You have been given the following data from an upset client whose data scientists have all quit before they provided a summary of the results of a study they had conducted. The study looked at the effects of gender (male coded 0), handedness (i.e., left hand dominant coded 0), and age group (younger coded 0) on IQ.
The client has no idea how the study was conducted. Using the data below determine the type of study run, analyze the data properly, and write up the study design and conclusions in a concise and clear fashion.
Weekly_Lab_6=read.csv("C:/Users/jcolu/OneDrive/Documents/Harrisburg/Summer 2018/ANLY 510/Weekly Lab 6.csv")
Weekly_Lab_6
## Handedness Gender AgeGroup Block Repetition IQ
## 1 0 0 0 0 0 95
## 2 1 1 0 0 0 101
## 3 1 0 1 0 0 102
## 4 0 1 1 0 0 97
## 5 1 0 0 1 0 120
## 6 0 1 0 1 0 99
## 7 0 0 1 1 0 96
## 8 1 1 1 1 0 111
## 9 0 0 0 0 1 100
## 10 1 1 0 0 1 100
## 11 1 0 1 1 1 107
## 12 0 1 1 1 1 97
## 13 1 0 0 1 1 116
## 14 0 1 0 1 1 101
## 15 0 0 1 0 1 95
## 16 1 1 1 0 1 112
Summarize data
str(Weekly_Lab_6)
## 'data.frame': 16 obs. of 6 variables:
## $ Handedness: int 0 1 1 0 1 0 0 1 0 1 ...
## $ Gender : int 0 1 0 1 0 1 0 1 0 1 ...
## $ AgeGroup : int 0 0 1 1 0 0 1 1 0 0 ...
## $ Block : int 0 0 0 0 1 1 1 1 0 0 ...
## $ Repetition: int 0 0 0 0 0 0 0 0 1 1 ...
## $ IQ : int 95 101 102 97 120 99 96 111 100 100 ...
Data needs to be factorized
Weekly_Lab_6$Handedness=factor(Weekly_Lab_6$Handedness)
Weekly_Lab_6$Gender=factor(Weekly_Lab_6$Gender)
Weekly_Lab_6$AgeGroup=factor(Weekly_Lab_6$AgeGroup)
Weekly_Lab_6$Block=factor(Weekly_Lab_6$Block)
Weekly_Lab_6$Repetition=factor(Weekly_Lab_6$Repetition)
str(Weekly_Lab_6)
## 'data.frame': 16 obs. of 6 variables:
## $ Handedness: Factor w/ 2 levels "0","1": 1 2 2 1 2 1 1 2 1 2 ...
## $ Gender : Factor w/ 2 levels "0","1": 1 2 1 2 1 2 1 2 1 2 ...
## $ AgeGroup : Factor w/ 2 levels "0","1": 1 1 2 2 1 1 2 2 1 1 ...
## $ Block : Factor w/ 2 levels "0","1": 1 1 1 1 2 2 2 2 1 1 ...
## $ Repetition: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 2 2 ...
## $ IQ : int 95 101 102 97 120 99 96 111 100 100 ...
Analyze relationship between IQ & Handedness
bartlett.test(Weekly_Lab_6$IQ,Weekly_Lab_6$Handedness)
##
## Bartlett test of homogeneity of variances
##
## data: Weekly_Lab_6$IQ and Weekly_Lab_6$Handedness
## Bartlett's K-squared = 7.5206, df = 1, p-value = 0.0061
Analyze relationship between IQ & Age group
bartlett.test(Weekly_Lab_6$IQ,Weekly_Lab_6$AgeGroup)
##
## Bartlett test of homogeneity of variances
##
## data: Weekly_Lab_6$IQ and Weekly_Lab_6$AgeGroup
## Bartlett's K-squared = 0.38713, df = 1, p-value = 0.5338
Analyze relationship between IQ & Gender
bartlett.test(Weekly_Lab_6$IQ,Weekly_Lab_6$Gender)
##
## Bartlett test of homogeneity of variances
##
## data: Weekly_Lab_6$IQ and Weekly_Lab_6$Gender
## Bartlett's K-squared = 1.513, df = 1, p-value = 0.2187
Since the P-value of Handedeness & IQ reflects low correlation, use tapply to see the differences in variance.
tapply(Weekly_Lab_6$IQ, Weekly_Lab_6$Handedness,var)
## 0 1
## 5.142857 54.267857
Since variance is very large, the smallest observation must have -1 substracted. Then, a model can be established using the log of IQ.
Weekly_Lab_6$IQModel=log(Weekly_Lab_6$IQ-93)
Model_Weekly_Lab_6=aov(Weekly_Lab_6$IQModel~Weekly_Lab_6$Repetition+Weekly_Lab_6$Repetition/Weekly_Lab_6$Block+Weekly_Lab_6$Handedness*Weekly_Lab_6$Gender*Weekly_Lab_6$AgeGroup)
library(xtable)
## Warning: package 'xtable' was built under R version 3.4.4
New_Data=xtable(Model_Weekly_Lab_6)
New_Data
## % latex table generated in R 3.4.3 by xtable 1.8-2 package
## % Tue Jun 12 20:42:50 2018
## \begin{table}[ht]
## \centering
## \begin{tabular}{lrrrrr}
## \hline
## & Df & Sum Sq & Mean Sq & F value & Pr($>$F) \\
## \hline
## Weekly\_Lab\_6\$Repetition & 1 & 0.11 & 0.11 & 0.78 & 0.4175 \\
## Weekly\_Lab\_6\$Handedness & 1 & 6.32 & 6.32 & 44.12 & 0.0012 \\
## Weekly\_Lab\_6\$Gender & 1 & 0.04 & 0.04 & 0.28 & 0.6173 \\
## Weekly\_Lab\_6\$AgeGroup & 1 & 0.19 & 0.19 & 1.31 & 0.3044 \\
## Weekly\_Lab\_6\$Repetition:Weekly\_Lab\_6\$Block & 2 & 1.29 & 0.65 & 4.51 & 0.0760 \\
## Weekly\_Lab\_6\$Handedness:Weekly\_Lab\_6\$Gender & 1 & 0.46 & 0.46 & 3.18 & 0.1344 \\
## Weekly\_Lab\_6\$Handedness:Weekly\_Lab\_6\$AgeGroup & 1 & 0.29 & 0.29 & 2.04 & 0.2128 \\
## Weekly\_Lab\_6\$Gender:Weekly\_Lab\_6\$AgeGroup & 1 & 0.62 & 0.62 & 4.34 & 0.0917 \\
## Weekly\_Lab\_6\$Handedness:Weekly\_Lab\_6\$Gender:Weekly\_Lab\_6\$AgeGroup & 1 & 0.11 & 0.11 & 0.76 & 0.4221 \\
## Residuals & 5 & 0.72 & 0.14 & & \\
## \hline
## \end{tabular}
## \end{table}
Search for residuals.
qqnorm(Model_Weekly_Lab_6$residuals)
Review relationship between Handedness & IQ relationship.
tapply(Weekly_Lab_6$IQModel,Weekly_Lab_6$Handedness,mean)
## 0 1
## 1.384326 2.640972
Relationhip between IQ & Gender
tapply(Weekly_Lab_6$IQModel,Weekly_Lab_6$Gender,mean)
## 0 1
## 1.962304 2.062994
Relationhip between IQ & Age Group
tapply(Weekly_Lab_6$IQModel,Weekly_Lab_6$AgeGroup,mean)
## 0 1
## 2.120868 1.904430
Conclusions:
Based on the findings of the studies presented above, it can be concluded that: