Care preference documentation within 48hrs of admission, age >74.

Patient as unit of analysis. Care Provider is random effect, so we can explain the difference in variance explained by care providers compared to that explained by other effects in the model.

Model 1 (Demographics)

  1. Sex
  2. Age
  3. Race
  4. Marriage Status
  5. Religion
  6. CGID (Random)

Model 2 (ICU + Demographics)

  1. Demographics
  2. First Intensive Care Unit
  3. CGID (Random)

Model 3 (ICU + Demographics + Clinical Variables)

The following Illness Severity Scores (github) are available:

  1. Oxford Acute Severity of Illness Score (OASIS)
  2. Simplified Acute Physiology Score (SAPS)
  3. Sequential Organ Failure Assessment (SOFA)

These will be used as well as:

  1. Type of Admission (Elective/Emergency/Urgent)
  2. Admission Location (Emergency Room Admit, Transfer from Hospital, etc.)
  3. CGID (Random)

Libraries

library("ggplot2") ## Graphing
library("GGally") ## Extension to ggplot
library("reshape2") ## for melt()
library("lme4") ## for Hierachal Models
library("sjPlot") ## Lovely Presentation of Model Output

Utility Function

attending_check

attending_check to ensure that all patients’ notes documented during any hospital admission have at least a single attending physician as part of the care team, attending_check will go through each hospital admission and keep only those admissions with attendings who have logged a patient note that was captured by MIMIC-III

Load Data

dat <- read.csv("~/nqf_caregivers/data/20180607_EOL_data_ICU.csv", header = T, stringsAsFactors = F)

## Load CAREGIVERS Table for join on CGID
cg <- read.csv("~/nqf_caregivers/data/mimic/CAREGIVERS.csv", 
               header = T, stringsAsFactors = F)

## Change column name of "NOTEEVENTS.DESCRIPTION" to explicitly mention that it describes the note
colnames(dat)[which(colnames(dat) == "DESCRIPTION")] <- "NOTE_DESCRIPTION"

## Change column name of "CAREGIVERS. DESCRIPTION" to explicitly mention that it describes the careprovider
colnames(cg)[which(colnames(cg) == "DESCRIPTION")] <- "CG_DESCRIPTION"

Preprocessing

  1. Remove TEXT as the column is unnecessary but very large.
  2. Merge data to caregivers
  3. Factor variables for later modeling
## Remove ROW_ID from CG
cg$ROW_ID <- NULL

## Remove TEXT
dat$TEXT <- NULL

## Clean ethnicity
dat[(grepl("WHITE|PORTUGUESE", dat$ETHNICITY)),]$ETHNICITY <- "WHITE" 
dat[(grepl("ASIAN", dat$ETHNICITY)),]$ETHNICITY <- "ASIAN" 
dat[(grepl("BLACK", dat$ETHNICITY)),]$ETHNICITY <- "BLACK" 
dat[(grepl("HISPANIC", dat$ETHNICITY)),]$ETHNICITY <- "HISPANIC"
dat[(grepl("MIDDLE|NATIVE|MULTI|DECLINED|UNABLE|OTHER|NOT",dat$ETHNICITY)),]$ETHNICITY <- "UNKNOWN"

## Clean Marital Status
dat$MARITAL_STATUS[dat$MARITAL_STATUS == ""] <- "UNKNOWN (DEFAULT)"
dat$MARITAL_STATUS[dat$MARITAL_STATUS == "UNKNOWN (DEFAULT)"] <- "UNKNOWN"

## Clean Religion
## Christianity-based
dat$RELIGION[dat$RELIGION == "7TH DAY ADVENTIST"] <- "CHRISTIAN"
dat$RELIGION[dat$RELIGION == "CATHOLIC"] <- "CHRISTIAN"
dat$RELIGION[dat$RELIGION == "CHRISTIAN SCIENTIST"] <- "CHRISTIAN"
dat$RELIGION[dat$RELIGION == "EPISCOPALIAN"] <- "CHRISTIAN"
dat$RELIGION[dat$RELIGION == "GREEK ORTHODOX"] <- "CHRISTIAN"
dat$RELIGION[dat$RELIGION == "CHRISTIAN SCIENTIST"] <- "CHRISTIAN"
dat$RELIGION[dat$RELIGION == "PROTESTANT QUAKER"] <- "CHRISTIAN"
dat$RELIGION[dat$RELIGION == "ROMANIAN EAST. ORTH"] <- "CHRISTIAN"

