#There are some NAs in rep_id - not sure why..... find out!
#need to take out the population trends which crashed out and make a note of which ones these were
#need to talk to damaris about optimising the matrix
library(reshape2)
## Warning: package 'reshape2' was built under R version 3.4.3
library(sp)
lpi<-read.csv("LPI_pops_20160523_edited.csv")
spin_years<-1850:1949
years<-1950:2005
binomial = "Capra_ibex"
demoniche_folder<-"C:/Users/Fiona/Desktop/Grace_Output/Ibex/Output"
l<-list.files(demoniche_folder)
nf<-length(list.files(paste(demoniche_folder, l[1], sep="/")))
highfoldernames<-list.files(demoniche_folder)
lowfoldernames<-rep(1:nf, each=length(l))
foldernames<-paste(highfoldernames, lowfoldernames, sep="/")
sp_lpi<-lpi[lpi$Binomial == binomial & lpi$Specific_location ==1,]
xy<-data.frame(sp_lpi$Longitude, sp_lpi$Latitude)
coordinates(xy)<-c("sp_lpi.Longitude", "sp_lpi.Latitude")
proj4string(xy) <- CRS("+init=epsg:4326") # WGS 84
#CRS.new <- CRS("+proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 +y_0=3210000 +ellps=GRS80 +units=m +no_defs")
#xy <- spTransform(xy, CRS.new)
convert_pop_out<-function(foldername){
pop_out<-read.csv(paste(demoniche_folder ,foldername, "Reference_matrix_pop_output.csv", sep="/"), header = TRUE)
pop_out<-pop_out[,-1]
coordinates(pop_out) <- ~ X + Y
gridded(pop_out) <- TRUE
rasterDF <- stack(pop_out)
trends<-raster:::extract(rasterDF,xy)
med_disp<-strsplit(foldername, "[/_]")[[1]][6]
sdd<-strsplit(foldername, "[/_]")[[1]][7]
ldd<-strsplit(foldername, "[/_]")[[1]][8]
kern<-strsplit(foldername, "[/_]")[[1]][9]
SD<-strsplit(foldername, "[/_]")[[1]][10]
dens<-strsplit(foldername, "[/_]")[[1]][11]
link<-strsplit(foldername, "[/_]")[[1]][length(strsplit(foldername, "[/_]")[[1]])-1]
rep_id<-strsplit(foldername, "[/_]")[[1]][length(strsplit(foldername, "[/_]")[[1]])]
trends_df<-data.frame(sp_lpi$ID,med_disp,sdd,ldd,kern,SD,dens,link,rep_id,trends)
}
demoniche_pop_out<-lapply(foldernames, convert_pop_out)
df <- do.call("rbind", demoniche_pop_out)
dfm<-as.matrix(df)
lambda<-function(x){
l10<-10^diff(log1p(as.numeric(x[10:length(x)])))
}
dft<-t(apply(dfm,1,lambda))
df_lambda<-data.frame(dfm[,1:9],dft)
colnames(df_lambda)[10:ncol(df_lambda)]<-colnames(dfm)[11:ncol(dfm)]
melt_df<-melt(df, id=1:9)
melt_df$year<-as.numeric(gsub("Year_", "", melt_df$variable))
melt_lambda<-melt(df_lambda, id=1:9)
melt_lambda$year<-as.numeric(gsub("Year_", "", melt_lambda$variable))
melt_short<-melt_df[melt_df$year>spin_years[length(spin_years)] ,]
melt_short$sp_lpi.ID<-as.factor(melt_short$sp_lpi.ID)
melt_lambda_short<-melt_lambda[melt_lambda$year>years[1] ,]
melt_lambda_short$sp_lpi.ID<-as.factor(melt_lambda_short$sp_lpi.ID)
#write.csv(melt_short, "capra_ibex_melt_short.csv", row.names = FALSE)
#write.csv(melt_lambda_short, "capra_ibex_melt_lambda_short.csv", row.names = FALSE)
melt_short<-read.csv("capra_ibex_melt_short.csv")
melt_lambda_short<-read.csv("capra_ibex_melt_lambda_short.csv")
melt_short<-melt_short[,-1]
melt_lambda_short<-melt_lambda_short[,-1]
melt_short$sp_lpi.ID<-as.factor(melt_short$sp_lpi.ID)
melt_lambda_short$sp_lpi.ID<-as.factor(melt_lambda_short$sp_lpi.ID)
library(ggplot2)
ggplot(melt_short, aes(x= year, y=value, group=interaction(rep_id, med_disp), colour= sp_lpi.ID))+
geom_line()+
facet_grid(med_disp~ sp_lpi.ID)

