library(readr)
library(rpart)
library(rpart.plot)
library(tm)
library(SnowballC)
library(wordcloud)
library(pscl)
library(randomForest)
Sharks <- read_csv("D:/PG Business Analytics/WSMA/Group Assignment/Shark+Tank+Companies Data.csv")
Parsed with column specification:
cols(
  deal = col_logical(),
  description = col_character(),
  askedFor = col_integer(),
  valuation = col_integer()
)
head(Sharks)
Pitch.To.sharks<-Sharks$description
table(Sharks$deal)

FALSE  TRUE 
  244   251 
corpusShark<-Corpus(VectorSource(Pitch.To.sharks))
wordcloud(corpusShark,colors = rainbow(7),max.words = 100)

corpusShark<-tm_map(corpusShark,tolower)
corpusShark<-tm_map(corpusShark,removePunctuation)
corpusShark<-tm_map(corpusShark,removeWords,c("can","also",stopwords("english")))
corpusShark<-tm_map(corpusShark,stemDocument)
wordcloud(corpusShark,colors = rainbow(7),max.words = 70)

freqShark<-DocumentTermMatrix(corpusShark)
sparceShark<-removeSparseTerms(freqShark,0.98)
dataShark<-data.frame(as.matrix(sparceShark))
dim(dataShark)
[1] 495 163
dataShark$deal<-as.factor(Sharks$deal)
dataShark<-dataShark[,c(165,c(1:164))]
Error in `[.data.frame`(dataShark, , c(165, c(1:164))) : 
  undefined columns selected
sharkCART<-rpart(deal~.,data=dataShark,method="class")
#sharkCART
rpart.plot(sharkCART)

dealLogit<-glm(deal~.,data=dataShark,family="binomial")
glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(dealLogit)

Call:
glm(formula = deal ~ ., family = "binomial", data = dataShark)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-2.6298  -0.7486   0.0000   0.6826   3.0013  

Coefficients:
             Estimate Std. Error z value Pr(>|z|)   
(Intercept)  -0.42540    0.22415  -1.898  0.05771 . 
devic        -0.61338    0.71081  -0.863  0.38818   
new          -0.15245    0.92521  -0.165  0.86912   
retail        0.91201    1.38190   0.660  0.50927   
two           2.53492    1.29840   1.952  0.05090 . 
children      1.44486    0.71514   2.020  0.04334 * 
easi          2.77130    1.15642   2.396  0.01655 * 
make          0.37935    0.51215   0.741  0.45888   
one          -1.07732    0.84870  -1.269  0.20431   
play         -0.85290    0.82860  -1.029  0.30333   
provid        0.79506    1.04747   0.759  0.44784   
turn          0.53152    1.27714   0.416  0.67728   
deliv         0.82054    1.51967   0.540  0.58924   
organ         1.64062    1.03181   1.590  0.11183   
servic       -0.66420    0.61722  -1.076  0.28188   
women        -4.20126    1.73246  -2.425  0.01531 * 
offer         0.60771    1.13610   0.535  0.59271   
design        0.99606    0.46555   2.140  0.03239 * 
first        -1.37900    1.74553  -0.790  0.42952   
flavor        1.38917    0.80108   1.734  0.08290 . 
food         -0.66706    0.76723  -0.869  0.38460   
includ       -1.67056    1.03467  -1.615  0.10640   
line          0.32844    0.79514   0.413  0.67957   
mani          7.38858    3.53437   2.090  0.03657 * 
product       0.29097    0.50101   0.581  0.56140   
sold         -2.53082    1.51377  -1.672  0.09455 . 
store        -0.24976    0.96366  -0.259  0.79550   
activ        -0.75018    0.99643  -0.753  0.45153   
apparel       1.71177    1.10966   1.543  0.12293   
brand        -1.05786    1.15092  -0.919  0.35802   
cloth         0.78393    0.71056   1.103  0.26992   
look         -0.96110    0.88069  -1.091  0.27514   
mix          -0.42227    0.79820  -0.529  0.59678   
attach       -0.81505    0.95050  -0.857  0.39117   
hold          0.68972    0.90489   0.762  0.44593   
start         1.50870    1.38831   1.087  0.27716   
get           1.49621    1.15276   1.298  0.19431   
learn         0.84649    1.07521   0.787  0.43112   
work          2.16014    1.08570   1.990  0.04663 * 
made         -1.81850    0.65475  -2.777  0.00548 **
help         -0.40136    0.56861  -0.706  0.48027   
fit          -0.54489    0.83630  -0.652  0.51469   
combin       -0.54948    1.20215  -0.457  0.64761   
fun          -2.94147    1.09002  -2.699  0.00696 **
keep          1.08980    0.76946   1.416  0.15668   
kid           0.17335    0.63356   0.274  0.78438   
compani       1.12324    0.62714   1.791  0.07329 . 
remov        -3.06471    1.63141  -1.879  0.06030 . 
babi         -0.54811    0.78690  -0.697  0.48609   
easier        5.04867    2.41747   2.088  0.03676 * 
like         -1.40239    0.83284  -1.684  0.09221 . 
protect      -0.07444    0.82683  -0.090  0.92827   
quick        -4.40054    1.75500  -2.507  0.01216 * 
size          4.68435    1.46115   3.206  0.00135 **
solut         1.84919    1.28232   1.442  0.14929   
time          1.28570    1.11888   1.149  0.25052   
yet           0.65414    1.64052   0.399  0.69009   
use           0.04949    0.54377   0.091  0.92748   
back         -0.13896    0.96203  -0.144  0.88515   
buy          -1.09090    0.98261  -1.110  0.26691   
sell          0.95929    0.84220   1.139  0.25469   
year         -0.55952    1.57268  -0.356  0.72201   
accessori    -0.59848    0.84836  -0.705  0.48052   
color        -0.30285    1.15625  -0.262  0.79338   
onlin         1.00077    0.66051   1.515  0.12973   
user          0.68872    0.82320   0.837  0.40279   
bar          -0.83235    0.72091  -1.155  0.24826   
enjoy         0.49682    1.12314   0.442  0.65824   
ingredi       3.73900    1.26571   2.954  0.00314 **
just         -0.39682    0.96873  -0.410  0.68208   
market       -0.11802    1.31652  -0.090  0.92857   
natur        -0.22706    0.89352  -0.254  0.79941   
safe         -2.12719    1.00653  -2.113  0.03457 * 
well          2.21371    1.45162   1.525  0.12726   
famili        1.50036    0.89050   1.685  0.09202 . 
fashion       0.05637    0.85009   0.066  0.94713   
base         -4.06729    2.25252  -1.806  0.07097 . 
custom       -2.11621    1.16985  -1.809  0.07046 . 
high          0.84833    1.10404   0.768  0.44226   
person       -1.51321    1.27253  -1.189  0.23439   
bottl         0.31050    0.54898   0.566  0.57168   
around       -0.61616    0.92245  -0.668  0.50416   
materi        1.87442    1.29974   1.442  0.14926   
featur       -2.16866    0.96536  -2.246  0.02467 * 
live          0.42613    1.20661   0.353  0.72396   
instead      -2.59928    1.44224  -1.802  0.07151 . 
three        -1.72779    2.01723  -0.857  0.39171   
uniqu        -0.38987    0.92515  -0.421  0.67345   
allow         0.27790    0.66487   0.418  0.67596   
special      -0.96371    1.20260  -0.801  0.42293   
dog           1.29565    0.83895   1.544  0.12250   
need          3.70452    1.42660   2.597  0.00941 **
cover        -0.25383    0.70021  -0.363  0.71697   
run          -0.71253    1.50758  -0.473  0.63648   
allnatur     -3.08001    1.46303  -2.105  0.03527 * 
blend         3.93128    1.25444   3.134  0.00173 **
patent       -1.21476    1.70776  -0.711  0.47689   
place        -1.01000    1.27678  -0.791  0.42891   
clean         4.86545    2.36206   2.060  0.03941 * 
easili       -1.40587    1.22746  -1.145  0.25206   
way          -0.91231    0.95917  -0.951  0.34153   
busi         -0.88910    0.92930  -0.957  0.33870   
mobil         0.14575    0.96716   0.151  0.88021   
even          1.09848    0.91541   1.200  0.23014   
take         -0.93669    0.94743  -0.989  0.32283   
X100          2.30944    2.02834   1.139  0.25488   
creat         0.07729    0.93229   0.083  0.93392   
shape        16.97626  788.63987   0.022  0.98283   
usa           1.54960    1.56538   0.990  0.32221   
will         -1.72150    1.40841  -1.222  0.22159   
give          1.15124    1.25090   0.920  0.35740   
want         -1.67280    1.22545  -1.365  0.17224   
shoe          1.46099    0.80886   1.806  0.07088 . 
bag          -2.12392    1.22037  -1.740  0.08179 . 
men          -2.19034    1.07051  -2.046  0.04075 * 
money         2.00928    1.79323   1.120  0.26251   
plastic       3.90360    1.45577   2.681  0.00733 **
power        -0.55862    0.92442  -0.604  0.54565   
produc       -0.16772    0.95153  -0.176  0.86008   
travel        2.79568    1.14435   2.443  0.01456 * 
without       1.56051    0.86235   1.810  0.07036 . 
premium      -1.88908    1.19830  -1.576  0.11492   
fresh        -4.62215    1.86541  -2.478  0.01322 * 
bring        -2.26322    2.08533  -1.085  0.27779   
come         -0.36349    0.93212  -0.390  0.69657   
effect        0.12804    2.67777   0.048  0.96186   
reduc         1.79605    1.44195   1.246  0.21292   
tradit       -8.13232    3.15088  -2.581  0.00985 **
serv         -0.15047    1.55757  -0.097  0.92304   
avail        -2.71425    1.41823  -1.914  0.05564 . 
anyon         0.31919    1.23279   0.259  0.79570   
small        -0.65668    1.25267  -0.524  0.60012   
skin          2.37479    1.00372   2.366  0.01798 * 
builtin       0.79429    1.02543   0.775  0.43858   
pad           1.91454    1.16016   1.650  0.09889 . 
system       -0.65028    0.84245  -0.772  0.44018   
train         0.46530    1.17214   0.397  0.69139   
altern        1.49028    1.58707   0.939  0.34773   
home         -1.25318    1.08480  -1.155  0.24800   
tool         -1.38554    1.06809  -1.297  0.19456   
box           2.66040    1.43440   1.855  0.06364 . 
contain      -1.01633    1.88002  -0.541  0.58879   
water        -0.24184    0.69506  -0.348  0.72788   
peopl         0.15286    0.91136   0.168  0.86680   
transform     2.32900    1.08440   2.148  0.03174 * 
day           1.89962    1.88285   1.009  0.31302   
real         -1.81342    1.44859  -1.252  0.21062   
light         1.07991    0.83819   1.288  0.19761   
free         -0.65004    1.74495  -0.373  0.70950   
packag        6.16735    3.73925   1.649  0.09908 . 
name          1.59464    1.55633   1.025  0.30554   
now          -0.73711    1.62917  -0.452  0.65095   
better       -2.57478    2.61410  -0.985  0.32465   
comfort      -1.67821    1.35208  -1.241  0.21453   
varieti      -2.40346    1.73109  -1.388  0.16501   
treat        -0.32801    1.09440  -0.300  0.76439   
everi        -1.10713    1.47286  -0.752  0.45224   
rang          0.02689    1.51988   0.018  0.98588   
drink        -0.28743    1.01849  -0.282  0.77778   
app           1.19544    0.99197   1.205  0.22816   
style        -0.17470    1.09911  -0.159  0.87371   
afford       -1.39391    1.82860  -0.762  0.44589   
dont          4.84747    2.68138   1.808  0.07063 . 
simpl        -0.14560    1.16706  -0.125  0.90072   
great         4.44615    1.77791   2.501  0.01239 * 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 686.12  on 494  degrees of freedom
Residual deviance: 418.11  on 330  degrees of freedom
AIC: 748.11