## Others
dat$RELIGION[dat$RELIGION == "UNITARIAN-UNIVERSALIST"] <- "OTHER/UNSPECIFIED"
dat$RELIGION[dat$RELIGION == "NOT SPECIFIED"] <- "OTHER/UNSPECIFIED"
dat$RELIGION[dat$RELIGION == "OTHER"] <- "OTHER/UNSPECIFIED"
dat$RELIGION[dat$RELIGION == "UNOBTAINABLE"] <- "OTHER/UNSPECIFIED"



## Merge
dat <- merge(dat, cg, by = "CGID")

## Factor
dat <- within(dat, {
    ETHNICITY <- factor(ETHNICITY)
    MARITAL_STATUS <- factor(MARITAL_STATUS)
    RELIGION <- factor(RELIGION)
    FIRST_CAREUNIT <- factor(FIRST_CAREUNIT)
    CGID <- factor(CGID)
    CG_DESCRIPTION <- factor(CG_DESCRIPTION)
    SUBJECT_ID <- factor(SUBJECT_ID)
    
})

Check Attending

length(unique(dat$CGID))
## [1] 497
tmp <- attending_check(dat)

length(unique(tmp$CGID))
## [1] 493

Plot Variables of Interest

Baseline Model (Demographics)

## Initial model to inform prior probabilities
m_initial <- glmer(CIM.machine ~ 
                       AGE +
                       ETHNICITY +
                       MARITAL_STATUS +
                       RELIGION + ## Failing to converge...
                       (1 | CGID), 
                   data = tmp, 
                   family = binomial, 
                   control = glmerControl(optimizer = "bobyqa"), ## Good optimizer to avoid non-convergence
                   nAGQ = 10) ## Default value 1, higher values increase estimate accuracy
## Warning in optwrap(optimizer, devfun, start, rho$lower, control =
## control, : convergence code 1 from bobyqa: bobyqa -- maximum number of
## function evaluations exceeded
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.393964 (tol =
## 0.001, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?;Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?
## View
summary(m_initial)
## Generalized linear mixed model fit by maximum likelihood (Adaptive
##   Gauss-Hermite Quadrature, nAGQ = 10) [glmerMod]
##  Family: binomial  ( logit )
## Formula: CIM.machine ~ AGE + ETHNICITY + MARITAL_STATUS + RELIGION + (1 |  
##     CGID)
##    Data: tmp
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##  12658.0  12780.4  -6312.0  12624.0     9887 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5865 -0.8254 -0.4054  0.8606  3.0488 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  CGID   (Intercept) 1.024    1.012   
## Number of obs: 9904, groups:  CGID, 493
## 
## Fixed effects:
##                           Estimate Std. Error z value Pr(>|z|)    
## (Intercept)               -3.36459    0.67356  -4.995 5.88e-07 ***
## AGE                        0.04775    0.00476  10.032  < 2e-16 ***
## ETHNICITYBLACK             0.55746    0.15251   3.655 0.000257 ***
## ETHNICITYHISPANIC          1.10065    0.24710   4.454 8.42e-06 ***
## ETHNICITYUNKNOWN           0.36274    0.16559   2.191 0.028479 *  
## ETHNICITYWHITE             0.46241    0.13301   3.476 0.000508 ***
## MARITAL_STATUSMARRIED     -0.40540    0.11662  -3.476 0.000508 ***
## MARITAL_STATUSSEPARATED    1.01880    0.29001   3.513 0.000443 ***
## MARITAL_STATUSSINGLE      -0.12321    0.12469  -0.988 0.323105    
## MARITAL_STATUSUNKNOWN     -0.36164    0.16936  -2.135 0.032739 *  
## MARITAL_STATUSWIDOWED     -0.07357    0.11817  -0.623 0.533567    
## RELIGIONCHRISTIAN         -1.11058    0.53592  -2.072 0.038240 *  
## RELIGIONHINDU              0.25637    0.77267   0.332 0.740044    
## RELIGIONJEWISH            -0.96491    0.53815  -1.793 0.072969 .  
## RELIGIONMUSLIM            -3.38761    1.21704  -2.783 0.005378 ** 
## RELIGIONOTHER/UNSPECIFIED -0.95891    0.53538  -1.791 0.073279 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 16 > 12.
## Use print(x, correlation=TRUE)  or
##   vcov(x)     if you need it
## convergence code: 1
## Model failed to converge with max|grad| = 0.393964 (tol = 0.001, component 1)
## Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
## Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?

