table() commandset.seed(1)
groups <- sample(c("I", "II", "III", "IV"),
200,
replace = TRUE)
table(groups)
## groups
## I II III IV
## 41 57 53 49
barplot(table(groups),
main = "Sample size for each grade",
xlab = "Grade",
ylab = "Count",
las = 1,
col = "deepskyblue")
* ALWAYS display the full y axis
barplot(table(groups),
main = "This is intentionally misleading",
xlab = "Grade",
ylab = "Count",
las = 1,
col = "deepskyblue",
ylim = c(40, 60),
xpd = FALSE)
plotlyp <- plot_ly(x = names(table(groups)),
y = as.numeric(table(groups)),
type = "bar",
marker = list(color = "deepskyblue")) %>%
layout(title = "Sample size for each grade",
xaxis = list(title = "Grade",
zeroline = FALSE),
yaxis = list(title = "Count",
zeroline = FALSE))
p
pain <- c(1, 4, 3, 2, 2, 2, 1, 2, 3, 0, 5, 5, 5, 5, 4, 3, 4, 0, 2, 1, 3, 3, 1)
pain <- as.factor(pain)
table(pain)
## pain
## 0 1 2 3 4 5
## 2 4 5 5 3 4
wcc
set.seed(1)
wcc = round(rnorm(100,
15,
4),
digits = 1)
mean(wcc)
## [1] 15.437
median(wcc)
## [1] 15.45
min()min(wcc)
## [1] 6.1
max()max(wcc)
## [1] 24.6
range()range(wcc)
## [1] 6.1 24.6
var()var(wcc)
## [1] 12.91528
sd()sd(wcc)
## [1] 3.593784
quantile()quantile(wcc)
## 0% 25% 50% 75% 100%
## 6.100 13.025 15.450 17.800 24.600
quantile(wcc,
c(0.1, 0.9))
## 10% 90%
## 10.77 19.71
IQR()IQR(wcc)
## [1] 4.775
wcc data point values larger than \(20\)sum(wcc > 20) / length(wcc)
## [1] 0.09
(wcc - mean(wcc)) / sd(wcc)
## [1] -0.81724443 0.07318192 -1.03985102 1.65925384 0.24013685
## [6] -1.03985102 0.40709179 0.71317585 0.51839509 -0.45550873
## [11] 1.54795055 0.32361432 -0.81724443 -2.59809712 1.13056320
## [16] -0.17725049 -0.14942467 0.93578244 0.79665332 0.54622091
## [21] 0.90795661 0.74100167 -0.03812138 -2.34766471 0.57404673
## [26] -0.17725049 -0.28855379 -1.76332242 -0.65028949 0.35144015
## [31] 1.38099561 -0.23290214 0.32361432 -0.17725049 -1.65201913
## [36] -0.59463784 -0.56681202 -0.17725049 1.10273738 0.74100167
## [41] -0.31637961 -0.39985708 0.65752420 0.49056926 -0.90072190
## [46] -0.90072190 0.29578850 0.74100167 -0.23290214 0.85230497
## [51] 0.32361432 -0.78941861 0.26796268 -1.37376089 1.46447308
## [56] 2.07664119 -0.53898620 -1.29028343 0.51839509 -0.26072796
## [61] 2.54968019 -0.17725049 0.65752420 -0.09377302 -0.95637355
## [66] 0.10100774 -2.12505812 1.52012473 0.04535609 2.29924778
## [71] 0.40709179 -0.90072190 0.54622091 -1.15115431 -1.51289001
## [76] 0.21231103 -0.62246367 -0.12159885 -0.03812138 -0.78941861
## [81] -0.76159278 -0.26072796 1.18621485 -1.81897407 0.54622091
## [86] 0.24013685 1.07491155 -0.45550873 0.29578850 0.18448521
## [91] -0.73376696 1.21404067 1.15838902 0.65752420 1.63142802
## [96] 0.49056926 -1.54071583 -0.76159278 -1.48506419 -0.65028949
summary(wcc)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.10 13.03 15.45 15.44 17.80 24.60
hist(wcc,
main = "White cell count distribution",
xlab = "White cell count",
ylab = "Count",
col = "orange",
las = 1)
hist(wcc,
main = "White cell count distribution",
xlab = "White cell count",
ylab = "Fraction",
col = "orange",
las = 1,
prob = TRUE)
rug(wcc)
boxplot(wcc,
main = "White cell count",
xlab = "White cell count",
ylab = "Distribution",
col = "green",
las = 1)