Radar Plots
op <- par(no.readonly = TRUE)
par(mfrow = c(1,2),xpd = TRUE,pty = "s",mar = c(1,1,1,1))
mNames <- names(cp$cpuElapsedTimes)
classRanks <- c(pr$minMaxMetrics$BMAE[1],pr$minMaxMetrics$KAPPA[2],pr$minMaxMetrics$Kendall[2],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$AUC[2],min(cp$cpuElapsedTimes))
classRanks <- rbind(classRanks,c(pr$minMaxMetrics$BMAE[2],0,0,0,0,0,max(cp$cpuElapsedTimes)))
classRanks <- as.data.frame(rbind(classRanks,cbind(t(pr$metrics[c("BMAE","KAPPA","Kendall","ACC","SEN","AUC"),mNames]),cp$cpuElapsedTimes)))
colnames(classRanks) <- c("BMAE","KAPPA","Kendall","ACC","SEN","AUC","CPU")
classRanks$BMAE <- -classRanks$BMAE
classRanks$CPU <- -classRanks$CPU
colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0), rgb(1.0,1.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05), rgb(1.0,1.0,0.0,0.05) )
fmsb::radarchart(classRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex = 0.5 ,title = "Prediction Model")
legend("topleft",legend = rownames(classRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)
filnames <- c("BSWiMS","LASSO","RF.ref","F.Test","Kendall","mRMR")
filterRanks <- c(pr$minMaxMetrics$BMAE[1],pr$minMaxMetrics$KAPPA[2],pr$minMaxMetrics$Kendall[2],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$AUC[2],max(cp$jaccard),min(cp$featsize));
filterRanks <- rbind(filterRanks,c(pr$minMaxMetrics$BMAE[2],0,0,0,0,0,min(cp$jaccard),max(cp$featsize)));
filterRanks <- as.data.frame(rbind(filterRanks,cbind(t(pr$metrics_filter[c("BMAE","KAPPA","Kendall","ACC","SEN","AUC"),filnames]),cp$jaccard[filnames],cp$featsize[filnames])));
colnames(filterRanks) <- c("BMAE","KAPPA","Kendall","ACC","SEN","AUC","Jaccard","SIZE")
filterRanks$BMAE <- -filterRanks$BMAE
filterRanks$SIZE <- -filterRanks$SIZE
colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
fmsb::radarchart(filterRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex = 0.6,title = "Filter Method" )
legend("topleft",legend = rownames(filterRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)