Summary with Odds Ratios

sjt.glmer(m_initial)
    CIM.machine
    Odds Ratio CI p
Fixed Parts
(Intercept)   0.03 0.01 – 0.13 <.001
AGE   1.05 1.04 – 1.06 <.001
ETHNICITY (BLACK)   1.75 1.30 – 2.35 <.001
ETHNICITY (HISPANIC)   3.01 1.85 – 4.88 <.001
ETHNICITY (UNKNOWN)   1.44 1.04 – 1.99 .028
ETHNICITY (WHITE)   1.59 1.22 – 2.06 <.001
MARITAL_STATUS (MARRIED)   0.67 0.53 – 0.84 <.001
MARITAL_STATUS (SEPARATED)   2.77 1.57 – 4.89 <.001
MARITAL_STATUS (SINGLE)   0.88 0.69 – 1.13 .323
MARITAL_STATUS (UNKNOWN)   0.70 0.50 – 0.97 .033
MARITAL_STATUS (WIDOWED)   0.93 0.74 – 1.17 .534
RELIGION (CHRISTIAN)   0.33 0.12 – 0.94 .038
RELIGION (HINDU)   1.29 0.28 – 5.88 .740
RELIGION (JEWISH)   0.38 0.13 – 1.09 .073
RELIGION (MUSLIM)   0.03 0.00 – 0.37 .005
RELIGION (OTHER/UNSPECIFIED)   0.38 0.13 – 1.09 .073
Random Parts
τ00, CGID   1.024
NCGID   493
ICCCGID   0.237
Observations   9904
Deviance   11680.560

Second Model (Demographics + ICU)

## Initial model to inform prior probabilities
m_icu <- glmer(CIM.machine ~ 
                       AGE +
                       ETHNICITY +
                       MARITAL_STATUS +
                       RELIGION + ## Failing to converge...
                       FIRST_CAREUNIT +
                       (1 | CGID), 
                   data = tmp, 
                   family = binomial, 
                   control = glmerControl(optimizer = "bobyqa"), ## Good optimizer to avoid non-convergence
                   nAGQ = 10) ## Default value 1, higher values increase estimate accuracy
## Warning in optwrap(optimizer, devfun, start, rho$lower, control =
## control, : convergence code 1 from bobyqa: bobyqa -- maximum number of
## function evaluations exceeded
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.46684 (tol =
## 0.001, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?;Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?
## View
summary(m_icu)
## Generalized linear mixed model fit by maximum likelihood (Adaptive
##   Gauss-Hermite Quadrature, nAGQ = 10) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## CIM.machine ~ AGE + ETHNICITY + MARITAL_STATUS + RELIGION + FIRST_CAREUNIT +  
##     (1 | CGID)
##    Data: tmp
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##  12629.4  12780.7  -6293.7  12587.4     9883 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6281 -0.8239 -0.3848  0.8595  3.5402 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  CGID   (Intercept) 1        1       
## Number of obs: 9904, groups:  CGID, 493
## 
## Fixed effects:
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)               -3.730517   0.679931  -5.487 4.10e-08 ***
## AGE                        0.048223   0.004781  10.085  < 2e-16 ***
## ETHNICITYBLACK             0.521314   0.152622   3.416 0.000636 ***
## ETHNICITYHISPANIC          1.089231   0.248201   4.388 1.14e-05 ***
## ETHNICITYUNKNOWN           0.371401   0.165602   2.243 0.024914 *  
## ETHNICITYWHITE             0.445360   0.132932   3.350 0.000807 ***
## MARITAL_STATUSMARRIED     -0.387393   0.116756  -3.318 0.000907 ***
## MARITAL_STATUSSEPARATED    1.032241   0.288688   3.576 0.000349 ***
## MARITAL_STATUSSINGLE      -0.100163   0.124847  -0.802 0.422387    
## MARITAL_STATUSUNKNOWN     -0.356539   0.169592  -2.102 0.035524 *  
## MARITAL_STATUSWIDOWED     -0.048843   0.118450  -0.412 0.680082    
## RELIGIONCHRISTIAN         -0.992153   0.535635  -1.852 0.063984 .  
## RELIGIONHINDU              0.260893   0.768140   0.340 0.734125    
## RELIGIONJEWISH            -0.843354   0.538022  -1.568 0.116996    
## RELIGIONMUSLIM            -3.326771   1.222678  -2.721 0.006511 ** 
## RELIGIONOTHER/UNSPECIFIED -0.847496   0.534991  -1.584 0.113164    
## FIRST_CAREUNITCSRU        -0.488832   0.173488  -2.818 0.004837 ** 
## FIRST_CAREUNITMICU         0.273727   0.077723   3.522 0.000429 ***
## FIRST_CAREUNITSICU         0.264767   0.115104   2.300 0.021434 *  
## FIRST_CAREUNITTSICU        0.420698   0.141915   2.964 0.003032 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##   vcov(x)     if you need it
## convergence code: 1
## Model failed to converge with max|grad| = 0.46684 (tol = 0.001, component 1)
## Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
## Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?