ggplot(melt_lambda_short, aes(x= year, y=value, group=interaction(rep_id, med_disp), colour= sp_lpi.ID))+
geom_line()+
facet_grid(med_disp~ sp_lpi.ID)

ggplot(melt_short, aes(x= year, y=value, group=interaction(rep_id, med_disp), colour= sp_lpi.ID))+
geom_line()+
facet_grid(sdd ~ sp_lpi.ID)

library(taRifx)
library(plyr)
library(mgcv)
pops<-sp_lpi[,c(1,65:120)]
colnames(pops)[2:ncol(pops)]<-paste("Year", 1950:2005, sep="_")
pops[pops=="NULL"]<-NA
pops$rep_id<-"Observed"
pops$md_id<-"Observed"
popsm<-as.matrix(pops)
gam_lpi<-function(x){
#subsetting the population data by each population
spid = x[2:(length(x)-2)] #subsetting only the dates
names(spid)<-1950:2005 #renaming the date column names as R doesn't like numbered column names
spid<-as.numeric(spid)
pop_datab <- (!is.na(spid) )
points = sum(pop_datab)
id<-x[1]
Date<-1950:2005
spidt<-destring(t(spid))
time<-length(min(which(!is.na(spidt))):max(which(!is.na(spidt))))
missing<-time-points
Year<-Date[min(which(!is.na(spidt))):max(which(!is.na(spidt)))]
Population<-spidt[min(which(!is.na(spidt))):max(which(!is.na(spidt)))]
Population[Population == 0] <- mean(Population, na.rm=TRUE)*0.01 #if a population is zero one year thhis is replaced with 1% of the average population estimate - because you can log zeros
df<-data.frame(Year,Population)
#not sure what this does - adding a constant of 1 so that logging doesn't go weird?
if (sum(na.omit(df$Population<1))>0) {
df$Population<-df$Population+1
}
if (points >=6) {
PopN = df$Population
if (length(na.omit(PopN)) >=6) {
SmoothParm = round(length(na.omit(PopN))/2)
} else {
SmoothParm=3
}
mg2<-mgcv:::gam(PopN ~ s(Year, k=SmoothParm), fx=TRUE)
pv2 <- predict(mg2,df,type="response",se=TRUE)
R_sq2<-summary(mg2)$r.sq
model<-1
pv2$fit[pv2$fit <= 0] <- NA
lambda2<-pv2$fit
ial<-data.frame(id, Year,lambda2)
colnames(ial)<-c("ID", "Year", "Abundance")
}
return(ial)
}
gam_lpi_r<-apply(popsm, 1, gam_lpi)
gam_r<-do.call( "rbind", gam_lpi_r)
gam_r<-gam_r[gam_r$Year <=2005,]
fill<-data.frame(rep(pops$ID, each=length(1950:2005)), 1950:2005)
colnames(fill)<-c("ID", "Year")
all_year_ab<-join(fill, gam_r, type="right")
all_year_ab$med_disp<-"Observed"
all_year_ab$sdd<-"Observed"
all_year_ab$ldd<-"Observed"
all_year_ab$kern<-"Observed"
all_year_ab$SD<-"Observed"
all_year_ab$dens<-"Observed"
all_year_ab$link<-"Observed"
all_year_ab$rep_id<-"Observed"
colnames(all_year_ab)[1:3]<-c("sp_lpi.ID", "year", "value")
mldab<-melt_short[,-10]
all_year_ab$sp_lpi.ID<-as.factor(all_year_ab$sp_lpi.ID)
all_year_ab$med_disp<-as.factor(all_year_ab$med_disp)
all_year_ab$rep_id<-as.factor(all_year_ab$rep_id)
all_year_ab$value<-as.numeric(all_year_ab$value)
all_year_ab$year<-as.numeric(all_year_ab$year)
both_df_ab<-rbind(mldab, all_year_ab)
both_df_ab<-rbind(mldab, all_year_ab)
both_df_ab[both_df_ab$sp_lpi.ID == " 539",]$sp_lpi.ID<-539
library(ggplot2)
library(dplyr)
library(mgcv)
library(purrr)
model_gam<-function(df) {
gam(value~s(year), data=df)
}
gammy<-function(df, start_year = 1950, end_year = 2005){
gam_out<-df %>%
split(.$sp_lpi.ID) %>%
map(.,model_gam)%>%
map(fitted.values)%>%
map_dfr(unique)
gam_out<-melt(gam_out)
gam_out<-data.frame(gam_out, start_year:end_year)
colnames(gam_out)<-c("sp_lpi.ID", "Abundance", "Year")
return(gam_out)
}
gam_r<-gammy(melt_short)
remove time series with all zeros - identify which these are
ggplot(mldab, aes(x= year, y=value, group=interaction(rep_id, med_disp, sp_lpi.ID), colour= sp_lpi.ID))+
geom_line(colour="grey", alpha = 0.4)+
geom_line(data=both_df_ab[both_df_ab$med_disp=="Observed",], aes(x=year, y=value), colour="red")+
geom_line(data = gam_r, aes(x =Year, y = Abundance, group=sp_lpi.ID), colour = "blue" )+
facet_grid(.~ sp_lpi.ID)+
theme_bw()

