PROJECT DESCRIPTION One thing that people do regularly is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm and dumbbell of 6 participants.

The goal of your project is to predict the manner in which they did the exercise. This is the “classe” variable in the training set. You may use any of the other variables to predict with. You should create a report describing how you built your model, how you used cross validation, what you think the expected out of sample error is, and why you made the choices you did. You will also use your prediction model to predict 20 different test cases.

This process starts with setting the working directories, loading the data and libraries, and then partitioning the data.

library(caret)
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 3.3.3
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.3.3
library(rattle)
## Warning: package 'rattle' was built under R version 3.3.3
## Rattle: A free graphical interface for data science with R.
## Version 5.1.0 Copyright (c) 2006-2017 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
setwd("C:/Users/Songbird2015/Desktop/Coursera/Practical Machine Learning")
DatTrain <- read.csv(file="pml-training.csv", header=TRUE, sep=",")
dim(DatTrain)
## [1] 19622   160
str(DatTrain)
## 'data.frame':    19622 obs. of  160 variables:
##  $ X                       : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ user_name               : Factor w/ 6 levels "adelmo","carlitos",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ raw_timestamp_part_1    : int  1323084231 1323084231 1323084231 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 ...
##  $ raw_timestamp_part_2    : int  788290 808298 820366 120339 196328 304277 368296 440390 484323 484434 ...
##  $ cvtd_timestamp          : Factor w/ 20 levels "2/12/2011 13:32",..: 15 15 15 15 15 15 15 15 15 15 ...
##  $ new_window              : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
##  $ num_window              : int  11 11 11 12 12 12 12 12 12 12 ...
##  $ roll_belt               : num  1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.43 1.45 ...
##  $ pitch_belt              : num  8.07 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.16 8.17 ...
##  $ yaw_belt                : num  -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 ...
##  $ total_accel_belt        : int  3 3 3 3 3 3 3 3 3 3 ...
##  $ kurtosis_roll_belt      : Factor w/ 397 levels "","-0.01685",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ kurtosis_picth_belt     : Factor w/ 317 levels "","-0.021887",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ kurtosis_yaw_belt       : Factor w/ 2 levels "","#DIV/0!": 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_roll_belt      : Factor w/ 395 levels "","-0.003095",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_roll_belt.1    : Factor w/ 338 levels "","-0.005928",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_yaw_belt       : Factor w/ 2 levels "","#DIV/0!": 1 1 1 1 1 1 1 1 1 1 ...
##  $ max_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_picth_belt          : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_yaw_belt            : Factor w/ 68 levels "","-0.1","-0.2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ min_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_pitch_belt          : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_yaw_belt            : Factor w/ 68 levels "","-0.1","-0.2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ amplitude_roll_belt     : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_pitch_belt    : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_yaw_belt      : Factor w/ 3 levels "","#DIV/0!","0": 1 1 1 1 1 1 1 1 1 1 ...
##  $ var_total_accel_belt    : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_roll_belt        : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_pitch_belt          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_pitch_belt       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_pitch_belt          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_yaw_belt            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_yaw_belt         : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_yaw_belt            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ gyros_belt_x            : num  0 0.02 0 0.02 0.02 0.02 0.02 0.02 0.02 0.03 ...
##  $ gyros_belt_y            : num  0 0 0 0 0.02 0 0 0 0 0 ...
##  $ gyros_belt_z            : num  -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 0 ...
##  $ accel_belt_x            : int  -21 -22 -20 -22 -21 -21 -22 -22 -20 -21 ...
##  $ accel_belt_y            : int  4 4 5 3 2 4 3 4 2 4 ...
##  $ accel_belt_z            : int  22 22 23 21 24 21 21 21 24 22 ...
##  $ magnet_belt_x           : int  -3 -7 -2 -6 -6 0 -4 -2 1 -3 ...
##  $ magnet_belt_y           : int  599 608 600 604 600 603 599 603 602 609 ...
##  $ magnet_belt_z           : int  -313 -311 -305 -310 -302 -312 -311 -313 -312 -308 ...
##  $ roll_arm                : num  -128 -128 -128 -128 -128 -128 -128 -128 -128 -128 ...
##  $ pitch_arm               : num  22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.6 ...
##  $ yaw_arm                 : num  -161 -161 -161 -161 -161 -161 -161 -161 -161 -161 ...
##  $ total_accel_arm         : int  34 34 34 34 34 34 34 34 34 34 ...
##  $ var_accel_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_roll_arm         : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_pitch_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_pitch_arm        : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_pitch_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_yaw_arm             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_yaw_arm          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_yaw_arm             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ gyros_arm_x             : num  0 0.02 0.02 0.02 0 0.02 0 0.02 0.02 0.02 ...
##  $ gyros_arm_y             : num  0 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 ...
##  $ gyros_arm_z             : num  -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.02 ...
##  $ accel_arm_x             : int  -288 -290 -289 -289 -289 -289 -289 -289 -288 -288 ...
##  $ accel_arm_y             : int  109 110 110 111 111 111 111 111 109 110 ...
##  $ accel_arm_z             : int  -123 -125 -126 -123 -123 -122 -125 -124 -122 -124 ...
##  $ magnet_arm_x            : int  -368 -369 -368 -372 -374 -369 -373 -372 -369 -376 ...
##  $ magnet_arm_y            : int  337 337 344 344 337 342 336 338 341 334 ...
##  $ magnet_arm_z            : int  516 513 513 512 506 513 509 510 518 516 ...
##  $ kurtosis_roll_arm       : Factor w/ 330 levels "","-0.02438",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ kurtosis_picth_arm      : Factor w/ 328 levels "","-0.00484",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ kurtosis_yaw_arm        : Factor w/ 395 levels "","-0.01548",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_roll_arm       : Factor w/ 331 levels "","-0.00051",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_pitch_arm      : Factor w/ 328 levels "","-0.00184",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_yaw_arm        : Factor w/ 395 levels "","-0.00311",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ max_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_picth_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_yaw_arm             : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_pitch_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_yaw_arm             : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_roll_arm      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_pitch_arm     : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_yaw_arm       : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ roll_dumbbell           : num  13.1 13.1 12.9 13.4 13.4 ...
##  $ pitch_dumbbell          : num  -70.5 -70.6 -70.3 -70.4 -70.4 ...
##  $ yaw_dumbbell            : num  -84.9 -84.7 -85.1 -84.9 -84.9 ...
##  $ kurtosis_roll_dumbbell  : Factor w/ 398 levels "","-0.0035","-0.0073",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ kurtosis_picth_dumbbell : Factor w/ 401 levels "","-0.0163","-0.0233",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ kurtosis_yaw_dumbbell   : Factor w/ 2 levels "","#DIV/0!": 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_roll_dumbbell  : Factor w/ 401 levels "","-0.0082","-0.0096",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_pitch_dumbbell : Factor w/ 402 levels "","-0.0053","-0.0084",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_yaw_dumbbell   : Factor w/ 2 levels "","#DIV/0!": 1 1 1 1 1 1 1 1 1 1 ...
##  $ max_roll_dumbbell       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_picth_dumbbell      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_yaw_dumbbell        : Factor w/ 73 levels "","-0.1","-0.2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ min_roll_dumbbell       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_pitch_dumbbell      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_yaw_dumbbell        : Factor w/ 73 levels "","-0.1","-0.2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ amplitude_roll_dumbbell : num  NA NA NA NA NA NA NA NA NA NA ...
##   [list output truncated]
DatVal <- read.csv(file="pml-testing.csv", header=TRUE, sep=",")
dim(DatVal)
## [1]  20 160
set.seed(1000)
DatTrim <-createDataPartition(y=DatTrain$classe, p=.75, list=FALSE)
TrainSamp <- DatTrain[DatTrim,]
TestSamp <- DatTrain[-DatTrim,]

