str(mtcars)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
summary(mtcars)
## mpg cyl disp hp
## Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
## 1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
## Median :19.20 Median :6.000 Median :196.3 Median :123.0
## Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
## 3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
## Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
## drat wt qsec vs
## Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000
## 1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000
## Median :3.695 Median :3.325 Median :17.71 Median :0.0000
## Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375
## 3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000
## Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000
## am gear carb
## Min. :0.0000 Min. :3.000 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
## Median :0.0000 Median :4.000 Median :2.000
## Mean :0.4062 Mean :3.688 Mean :2.812
## 3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :1.0000 Max. :5.000 Max. :8.000
ggplot(data=mtcars,
aes(x = factor(1), fill = factor(carb))) +
ylab("Proportions of cars that have different carb values") + xlab("") +
geom_bar(width = 1) +
coord_polar(theta = "y")
Graphic Summary 1: We can see that there are 6 different carb values in mtcars (1,2,3,4,6,8). From the graph, approximately one-third of the cars have carb value 2, and another one-third have carb value 4. About half of that seem to have carb value 1, and carb value 6 and 8 make up the least proportions of the cars.
ggplot(data=mtcars, aes(x=gear)) + geom_bar(stat="count")
Graphic Summary 2: There are 3 types of gears in mtcars: Type-3, Type-4, and Type-5. There are 15 Type-3 cars, 12 Type-4 cars and 5 Type-5 cars,
ggplot(mtcars,
aes(x = factor(cyl), fill = factor(gear))) +
xlab("Number of Cylinders'") +
ylab("Number of Cars'") +
geom_bar()
Graphic Summary 3: Four cylinder and 6 cylinder cars have more Type-4 geared cars than Type-3 and Type-5. Eight cylinder cars have more Type-3 geared cars, very less Type-5 gears and no Type-4 gears.
ggplot(mtcars, aes(x = wt, y = mpg)) +
xlab("Weight of the car") + ylab("Miles Per Gallon") +
geom_point() +
ggtitle("Relationship between Weight and MPG") +
stat_smooth(method = "lm")
Graphic Summary 4: There is a clear indication that, heavier the car, lesser is its mileage per gallon. Wt and mpg and negatively correlated.
ggplot(mtcars, aes(x = hp, y = mpg)) +
xlab("Horse Power") + ylab("Miles Per Gallon") +
geom_point() +
ggtitle("Relationship between Horse Power and MPG") +
stat_smooth(method = "lm")
Graphic Summary 5: This is a scatter plot depicting the relationship between mileage of the car with its horse power. It is common knowledge that, greater the horsepower, lesser the mileage, and this visualization ascertains that fact.