mldab_no_z<-group_by(mldab, sp_lpi.ID, med_disp, sdd, ldd, kern,SD, dens, link, rep_id)%>%
mutate(value_sum = sum(value)) %>%
filter(value_sum >= 0)
group_by(mldab, sp_lpi.ID, med_disp, sdd, ldd, kern,SD, dens, link, rep_id)%>%
mutate(value_sum = sum(value)) %>%
filter(value_sum <= 0)%>%
distinct(sp_lpi.ID, med_disp, sdd, ldd, kern,SD, dens, link, rep_id)
## # A tibble: 18,596 x 9
## # Groups: sp_lpi.ID, med_disp, sdd, ldd, kern, SD, dens, link, rep_id
## # [18,596]
## sp_lpi.ID med_disp sdd ldd kern SD dens link rep_id
## <fctr> <dbl> <dbl> <dbl> <int> <dbl> <int> <int> <int>
## 1 539 13.6 0.100 0.100 1 0.500 30 1 1
## 2 10692 13.6 0.100 0.100 1 0.500 30 1 1
## 3 10694 13.6 0.100 0.100 1 0.500 30 1 1
## 4 10695 13.6 0.100 0.100 1 0.500 30 1 1
## 5 10696 13.6 0.100 0.100 1 0.500 30 1 1
## 6 10710 13.6 0.100 0.100 1 0.500 30 1 1
## 7 10713 13.6 0.100 0.100 1 0.500 30 1 1
## 8 10714 13.6 0.100 0.100 1 0.500 30 1 1
## 9 10717 13.6 0.100 0.100 1 0.500 30 1 1
## 10 10718 13.6 0.100 0.100 1 0.500 30 1 1
## # ... with 18,586 more rows
plots without low populations
gam_no_z<-gammy(mldab_no_z)
## No id variables; using all as measure variables
ggplot(mldab_no_z, aes(x= year, y=value, group=interaction(rep_id, med_disp, sp_lpi.ID), colour= sp_lpi.ID))+
geom_line(colour="grey", alpha = 0.4)+
geom_line(data=both_df_ab[both_df_ab$med_disp=="Observed",], aes(x=year, y=value), colour="red")+
geom_line(data = gam_no_z, aes(x =Year, y = Abundance, group=sp_lpi.ID), colour = "blue" )+
facet_grid(.~ sp_lpi.ID)+
theme_bw()

dispersal = 0.1 & sd = 0.1
mldab_no_z_sdd_0_1_sd_0_1<-filter(mldab_no_z, sdd == 0.1 & ldd ==0.1 & SD == 0.1)
gam_no_z_sdd_0_1_sd_0_1<-gammy(mldab_no_z_sdd_0_1_sd_0_1)
## No id variables; using all as measure variables
ggplot(mldab_no_z_sdd_0_1_sd_0_1, aes(x= year, y=value, group=interaction(rep_id, med_disp, sp_lpi.ID), colour= sp_lpi.ID))+
geom_line(colour="grey", alpha = 0.4)+
geom_line(data=both_df_ab[both_df_ab$med_disp=="Observed",], aes(x=year, y=value), colour="red")+
geom_line(data = gam_no_z_sdd_0_1_sd_0_1, aes(x =Year, y = Abundance, group=sp_lpi.ID), colour = "blue" )+
facet_grid(.~ sp_lpi.ID)+
theme_bw()

