Open pre-computed polygenic scores. My PGS-computing code and the 1000 Genomes files were made publicly available on OSF (https://osf.io/g9yx8/). They were converted to .csv format so that anyone can load them on R without having to convert them from VCF format or PLINk-like formats (i.e. .bed). I will compute correlations between the latest polygenic score, as inferred from the largest GWAS of Educational attainment (EDU) to date and the polygenic score inferred from previous GWAS of Educational attainment and IQ (Piffer, 2015).
PS_IQ=read.csv(file.choose(),header=TRUE)#Lee_PGS_1kg - IQ_EDU.csv
PS_IQ$Leeetal_PGS=scale(PS_IQ$Leeetal2018,center = TRUE, scale= TRUE)
PS_IQ$Piffer2015_PGS=scale(PS_IQ$Piffer2015,center=TRUE, scale=TRUE)
library(ggplot2)
library(ggrepel)
Show standardized PGS from latest EDU GWAS (Lee et al., 2018) and population IQs
PS_IQ[-c(2,3)]
## Population Piffer_2017 X1180_PGS Piffer.2015.IQ Leeetal_PGS
## 1 Afr.Car.Barbados 0.224 0.2695543 83.0 -1.299572787
## 2 US Blacks 0.259 0.2546149 85.0 -1.272171263
## 3 Bengali Bangladesh 0.353 0.2329476 81.0 -0.194490832
## 4 Chinese Dai 0.425 0.2417140 NA 1.011634319
## 5 Utah Whites 0.384 0.2316542 99.0 0.686818769
## 6 Chinese, Bejing 0.481 0.2421085 105.0 1.512552558
## 7 Chinese, South 0.462 0.2460318 105.0 1.321665571
## 8 Colombian 0.343 0.2409787 83.5 0.183599380
## 9 Esan, Nigeria 0.227 0.2668967 71.0 -1.300152503
## 10 Finland 0.442 0.2236820 101.0 1.021133946
## 11 British, GB 0.416 0.2329586 100.0 0.523879885
## 12 Gujarati Indian, Tx 0.389 0.2301143 NA 0.179386510
## 13 Gambian 0.218 0.2753084 62.0 -1.299641371
## 14 Iberian, Spain 0.396 0.2605518 97.0 0.893035210
## 15 Indian Telegu, UK 0.365 0.2305200 NA 0.201000256
## 16 Japan 0.458 0.1893100 105.0 1.443193070
## 17 Vietnam 0.450 0.2227933 99.4 1.086033831
## 18 Luhya, Kenya 0.231 0.2558614 74.0 -1.370743979
## 19 Mende, Sierra Leone 0.231 0.2509300 64.0 -1.517689441
## 20 Mexican in L.A. 0.335 0.2525660 88.0 -0.318167144
## 21 Peruvian, Lima 0.299 0.2355947 85.0 -0.996212200
## 22 Punjabi, Pakistan 0.378 0.2375246 84.0 -0.056823359
## 23 Puerto Rican 0.345 0.2387469 83.5 0.058261889
## 24 Sri Lankan, UK 0.361 0.2374865 79.0 0.005171638
## 25 Toscani, Italy 0.396 0.2214031 99.0 0.711938535
## 26 Yoruba, Nigeria 0.231 0.2649196 71.0 -1.213640486
## Piffer2015_PGS
## 1 -1.25437693
## 2 -1.04680466
## 3 0.02962202
## 4 0.83495705
## 5 0.52870288
## 6 1.53140171
## 7 1.32496372
## 8 0.02281637
## 9 -1.38935562
## 10 0.64439890
## 11 0.67502432
## 12 0.33360764
## 13 -1.56630247
## 14 0.52416578
## 15 0.26555116
## 16 1.41116859
## 17 1.22741609
## 18 -1.69220696
## 19 -1.49257461
## 20 0.04436759
## 21 0.19749467
## 22 0.16346643
## 23 -0.04524011
## 24 -0.08834255
## 25 0.45043793
## 26 -1.63435895
Display bar chart for the more visually inclined:
ggplot(PS_IQ, aes(Leeetal_PGS, Population)) +
geom_segment(aes(x = 0, y = Population, xend = Leeetal_PGS, yend = Population), color = "grey50") +
geom_point()+
labs(title = "EDU PGS for 26 1KG populations",
caption = "Lee et al., 2018 GWAS") +
scale_x_continuous(name="EDU_3")
Correlaton between 2018 EDU PGS and IQ
ggplot(PS_IQ, aes(x=Leeetal_PGS, y=Piffer.2015.IQ)) +
geom_point(shape=1) + # Use hollow circles
geom_smooth(method=lm)+
geom_text_repel(aes(label=Population), size=3)+
scale_x_continuous(name="EDU_3")+
scale_y_continuous(name="Population IQ")
Correlation between 2018 EDU PGS and 2015 Piffer PGS
ggplot(PS_IQ, aes(x=Leeetal_PGS, y=Piffer2015_PGS)) +
geom_point(shape=1) + # Use hollow circles
geom_smooth(method=lm)+
geom_text_repel(aes(label=Population), size=3)+
scale_x_continuous(name="EDU_3")+
scale_y_continuous(name="Piffer 2015 PGS")
Visualize correlation matrix
## Var1 Var2 value
## 1 Piffer_2017 Piffer_2017 1.00
## 2 X1180_PGS Piffer_2017 -0.72
## 3 Piffer.2015.IQ Piffer_2017 0.90
## 4 Leeetal_PGS Piffer_2017 0.98
## 5 Piffer2015_PGS Piffer_2017 0.97
## 6 Piffer_2017 X1180_PGS -0.72
## Piffer_2017 X1180_PGS Piffer.2015.IQ Leeetal_PGS
## Piffer_2017 1 -0.72 0.90 0.98
## X1180_PGS NA 1.00 -0.65 -0.67
## Piffer.2015.IQ NA NA 1.00 0.90
## Leeetal_PGS NA NA NA 1.00
## Piffer2015_PGS NA NA NA NA
## Piffer2015_PGS
## Piffer_2017 0.97
## X1180_PGS -0.72
## Piffer.2015.IQ 0.91
## Leeetal_PGS 0.95
## Piffer2015_PGS 1.00
The correlation between the 2015 and the 2018 estimate of polygenic intelligence are almost identical and they predict population IQ equally well, demonstrating the high replicability of my results.
References:
Lee et al. (2018). Gene discovery and polygenic prediction from a 1.1-million-person GWAS of educational attainment“. Nature Genetics
Piffer, D. (2015). A review of intelligence GWAS hits: Their relationship to country IQ and the issue of spatial autocorrelation. Intelligence, 53: 43-50.
Piffer, D. (2018, May 25). 1000 Genomes frequencies. Retrieved from osf.io/g9yx8