Summary with Odds Ratios

sjt.glmer(m_icu)
    CIM.machine
    Odds Ratio CI p
Fixed Parts
(Intercept)   0.02 0.01 – 0.09 <.001
AGE   1.05 1.04 – 1.06 <.001
ETHNICITY (BLACK)   1.68 1.25 – 2.27 <.001
ETHNICITY (HISPANIC)   2.97 1.83 – 4.83 <.001
ETHNICITY (UNKNOWN)   1.45 1.05 – 2.01 .025
ETHNICITY (WHITE)   1.56 1.20 – 2.03 <.001
MARITAL_STATUS (MARRIED)   0.68 0.54 – 0.85 <.001
MARITAL_STATUS (SEPARATED)   2.81 1.59 – 4.94 <.001
MARITAL_STATUS (SINGLE)   0.90 0.71 – 1.16 .422
MARITAL_STATUS (UNKNOWN)   0.70 0.50 – 0.98 .036
MARITAL_STATUS (WIDOWED)   0.95 0.76 – 1.20 .680
RELIGION (CHRISTIAN)   0.37 0.13 – 1.06 .064
RELIGION (HINDU)   1.30 0.29 – 5.85 .734
RELIGION (JEWISH)   0.43 0.15 – 1.24 .117
RELIGION (MUSLIM)   0.04 0.00 – 0.39 .007
RELIGION (OTHER/UNSPECIFIED)   0.43 0.15 – 1.22 .113
FIRST_CAREUNIT (CSRU)   0.61 0.44 – 0.86 .005
FIRST_CAREUNIT (MICU)   1.31 1.13 – 1.53 <.001
FIRST_CAREUNIT (SICU)   1.30 1.04 – 1.63 .021
FIRST_CAREUNIT (TSICU)   1.52 1.15 – 2.01 .003
Random Parts
τ00, CGID   1.000
NCGID   493
ICCCGID   0.233
Observations   9904
Deviance   11653.818

Third Model (Demographics + ICU + Clinicai Variables)