dispersal = 0.1 & sd = 0.25
mldab_no_z_sdd_0_1_sd_0_25<-filter(mldab_no_z, sdd == 0.1 & ldd ==0.1 & SD == 0.25)
gam_no_z_sdd_0_1_sd_0_25<-gammy(mldab_no_z_sdd_0_1_sd_0_25)
## No id variables; using all as measure variables
ggplot(mldab_no_z_sdd_0_1_sd_0_25, aes(x= year, y=value, group=interaction(rep_id, med_disp, sp_lpi.ID), colour= sp_lpi.ID))+
geom_line(colour="grey", alpha = 0.4)+
geom_line(data=both_df_ab[both_df_ab$med_disp=="Observed",], aes(x=year, y=value), colour="red")+
geom_line(data = gam_no_z_sdd_0_1_sd_0_25, aes(x =Year, y = Abundance, group=sp_lpi.ID), colour = "blue" )+
facet_grid(.~ sp_lpi.ID)+
theme_bw()

dispersal = 0.25 & sd = 0.1
mldab_no_z_sdd_0_25_sd_0_1<-filter(mldab_no_z, sdd == 0.25 & ldd ==0.25 & SD == 0.1)
gam_no_z_sdd_0_25_sd_0_1<-gammy(mldab_no_z_sdd_0_25_sd_0_1)
## No id variables; using all as measure variables
ggplot(mldab_no_z_sdd_0_25_sd_0_1, aes(x= year, y=value, group=interaction(rep_id, med_disp, sp_lpi.ID), colour= sp_lpi.ID))+
geom_line(colour="grey", alpha = 0.4)+
geom_line(data=both_df_ab[both_df_ab$med_disp=="Observed",], aes(x=year, y=value), colour="red")+
geom_line(data = gam_no_z_sdd_0_25_sd_0_1, aes(x =Year, y = Abundance, group=sp_lpi.ID), colour = "blue" )+
facet_grid(.~ sp_lpi.ID)+
theme_bw()

dispersal = 0.25 & sd = 0.25
mldab_no_z_sdd_0_25_sd_0_25<-filter(mldab_no_z, sdd == 0.25 & ldd ==0.25 & SD == 0.25)
gam_no_z_sdd_0_25_sd_0_25<-gammy(mldab_no_z_sdd_0_25_sd_0_25)
## No id variables; using all as measure variables
ggplot(mldab_no_z_sdd_0_25_sd_0_25, aes(x= year, y=value, group=interaction(rep_id, med_disp, sp_lpi.ID), colour= sp_lpi.ID))+
geom_line(colour="grey", alpha = 0.4)+
geom_line(data=both_df_ab[both_df_ab$med_disp=="Observed",], aes(x=year, y=value), colour="red")+
geom_line(data = gam_no_z_sdd_0_25_sd_0_25, aes(x =Year, y = Abundance, group=sp_lpi.ID), colour = "blue" )+
facet_grid(.~ sp_lpi.ID)+
theme_bw()

dispersal = 0.5 & SD = 0.1
mldab_no_z_sdd_0_5_sd_0_1<-filter(mldab_no_z, sdd == 0.5 & ldd ==0.5 & SD == 0.1)
gam_no_z_sdd_0_5_sd_0_1<-gammy(mldab_no_z_sdd_0_5_sd_0_1)
## No id variables; using all as measure variables
ggplot(mldab_no_z_sdd_0_5_sd_0_1, aes(x= year, y=value, group=interaction(rep_id, med_disp, sp_lpi.ID), colour= sp_lpi.ID))+
geom_line(colour="grey", alpha = 0.4)+
geom_line(data=both_df_ab[both_df_ab$med_disp=="Observed",], aes(x=year, y=value), colour="red")+
geom_line(data = gam_no_z_sdd_0_5_sd_0_1, aes(x =Year, y = Abundance, group=sp_lpi.ID), colour = "blue" )+
facet_grid(.~ sp_lpi.ID)+
theme_bw()

