str(CO2)
## Classes 'nfnGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame': 84 obs. of 5 variables:
## $ Plant : Ord.factor w/ 12 levels "Qn1"<"Qn2"<"Qn3"<..: 1 1 1 1 1 1 1 2 2 2 ...
## $ Type : Factor w/ 2 levels "Quebec","Mississippi": 1 1 1 1 1 1 1 1 1 1 ...
## $ Treatment: Factor w/ 2 levels "nonchilled","chilled": 1 1 1 1 1 1 1 1 1 1 ...
## $ conc : num 95 175 250 350 500 675 1000 95 175 250 ...
## $ uptake : num 16 30.4 34.8 37.2 35.3 39.2 39.7 13.6 27.3 37.1 ...
## - attr(*, "formula")=Class 'formula' language uptake ~ conc | Plant
## .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
## - attr(*, "outer")=Class 'formula' language ~Treatment * Type
## .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
## - attr(*, "labels")=List of 2
## ..$ x: chr "Ambient carbon dioxide concentration"
## ..$ y: chr "CO2 uptake rate"
## - attr(*, "units")=List of 2
## ..$ x: chr "(uL/L)"
## ..$ y: chr "(umol/m^2 s)"
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.4.4
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Sum_Type_Trtmt <- CO2 %>% ungroup() %>% group_by(Type, Treatment)%>%
summarise(mean_conc=mean(conc),
std_conc=sd(conc),
mean_uptake=mean(uptake),
std_uptake=sd(uptake)) %>% ungroup()
Sum_Type_Trtmt
## # A tibble: 4 x 6
## Type Treatment mean_conc std_conc mean_uptake std_uptake
## <fct> <fct> <dbl> <dbl> <dbl> <dbl>
## 1 Quebec nonchilled 435 301. 35.3 9.60
## 2 Quebec chilled 435 301. 31.8 9.64
## 3 Mississippi nonchilled 435 301. 26.0 7.40
## 4 Mississippi chilled 435 301. 15.8 4.06
Oneway_Type <- lm(uptake~Type, data=CO2)
anova(Oneway_Type)
## Analysis of Variance Table
##
## Response: uptake
## Df Sum Sq Mean Sq F value Pr(>F)
## Type 1 3365.5 3365.5 43.519 3.835e-09 ***
## Residuals 82 6341.4 77.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
P-value less than alpha (0.05). Hence reject the null hypothesis. This concludes that the type affected the uptake rates.
Oneway_Treatment <- lm(uptake~Treatment, data=CO2)
anova(Oneway_Treatment)
## Analysis of Variance Table
##
## Response: uptake
## Df Sum Sq Mean Sq F value Pr(>F)
## Treatment 1 988.1 988.11 9.2931 0.003096 **
## Residuals 82 8718.9 106.33
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
P-value less than alpha (0.05). Hence reject the null hypothesis. This concludes that the treatment affected the uptake rates.
Twoway_Type_Treatment <- lm(uptake~Type*Treatment, data=CO2)
anova(Twoway_Type_Treatment)
## Analysis of Variance Table
##
## Response: uptake
## Df Sum Sq Mean Sq F value Pr(>F)
## Type 1 3365.5 3365.5 52.5086 2.378e-10 ***
## Treatment 1 988.1 988.1 15.4164 0.0001817 ***
## Type:Treatment 1 225.7 225.7 3.5218 0.0642128 .
## Residuals 80 5127.6 64.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
P-value less than alpha (0.05) for Type and Treatment individually. Hence reject the null hypothesis. This concludes that the Type and treatment individually affected the uptake rates.
P-value greater than alpha (0.05) for Type and Treatment together. Hence cannot reject the null hypothesis. This concludes that the combined effect of Type and treatment did not affect the uptake rates.
cars_vs_am <- with(mtcars, table(vs,am))
cars_vs_am
## am
## vs 0 1
## 0 12 6
## 1 7 7
cars_gear_carb <- with(mtcars, table(gear, carb))
cars_gear_carb
## carb
## gear 1 2 3 4 6 8
## 3 3 4 3 5 0 0
## 4 4 4 0 4 0 0
## 5 0 2 0 1 1 1
cars_cyl_gear <- with(mtcars, table(cyl, gear))
cars_cyl_gear
## gear
## cyl 3 4 5
## 4 1 8 2
## 6 2 4 1
## 8 12 0 2
I would guess that there is no dependency between any two of the above.
chisq.test(cars_vs_am)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: cars_vs_am
## X-squared = 0.34754, df = 1, p-value = 0.5555
chisq.test(cars_gear_carb)
## Warning in chisq.test(cars_gear_carb): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: cars_gear_carb
## X-squared = 16.518, df = 10, p-value = 0.08573
chisq.test(cars_cyl_gear)
## Warning in chisq.test(cars_cyl_gear): Chi-squared approximation may be
## incorrect
##
## Pearson's Chi-squared test
##
## data: cars_cyl_gear
## X-squared = 18.036, df = 4, p-value = 0.001214
P-value is greater than alpha (0.05) in case 1 and 2. Hence, null cannot be rejected. From this, it can be concluded that vs and am, gear and carb are indpendent of each other. In case 3, p-value is less than alpha(0.05). Hence, reject the null hypothesis and conclude that cyl and gear are dependent on one another.