[http://aedbest.wordpress.com]

Vamos ilustrar como calcular a integral de uma distribuição normal padrão com o Software R

\[\int_{-a}^{a} \frac{1}{\sqrt{(2\pi)}}\exp{\frac{-x^2}{2}}dx\]

se a = 1

a=1
f <- function(x) {1/sqrt(2*pi)*exp(-x^2/2)}
integrate(f, lower = -a, upper = a)
0.6826895 with absolute error < 7.6e-15

se a = 2

a=2
f <- function(x) {1/sqrt(2*pi)*exp(-x^2/2)}
integrate(f, lower = -a, upper = a)
0.9544997 with absolute error < 1.8e-11

se a = 3

a=3
f <- function(x) {1/sqrt(2*pi)*exp(-x^2/2)}
integrate(f, lower = -a, upper = a)
0.9973002 with absolute error < 9.3e-07

se a = infinito

a=Inf
f <- function(x) {1/sqrt(2*pi)*exp(-x^2/2)}
integrate(f, lower = -a, upper = a)
1 with absolute error < 9.4e-05
LS0tDQp0aXRsZTogIkPDoWxjdWxvIGRhIMOhcmVhIGRlIHVtYSBkaXN0cmlidWnDp8OjbyBkZSBwcm9iYWJpbGlkYWRlIG5vcm1hbCBwYWRyw6NvIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQphdXRob3I6ICJQcm9mIERyIFJvYmVydG8gQ2FtcG9zIExlb25pIg0KLS0tDQoNCltodHRwOi8vYWVkYmVzdC53b3JkcHJlc3MuY29tXQ0KDQojIFZhbW9zIGlsdXN0cmFyIGNvbW8gY2FsY3VsYXIgYSBpbnRlZ3JhbCBkZSB1bWEgZGlzdHJpYnVpw6fDo28gbm9ybWFsIHBhZHLDo28gY29tIG8gU29mdHdhcmUgUg0KDQoNCg0KXFtcaW50X3stYX1ee2F9IFxmcmFjezF9e1xzcXJ0eygyXHBpKX19XGV4cHtcZnJhY3steF4yfXsyfX1keFxdDQoNCg0KICANCiMjc2UgYSA9IDENCg0KYGBge3J9DQphPTENCmYgPC0gZnVuY3Rpb24oeCkgezEvc3FydCgyKnBpKSpleHAoLXheMi8yKX0NCg0KaW50ZWdyYXRlKGYsIGxvd2VyID0gLWEsIHVwcGVyID0gYSkNCmBgYA0KDQoNCg0KIyNzZSBhID0gMg0KDQpgYGB7cn0NCmE9Mg0KZiA8LSBmdW5jdGlvbih4KSB7MS9zcXJ0KDIqcGkpKmV4cCgteF4yLzIpfQ0KDQppbnRlZ3JhdGUoZiwgbG93ZXIgPSAtYSwgdXBwZXIgPSBhKQ0KYGBgDQoNCiMjc2UgYSA9IDMNCg0KYGBge3J9DQphPTMNCmYgPC0gZnVuY3Rpb24oeCkgezEvc3FydCgyKnBpKSpleHAoLXheMi8yKX0NCg0KaW50ZWdyYXRlKGYsIGxvd2VyID0gLWEsIHVwcGVyID0gYSkNCmBgYA0KDQoNCiMjc2UgYSA9IGluZmluaXRvDQoNCmBgYHtyfQ0KYT1JbmYNCmYgPC0gZnVuY3Rpb24oeCkgezEvc3FydCgyKnBpKSpleHAoLXheMi8yKX0NCg0KaW50ZWdyYXRlKGYsIGxvd2VyID0gLWEsIHVwcGVyID0gYSkNCmBgYA0KDQoNCg==