dispersal = 0.5 & SD = 0.25
this one not working cos some pops have no pops that didn’t crash out
mldab_no_z_sdd_0_5_sd_0_25<-filter(mldab_no_z, sdd == 0.5 & ldd ==0.5 & SD == 0.25)
gam_no_z_sdd_0_5_sd_0_25<-gammy(mldab_no_z_sdd_0_5_sd_0_25)
ggplot(mldab_no_z_sdd_0_5_sd_0_25, aes(x= year, y=value, group=interaction(rep_id, med_disp, sp_lpi.ID), colour= sp_lpi.ID))+
geom_line(colour="grey", alpha = 0.4)+
geom_line(data=both_df_ab[both_df_ab$med_disp=="Observed",], aes(x=year, y=value), colour="red")+
geom_line(data = gam_no_z_sdd_0_5_sd_0_25, aes(x =Year, y = Abundance, group=sp_lpi.ID), colour = "blue" )+
facet_grid(.~ sp_lpi.ID)+
theme_bw()
plotting in lambda
#melt_lambda_short[melt_lambda_short$sp_lpi.ID == " 539",]$sp_lpi.ID<-539
pops<-sp_lpi[,c(1,65:120)]
colnames(pops)[2:ncol(pops)]<-paste("Year", 1950:2005, sep="_")
pops[pops=="NULL"]<-NA
pops$rep_id<-"Observed"
pops$med_disp<-"Observed"
pops$sdd<-"Observed"
pops$ldd<-"Observed"
pops$kern<-"Observed"
pops$SD<-"Observed"
pops$dens<-"Observed"
pops$link<-"Observed"
library(taRifx)
popsm<-as.matrix(pops)
#change this to purrr?
gam_lpi<-function(x){
#subsetting the population data by each population
spid = x[2:(length(x)-8)] #subsetting only the dates
names(spid)<-1950:2005 #renaming the date column names as R doesn't like numbered column names
spid<-as.numeric(spid)
pop_datab <- (!is.na(spid) )
points = sum(pop_datab)
id<-x[1]
id<-as.numeric(id)
Date<-1950:2005
spidt<-destring(t(spid))
time<-length(min(which(!is.na(spidt))):max(which(!is.na(spidt))))
missing<-time-points
Year<-Date[min(which(!is.na(spidt))):max(which(!is.na(spidt)))]
Population<-spidt[min(which(!is.na(spidt))):max(which(!is.na(spidt)))]
Population[Population == 0] <- mean(Population, na.rm=TRUE)*0.01 #if a population is zero one year thhis is replaced with 1% of the average population estimate - because you can log zeros
df<-data.frame(Year,Population)
if (points >=6) {
PopN = log1p(df$Population)
if (length(na.omit(PopN)) >=6) {
SmoothParm = round(length(na.omit(PopN))/2)
} else {
SmoothParm=3
}
mg2<-mgcv:::gam(PopN ~ s(Year, k=SmoothParm), fx=TRUE)
pv2 <- predict(mg2,df,type="response",se=TRUE)
R_sq2<-summary(mg2)$r.sq
model<-1
pv2$fit[pv2$fit <= 0] <- NA
lambda2<-diff(pv2$fit)
ial<-data.frame(id, Year[-length(Year)], exp(lambda2))
colnames(ial)<-c("ID", "Year", "R")
}
return(ial)
}
gam_lpi_r<-apply(popsm, 1, gam_lpi)
gam_r<-do.call( "rbind", gam_lpi_r)
fill<-data.frame(rep(pops$ID, each=length(1950:2005)), 1950:2005)
colnames(fill)<-c("ID", "Year")
all_year_r<-join(fill, gam_r, type="right")
## Joining by: ID, Year
all_year_r$med_disp<-"Observed"
all_year_r$sdd<-"Observed"
all_year_r$ldd<-"Observed"
all_year_r$kern<-"Observed"
all_year_r$SD<-"Observed"
all_year_r$dens<-"Observed"
all_year_r$link<-"Observed"
all_year_r$rep_id<-"Observed"
colnames(all_year_r)[1:3]<-c("sp_lpi.ID", "year", "value")
mld<-melt_lambda_short[,-10]
all_year_r$sp_lpi.ID<-as.factor(all_year_r$sp_lpi.ID)
all_year_r$med_disp<-as.factor(all_year_r$med_disp)
all_year_r$rep_id<-as.factor(all_year_r$rep_id)
all_year_r$value<-as.numeric(all_year_r$value)
all_year_r$year<-as.numeric(all_year_r$year)
both_df<-rbind(mld, all_year_r)
#should consider splitting both_df anf gam_r_lambda into several plots based on each of the variables e.g one facet plot for LDD = 0.5 - yes do this - copy as above
gam_r_lambda<-gammy(melt_lambda_short, 1951, 2005)
## No id variables; using all as measure variables
both_df$sp_lpi.ID <- as.numeric(as.character(both_df$sp_lpi.ID))
gam_r_lambda$sp_lpi.ID<-as.numeric(as.character(gam_r_lambda$sp_lpi.ID))
ggplot(both_df, aes(x= year, y=value, group=interaction(rep_id, med_disp,sp_lpi.ID), colour= sp_lpi.ID))+
geom_line(colour="grey", alpha = 0.2)+
geom_line(data=both_df[both_df$med_disp=="Observed",], aes(x=year, y=value), colour="red")+
geom_line(data = gam_r_lambda, aes(x =Year, y = Abundance, group=sp_lpi.ID), colour = "blue" )+
facet_grid(.~ sp_lpi.ID)