## Initial model to inform prior probabilities
f_icu <- glmer(CIM.machine ~ 
                       AGE +
                       ETHNICITY +
                       MARITAL_STATUS +
                       RELIGION + ## Failing to converge...
                       FIRST_CAREUNIT +
                       ADMISSION_LOCATION +
                       ADMISSION_TYPE +
                       (1 | CGID), 
                   data = tmp, 
                   family = binomial, 
                   control = glmerControl(optimizer = "bobyqa"), ## Good optimizer to avoid non-convergence
                   nAGQ = 10) ## Default value 1, higher values increase estimate accuracy
## Warning in optwrap(optimizer, devfun, start, rho$lower, control =
## control, : convergence code 1 from bobyqa: bobyqa -- maximum number of
## function evaluations exceeded
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 1.56219 (tol =
## 0.001, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?;Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?
## View
summary(f_icu)
## Generalized linear mixed model fit by maximum likelihood (Adaptive
##   Gauss-Hermite Quadrature, nAGQ = 10) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## CIM.machine ~ AGE + ETHNICITY + MARITAL_STATUS + RELIGION + FIRST_CAREUNIT +  
##     ADMISSION_LOCATION + ADMISSION_TYPE + (1 | CGID)
##    Data: tmp
## Control: glmerControl(optimizer = "bobyqa")
## 
##      AIC      BIC   logLik deviance df.resid 
##  12408.8  12610.5  -6176.4  12352.8     9876 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6553 -0.8222 -0.2387  0.8388  4.4339 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  CGID   (Intercept) 1.003    1.002   
## Number of obs: 9904, groups:  CGID, 493
## 
## Fixed effects:
##                                               Estimate Std. Error z value
## (Intercept)                                  -6.071121   0.803722  -7.554
## AGE                                           0.044664   0.004871   9.169
## ETHNICITYBLACK                                0.530336   0.153676   3.451
## ETHNICITYHISPANIC                             1.074456   0.247904   4.334
## ETHNICITYUNKNOWN                              0.442682   0.168108   2.633
## ETHNICITYWHITE                                0.507861   0.133482   3.805
## MARITAL_STATUSMARRIED                        -0.387152   0.118663  -3.263
## MARITAL_STATUSSEPARATED                       1.406281   0.317763   4.426
## MARITAL_STATUSSINGLE                         -0.118201   0.127064  -0.930
## MARITAL_STATUSUNKNOWN                        -0.444483   0.170714  -2.604
## MARITAL_STATUSWIDOWED                        -0.039255   0.120435  -0.326
## RELIGIONCHRISTIAN                            -1.223663   0.564632  -2.167
## RELIGIONHINDU                                 0.027039   0.795014   0.034
## RELIGIONJEWISH                               -1.071856   0.567615  -1.888
## RELIGIONMUSLIM                               -3.621371   1.237211  -2.927
## RELIGIONOTHER/UNSPECIFIED                    -1.077147   0.564309  -1.909
## FIRST_CAREUNITCSRU                           -0.271377   0.178386  -1.521
## FIRST_CAREUNITMICU                            0.312865   0.078928   3.964
## FIRST_CAREUNITSICU                            0.304097   0.116536   2.609
## FIRST_CAREUNITTSICU                           0.469925   0.144031   3.263
## ADMISSION_LOCATIONEMERGENCY ROOM ADMIT        0.313420   0.176291   1.778
## ADMISSION_LOCATIONPHYS REFERRAL/NORMAL DELI   0.578317   0.329927   1.753
## ADMISSION_LOCATIONTRANSFER FROM HOSP/EXTRAM   0.226384   0.187421   1.208
## ADMISSION_LOCATIONTRANSFER FROM OTHER HEALT -12.388770  64.000726  -0.194
## ADMISSION_LOCATIONTRANSFER FROM SKILLED NUR  -4.013686   0.844157  -4.755
## ADMISSION_TYPEEMERGENCY                       2.553068   0.358987   7.112
## ADMISSION_TYPEURGENT                          2.276738   0.464781   4.899
##                                             Pr(>|z|)    
## (Intercept)                                 4.23e-14 ***
## AGE                                          < 2e-16 ***
## ETHNICITYBLACK                              0.000559 ***
## ETHNICITYHISPANIC                           1.46e-05 ***
## ETHNICITYUNKNOWN                            0.008455 ** 
## ETHNICITYWHITE                              0.000142 ***
## MARITAL_STATUSMARRIED                       0.001104 ** 
## MARITAL_STATUSSEPARATED                     9.62e-06 ***
## MARITAL_STATUSSINGLE                        0.352242    
## MARITAL_STATUSUNKNOWN                       0.009223 ** 
## MARITAL_STATUSWIDOWED                       0.744469    
## RELIGIONCHRISTIAN                           0.030221 *  
## RELIGIONHINDU                               0.972869    
## RELIGIONJEWISH                              0.058979 .  
## RELIGIONMUSLIM                              0.003422 ** 
## RELIGIONOTHER/UNSPECIFIED                   0.056289 .  
## FIRST_CAREUNITCSRU                          0.128185    
## FIRST_CAREUNITMICU                          7.37e-05 ***
## FIRST_CAREUNITSICU                          0.009068 ** 
## FIRST_CAREUNITTSICU                         0.001104 ** 
## ADMISSION_LOCATIONEMERGENCY ROOM ADMIT      0.075428 .  
## ADMISSION_LOCATIONPHYS REFERRAL/NORMAL DELI 0.079625 .  
## ADMISSION_LOCATIONTRANSFER FROM HOSP/EXTRAM 0.227088    
## ADMISSION_LOCATIONTRANSFER FROM OTHER HEALT 0.846511    
## ADMISSION_LOCATIONTRANSFER FROM SKILLED NUR 1.99e-06 ***
## ADMISSION_TYPEEMERGENCY                     1.14e-12 ***
## ADMISSION_TYPEURGENT                        9.66e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 27 > 12.
## Use print(x, correlation=TRUE)  or
##   vcov(x)     if you need it
## convergence code: 1
## Model failed to converge with max|grad| = 1.56219 (tol = 0.001, component 1)
## Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
## Model is nearly unidentifiable: large eigenvalue ratio
##  - Rescale variables?

