output: html_document: toc: true —
Retrieve the following data by revising the given code below.
Q1. Netflix for the period of 2014-01-01 - 2017-12-31 from Google
# Load packages
library(quantmod)
data <- getSymbols("NFLX", from = "2014-01-01", to = "2017-12-31" , src = "yahoo", auto.assign = FALSE)
plot(data)
Q2. US unemployment rate (monthly seasonally adjusted) from FRED
data <- getSymbols("UNRATE", from = "2005-12-31", to = "2016-08-31" , src = "FRED", auto.assign = FALSE)
plot(data)
Q3. Foreign exchange rate, Korean won per US dollar from Oanda.com (Hint: Oanda.com only reports data for the past 180 days)
data <- getSymbols("USD/KRW", src = "oanda", auto.assign = FALSE)
plot(data)
Q4. You are interested in studying stock price changes (without dividend payments) of three tech giants - Microsoft, Apple, and Amazon. Load three stocks; extract the Close column from each of the three stocks; and merge them into one object.
# Create a new environment
data_env <- new.env()
getSymbols(c("MSFT", "AMZN" , "AAPL"), env = data_env, auto.assign = TRUE)
## [1] "MSFT" "AMZN" "AAPL"
adjusted_list <- lapply(data_env, Vo)
adjusted <- do.call(merge, adjusted_list)
head(adjusted)
## AAPL.Volume AMZN.Volume MSFT.Volume
## 2007-01-03 309579900 12405100 76935100
## 2007-01-04 211815100 6318400 45774500
## 2007-01-05 208685400 6619700 44607200
## 2007-01-08 199276700 6783000 50220200
## 2007-01-09 837324600 5703000 44636600
## 2007-01-10 738220000 6527500 55017400