mldab_no_z$uid<-paste(mldab_no_z$sp_lpi.ID, round(mldab_no_z$med_disp), mldab_no_z$sdd, mldab_no_z$ldd, mldab_no_z$kern, mldab_no_z$SD, mldab_no_z$dens, mldab_no_z$link, mldab_no_z$rep_id, sep = "_")
both_df$uid<-paste(both_df$sp_lpi.ID, round(as.numeric(both_df$med_disp)), both_df$sdd, both_df$ldd, both_df$kern, both_df$SD, both_df$dens, both_df$link, both_df$rep_id, sep = "_")
## Warning in paste(both_df$sp_lpi.ID, round(as.numeric(both_df$med_disp)), :
## NAs introduced by coercion
both_df_no_z<-both_df[both_df$uid %in%mldab_no_z$uid,]
dispersal = 0.1 & SD = 0.1
both_df_no_z_sdd_0_1_sd_0_1<-filter(both_df_no_z, sdd == 0.1 & ldd ==0.1 & SD == 0.1)
both_gam_no_z_sdd_0_1_sd_0_1<-gammy(both_df_no_z_sdd_0_1_sd_0_1, 1951, 2005)
## No id variables; using all as measure variables
both_gam_no_z_sdd_0_1_sd_0_1$sp_lpi.ID<-as.numeric(as.character(both_gam_no_z_sdd_0_1_sd_0_1$sp_lpi.ID))
ggplot(both_df_no_z_sdd_0_1_sd_0_1, aes(x= year, y=value, group=interaction(rep_id, med_disp, sp_lpi.ID)))+
geom_line(colour="grey", alpha = 0.4)+
geom_line(data=both_df[both_df$med_disp=="Observed",], aes(x=year, y=value), colour="red")+
geom_line(data = both_gam_no_z_sdd_0_1_sd_0_1, aes(x =Year, y = Abundance, group=sp_lpi.ID), colour = "blue" )+
facet_grid(.~ sp_lpi.ID)+
theme_bw()

dispersal = 0.1 & SD = 0.25
both_df_no_z_sdd_0_1_sd_0_25<-filter(both_df_no_z, sdd == 0.1 & ldd ==0.1 & SD == 0.25)
both_gam_no_z_sdd_0_1_sd_0_25<-gammy(both_df_no_z_sdd_0_1_sd_0_1, 1951, 2005)
## No id variables; using all as measure variables
both_gam_no_z_sdd_0_1_sd_0_25$sp_lpi.ID<-as.numeric(as.character(both_gam_no_z_sdd_0_1_sd_0_25$sp_lpi.ID))
ggplot(both_df_no_z_sdd_0_1_sd_0_25, aes(x= year, y=value, group=interaction(rep_id, med_disp, sp_lpi.ID)))+
geom_line(colour="grey", alpha = 0.4)+
geom_line(data=both_df[both_df$med_disp=="Observed",], aes(x=year, y=value), colour="red")+
geom_line(data = both_gam_no_z_sdd_0_1_sd_0_25, aes(x =Year, y = Abundance, group=sp_lpi.ID), colour = "blue" )+
facet_grid(.~ sp_lpi.ID)+
theme_bw()