Summary with Odds Ratios

sjt.glmer(f_icu)
    CIM.machine
    Odds Ratio CI p
Fixed Parts
(Intercept)   0.00 0.00 – 0.01 <.001
AGE   1.05 1.04 – 1.06 <.001
ETHNICITY (BLACK)   1.70 1.26 – 2.30 <.001
ETHNICITY (HISPANIC)   2.93 1.80 – 4.76 <.001
ETHNICITY (UNKNOWN)   1.56 1.12 – 2.16 .008
ETHNICITY (WHITE)   1.66 1.28 – 2.16 <.001
MARITAL_STATUS (MARRIED)   0.68 0.54 – 0.86 .001
MARITAL_STATUS (SEPARATED)   4.08 2.19 – 7.61 <.001
MARITAL_STATUS (SINGLE)   0.89 0.69 – 1.14 .352
MARITAL_STATUS (UNKNOWN)   0.64 0.46 – 0.90 .009
MARITAL_STATUS (WIDOWED)   0.96 0.76 – 1.22 .744
RELIGION (CHRISTIAN)   0.29 0.10 – 0.89 .030
RELIGION (HINDU)   1.03 0.22 – 4.88 .973
RELIGION (JEWISH)   0.34 0.11 – 1.04 .059
RELIGION (MUSLIM)   0.03 0.00 – 0.30 .003
RELIGION (OTHER/UNSPECIFIED)   0.34 0.11 – 1.03 .056
FIRST_CAREUNIT (CSRU)   0.76 0.54 – 1.08 .128
FIRST_CAREUNIT (MICU)   1.37 1.17 – 1.60 <.001
FIRST_CAREUNIT (SICU)   1.36 1.08 – 1.70 .009
FIRST_CAREUNIT (TSICU)   1.60 1.21 – 2.12 .001
ADMISSION_LOCATION (EMERGENCY ROOM ADMIT)   1.37 0.97 – 1.93 .075
ADMISSION_LOCATION (PHYS REFERRAL/NORMAL DELI)   1.78 0.93 – 3.40 .080
ADMISSION_LOCATION (TRANSFER FROM HOSP/EXTRAM)   1.25 0.87 – 1.81 .227
ADMISSION_LOCATION (TRANSFER FROM OTHER HEALT)   0.00 0.00 – 12506702398686011825011417270416144874365282942976.00 .847
ADMISSION_LOCATION (TRANSFER FROM SKILLED NUR)   0.02 0.00 – 0.09 <.001
ADMISSION_TYPE (EMERGENCY)   12.85 6.36 – 25.96 <.001
ADMISSION_TYPE (URGENT)   9.74 3.92 – 24.23 <.001
Random Parts
τ00, CGID   1.003
NCGID   493
ICCCGID   0.234
Observations   9904
Deviance   11429.559