The training data set consists of 19,622 rows and 160 columns Profiling the data revealed that some of the columns contained blanks or values of NA. These need to be removed before proceeding. Additionally, the first seven columns contain time or personal data and will be ignored as well. This reduces the data from 160 to 53 columns.

DatTrim_NZ <- sapply(names(DatVal), function(x) all(is.na(DatVal[,x])==TRUE))
NZTestDat <- names(DatTrim_NZ)[DatTrim_NZ==FALSE]
NZTestDat <- NZTestDat[-(1:7)]
NZTestDat <- NZTestDat[1:(length(NZTestDat)-1)]
fitControl <- trainControl(method="cv", number=5)

There are advantages to using decision trees during model selection. They perform feature selection autmatically, there is only a small amount of data preparation required, and they are easily explained to business partners. The three models that were used for this analysis are: Decision Tree (rpart), Boosting Trees (gbm) and Random Forest (rf).

Cross validation is a technique that is utilized during the model training process to better estimate the test error of a particular model.

fitControl <- trainControl(method='cv', number = 3)

Next, the Out-of-Sample (OOS) errors were reviewed. OOS is used to test model assumptions and compare forecasting against other models. This revealed that both GBM (~96.5%) and RF (~99.2%) are better at prediction for this set of data than the rpart (~51.2%) model.

predCART <- predict(model_cart, newdata=TestSamp)
cmCART <- confusionMatrix(predCART, TestSamp$classe)
predGBM <- predict(model_gbm, newdata=TestSamp)
cmGBM <- confusionMatrix(predGBM, TestSamp$classe)
predRF <- predict(model_rf, newdata=TestSamp)
cmRF <- confusionMatrix(predRF, TestSamp$classe)
AccuracyResults <- data.frame(
        Model = c('CART', 'GBM', 'RF'),
        Accuracy = rbind(cmCART$overall[1], cmGBM$overall[1], cmRF$overall[1])
)
print(AccuracyResults)
##   Model  Accuracy
## 1  CART 0.5122349
## 2   GBM 0.9659462
## 3    RF 0.9922512

As Random Forest has the highest accuracy, it will be used for predict the values of classe.

predictTEST <- predict(model_rf, newdat=DatVal)
predictTEST
##  [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E
ValidationPredictionResults <- data.frame(
        problem_id=DatVal$problem_id,
        predicted=predictTEST
)
print(ValidationPredictionResults)
##    problem_id predicted
## 1           1         B
## 2           2         A
## 3           3         B
## 4           4         A
## 5           5         A
## 6           6         E
## 7           7         D
## 8           8         B
## 9           9         A
## 10         10         A
## 11         11         B
## 12         12         C
## 13         13         B
## 14         14         A
## 15         15         E
## 16         16         E
## 17         17         A
## 18         18         B
## 19         19         B
## 20         20         B