dispersal = 0.25 & SD = 0.25
both_df_no_z_sdd_0_25_sd_0_25<-filter(both_df_no_z, sdd == 0.25 & ldd ==0.25 & SD == 0.25)
both_gam_no_z_sdd_0_25_sd_0_25<-gammy(both_df_no_z_sdd_0_25_sd_0_25, 1951, 2005)
## No id variables; using all as measure variables
both_gam_no_z_sdd_0_25_sd_0_25$sp_lpi.ID<-as.numeric(as.character(both_gam_no_z_sdd_0_25_sd_0_25$sp_lpi.ID))
ggplot(both_df_no_z_sdd_0_25_sd_0_25, aes(x= year, y=value, group=interaction(rep_id, med_disp, sp_lpi.ID)))+
geom_line(colour="grey", alpha = 0.4)+
geom_line(data=both_df[both_df$med_disp=="Observed",], aes(x=year, y=value), colour="red")+
geom_line(data = both_gam_no_z_sdd_0_25_sd_0_25, aes(x =Year, y = Abundance, group=sp_lpi.ID), colour = "blue" )+
facet_grid(.~ sp_lpi.ID)+
theme_bw()

dispersal = 0.5 & SD = 0.1
both_df_no_z_sdd_0_5_sd_0_1<-filter(both_df_no_z, sdd == 0.5 & ldd ==0.5 & SD == 0.1)
both_gam_no_z_sdd_0_5_sd_0_1<-gammy(both_df_no_z_sdd_0_1_sd_0_1, 1951, 2005)
## No id variables; using all as measure variables
both_gam_no_z_sdd_0_5_sd_0_1$sp_lpi.ID<-as.numeric(as.character(both_gam_no_z_sdd_0_5_sd_0_1$sp_lpi.ID))
ggplot(both_df_no_z_sdd_0_5_sd_0_1, aes(x= year, y=value, group=interaction(rep_id, med_disp, sp_lpi.ID)))+
geom_line(colour="grey", alpha = 0.4)+
geom_line(data=both_df[both_df$med_disp=="Observed",], aes(x=year, y=value), colour="red")+
geom_line(data = both_gam_no_z_sdd_0_5_sd_0_1, aes(x =Year, y = Abundance, group=sp_lpi.ID), colour = "blue" )+
facet_grid(.~ sp_lpi.ID)+
theme_bw()

dispersal = 0.5 & SD = 0.25
both_df_no_z_sdd_0_5_sd_0_25<-filter(both_df_no_z, sdd == 0.5 & ldd ==0.5 & SD == 0.25)
both_gam_no_z_sdd_0_5_sd_0_25<-gammy(both_df_no_z_sdd_0_5_sd_0_25, 1951, 2005)
both_gam_no_z_sdd_0_5_sd_0_25$sp_lpi.ID<-as.numeric(as.character(both_gam_no_z_sdd_0_5_sd_0_25$sp_lpi.ID))
ggplot(both_df_no_z_sdd_0_5_sd_0_25, aes(x= year, y=value, group=interaction(rep_id, med_disp, sp_lpi.ID)))+
geom_line(colour="grey", alpha = 0.4)+
geom_line(data=both_df[both_df$med_disp=="Observed",], aes(x=year, y=value), colour="red")+
geom_line(data = both_gam_no_z_sdd_0_5_sd_0_25, aes(x =Year, y = Abundance, group=sp_lpi.ID), colour = "blue" )+
facet_grid(.~ sp_lpi.ID)+
theme_bw()
#
# for (i in 1:length(unique(both_df$sp_lpi.ID))){
# pp<-ggplot(both_df[both_df$sp_lpi.ID == unique(both_df$sp_lpi.ID)[i],], aes(x= year, y=value, group=interaction(rep_id, max_disp)))+
# geom_line(colour="grey")+
# geom_line(data=both_df[both_df$max_disp=="Observed" & both_df$sp_lpi.ID == both_df$sp_lpi.ID[i],], aes(x=year, y=value), colour="red")+
# geom_line(data = gam_r_lambda[gam_r_lambda$sp_lpi.ID ==gam_r_lambda$sp_lpi.ID[i], ], aes(x =Year, y = Abundance, group=sp_lpi.ID), colour = "blue" )
# plot(pp)
# }
#
#