par(mfrow = c(1,1))
par(op)
Features Analysis
pander::pander(summary(bmodel),caption = "Model",round = 3)
coefficients:
Table continues below
| vent |
-0.7376 |
0.3526 |
0.4783 |
0.6487 |
0.59 |
0.6003 |
| gest |
0.08306 |
1.048 |
1.087 |
1.127 |
0.6511 |
0.6462 |
| pltct |
0.002011 |
1.001 |
1.002 |
1.003 |
0.648 |
0.6478 |
| toc |
1.086 |
1.768 |
2.963 |
4.966 |
0.4351 |
0.6824 |
| meth |
0.4386 |
1.176 |
1.55 |
2.044 |
0.59 |
0.6548 |
Table continues below
| vent |
0.6637 |
0.6432 |
0.6334 |
0.6753 |
0.05976 |
0.5553 |
| gest |
0.6813 |
0.654 |
0.6568 |
0.6831 |
0.05362 |
0.5125 |
| pltct |
0.6813 |
0.6563 |
0.6529 |
0.6831 |
0.05087 |
0.5931 |
| toc |
0.6658 |
0.6007 |
0.6647 |
0.6768 |
0.04709 |
0.4102 |
| meth |
0.6647 |
0.6376 |
0.6747 |
0.6748 |
0.02758 |
0.54 |
| vent |
4.743 |
5.619 |
0.475 |
| gest |
4.469 |
5.084 |
0.5 |
| pltct |
4.436 |
5.912 |
0.5 |
| toc |
4.124 |
5.458 |
0.5 |
| meth |
3.111 |
5.425 |
0.4 |
- Accuracy: 0.682
- tAUC: 0.6824
- sensitivity: 0.6816
- specificity: 0.6833
bootstrap:
coefficients:
Table continues below
| cld |
-1.393 |
0.1453 |
0.2482 |
0.4241 |
0.6653 |
0.6527 |
| meth |
0.9687 |
1.626 |
2.635 |
4.269 |
0.6527 |
0.6653 |
| vent |
-0.01166 |
0.9823 |
0.9884 |
0.9945 |
0.636 |
0.5523 |
| bwt |
0.0002839 |
1 |
1 |
1 |
0.6025 |
0.6109 |
| lowph |
0.1896 |
1.046 |
1.209 |
1.396 |
0.6025 |
0.6025 |
| pltct |
0.0003098 |
1 |
1 |
1.001 |
0.6151 |
0.6025 |
Table continues below
| cld |
0.682 |
0.6644 |
0.6528 |
0.6825 |
0.09896 |
0.6576 |
| meth |
0.682 |
0.6528 |
0.6644 |
0.6825 |
0.06108 |
0.6113 |
| vent |
0.6381 |
0.6361 |
0.5512 |
0.6381 |
0.05569 |
0.5361 |
| bwt |
0.638 |
0.6024 |
0.6109 |
0.6378 |
0.04021 |
0.3032 |
| lowph |
0.6192 |
0.6025 |
0.6024 |
0.6191 |
0.02593 |
0.3091 |
| pltct |
0.6527 |
0.6151 |
0.6024 |
0.6525 |
0.02376 |
0.3433 |
| cld |
5.099 |
6.008 |
0.5 |
| meth |
3.934 |
4.972 |
0.5 |
| vent |
3.69 |
4.313 |
0.05 |
| bwt |
3.162 |
2.373 |
0.475 |
| lowph |
2.576 |
2.423 |
0.2 |
| pltct |
2.505 |
2.694 |
0.25 |
- Accuracy: 0.7155
- tAUC: 0.7156
- sensitivity: 0.6917
- specificity: 0.7395
bootstrap:
coefficients:
Table continues below
| vent |
-0.02679 |
0.9665 |
0.9736 |
0.9807 |
0.6444 |
0.2259 |
| cld |
-2.858 |
0.02585 |
0.05739 |
0.1274 |
0.5063 |
0.431 |
| gest |
0.09611 |
1.063 |
1.101 |
1.14 |
0.6176 |
0.6187 |
| lowph |
0.1663 |
1.089 |
1.181 |
1.281 |
0.6276 |
0.6165 |
| pltct |
0.001551 |
1.001 |
1.002 |
1.002 |
0.6169 |
0.6179 |
| pda |
-1.145 |
0.1656 |
0.3181 |
0.611 |
0.431 |
0.5063 |
Table continues below
| vent |
0.6444 |
0.6785 |
0.5 |
0.6785 |
0.1243 |
0.6991 |
| cld |
0.569 |
0.6745 |
0.6193 |
0.702 |
0.1202 |
0.6971 |
| gest |
0.6483 |
0.6007 |
0.6248 |
0.6434 |
0.07467 |
0.3702 |
| lowph |
0.6592 |
0.6385 |
0.6036 |
0.656 |
0.04366 |
0.3988 |
| pltct |
0.6461 |
0.622 |
0.6002 |
0.6409 |
0.04058 |
0.4714 |
| pda |
0.569 |
0.6193 |
0.6745 |
0.702 |
0.03361 |
0.4769 |
| vent |
7.221 |
7.241 |
0.05 |
| cld |
7.023 |
9.475 |
0.5 |
| gest |
5.404 |
3.641 |
0.45 |
| lowph |
4.006 |
3.959 |
0.075 |
| pltct |
4.001 |
4.681 |
0.375 |
| pda |
3.439 |
6.705 |
0.5 |
- Accuracy: 0.59
- tAUC: 0.7024
- sensitivity: 0.9074
- specificity: 0.4973
bootstrap:
topFeat <- min(ncol(bmodel$bagging$formulaNetwork),30);
shortformulaNetwork <- bmodel$bagging$formulaNetwork[1:topFeat,1:topFeat]
validf <- diag(shortformulaNetwork) > 0.1
gplots::heatmap.2(shortformulaNetwork[validf,validf],trace="none",mar = c(10,10),main = "B:SWiMS Formula Network",cexRow = 0.6,cexCol = 0.6)

rm <- rowMeans(cp$featureSelectionFrequency)
selFrequency <- cp$featureSelectionFrequency[rm > 0.10,]
gplots::heatmap.2(selFrequency,trace = "none",mar = c(10,10),main = "Features",cexRow = 0.2)

hm <- heatMaps(Outcome = theOutcome,data = theData[,c(theOutcome,rownames(selFrequency))],title = "Heat Map",Scale = TRUE,hCluster = "col",cexRow = 0.3,cexCol = 0.3,srtCol = 45)

vlist <- rownames(selFrequency)
vlist <- cbind(vlist,vlist)
univ <- univariateRankVariables(variableList = vlist,formula = paste(theOutcome,"~1"),Outcome = theOutcome,data = theData,type = "LM",rankingTest = "Ztest",uniType = "Regression")[,c("cohortMean","cohortStd","kendall.r","kendall.p")]
cnames <- colnames(univ);
univ <- cbind(univ,rm[rownames(univ)])
colnames(univ) <- c(cnames,"Frequency")
univ <- univ[order(-univ[,5]),]
pander::pander(univ[1:topFeat,],caption = "Features",round = 4)
Features
| pltct |
207 |
81.4 |
0.2027 |
0 |
0.9857 |
| bwt |
1142 |
235.6 |
0.2069 |
0 |
0.9619 |
| vent |
226 |
252 |
-0.3038 |
0 |
0.9048 |
| meth |
261 |
217 |
0.2445 |
0 |
0.9048 |
| lowph |
7.222 |
0.1282 |
0.1987 |
0 |
0.8762 |
| gest |
29.32 |
2.17 |
0.1974 |
0 |
0.8286 |
| cld |
355 |
123 |
-0.2429 |
0 |
0.7952 |
| toc |
367 |
111 |
0.1569 |
2e-04 |
0.7619 |
| pda |
388 |
90 |
-0.1617 |
1e-04 |
0.6905 |
| hospstay |
47.65 |
64.59 |
-0.0645 |
0.0602 |
0.5714 |