213766
## 12 China 2000 population 1280428583
table3 #messy data: the rate column contains 2 variables
## # A tibble: 6 x 3
## country year rate
## * <chr> <int> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583
table4a #messy data: the variable year is spread over 2 columns
## # A tibble: 3 x 3
## country `1999` `2000`
## * <chr> <int> <int>
## 1 Afghanistan 745 2666
## 2 Brazil 37737 80488
## 3 China 212258 213766
table4b #messy data: the variable year is spread over 2 columns
## # A tibble: 3 x 3
## country `1999` `2000`
## * <chr> <int> <int>
## 1 Afghanistan 19987071 20595360
## 2 Brazil 172006362 174504898
## 3 China 1272915272 1280428583
gather columns into a longer format.gather(table4a, key="year", value="cases", `1999`:`2000`)
## # A tibble: 6 x 3
## country year cases
## <chr> <chr> <int>
## 1 Afghanistan 1999 745
## 2 Brazil 1999 37737
## 3 China 1999 212258
## 4 Afghanistan 2000 2666
## 5 Brazil 2000 80488
## 6 China 2000 213766
gather(table4b, key="year", value="population", `1999`:`2000`)
## # A tibble: 6 x 3
## country year population
## <chr> <chr> <int>
## 1 Afghanistan 1999 19987071
## 2 Brazil 1999 172006362
## 3 China 1999 1272915272
## 4 Afghanistan 2000 20595360
## 5 Brazil 2000 174504898
## 6 China 2000 1280428583
full_join(
gather(table4a, key="year", value="cases", `1999`:`2000`),
gather(table4b, key="year", value="population", `1999`:`2000`)
)
## # A tibble: 6 x 4
## country year cases population
## <chr> <chr> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Brazil 1999 37737 172006362
## 3 China 1999 212258 1272915272
## 4 Afghanistan 2000 2666 20595360
## 5 Brazil 2000 80488 174504898
## 6 China 2000 213766 1280428583
spread(table2, key=type, value=count)
## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
separate(table3, col=rate, into=c("cases", "population"))
## # A tibble: 6 x 4
## country year cases population
## * <chr> <int> <chr> <chr>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
unite(table3, col = country_year, country, year, sep = "_")
## # A tibble: 6 x 2
## country_year rate
## <chr> <chr>
## 1 Afghanistan_1999 745/19987071
## 2 Afghanistan_2000 2666/20595360
## 3 Brazil_1999 37737/172006362
## 4 Brazil_2000 80488/174504898
## 5 China_1999 212258/1272915272
## 6 China_2000 213766/1280428583
spread columns into a wider format.spread(table2, key=type, value=count)
## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
seperate 1 column into many.separate(table3, col=rate, into=c("cases", "population"))
## # A tibble: 6 x 4
## country year cases population
## * <chr> <int> <chr> <chr>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
unite many columns into 1.unite(table3, col = country_year, country, year, sep = "_")
## # A tibble: 6 x 2
## country_year rate
## <chr> <chr>
## 1 Afghanistan_1999 745/19987071
## 2 Afghanistan_2000 2666/20595360
## 3 Brazil_1999 37737/172006362
## 4 Brazil_2000 80488/174504898
## 5 China_1999 212258/1272915272
## 6 China_2000 213766/1280428583