Number of Fisher Scoring iterations: 16
pR2(dealLogit)
         llh      llhNull           G2     McFadden         r2ML         r2CU 
-209.0557234 -343.0583578  268.0052687    0.3906118    0.4180814    0.5574791 
pred<-predict(dealLogit,dataShark,type='response')
tab<-table(Sharks$deal, pred > 0.5)
tab
       
        FALSE TRUE
  FALSE   200   44
  TRUE     58  193
accuracy*100
[1] 79.39394
rfShark<-randomForest(deal~.,data=dataShark,importance=T)
rfShark

Call:
 randomForest(formula = deal ~ ., data = dataShark, importance = T) 
               Type of random forest: classification
                     Number of trees: 500
No. of variables tried at each split: 12

        OOB estimate of  error rate: 43.43%
Confusion matrix:
      FALSE TRUE class.error
FALSE   138  106   0.4344262
TRUE    109  142   0.4342629
plot(rfShark)

varImpPlot(rfShark)

Calculating RATIO

dataShark$ratio<-Sharks$askedFor/Sharks$valuation
sharkCART<-rpart(deal~.,data=dataShark,method="class")
#sharkCART
rpart.plot(sharkCART)

dealLogit<-glm(deal~.,data=dataShark,family="binomial")
glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(dealLogit)

Call:
glm(formula = deal ~ ., family = "binomial", data = dataShark)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-2.6275  -0.6978   0.0000   0.6623   3.1744  

Coefficients:
             Estimate Std. Error z value Pr(>|z|)   
(Intercept)   0.22861    0.34944   0.654  0.51298   
devic        -0.44140    0.70907  -0.623  0.53360   
new          -0.21159    0.93302  -0.227  0.82060   
retail        0.64376    1.37738   0.467  0.64023   
two           2.44561    1.34290   1.821  0.06859 . 
children      1.42116    0.71587   1.985  0.04712 * 
easi          2.79952    1.20775   2.318  0.02045 * 
make          0.37191    0.52645   0.706  0.47990   
one          -1.15428    0.88824  -1.300  0.19377   
play         -0.77032    0.83986  -0.917  0.35904   
provid        0.60023    1.04835   0.573  0.56695   
turn          0.52793    1.31566   0.401  0.68822   
deliv         0.77320    1.52851   0.506  0.61296   
organ         1.48744    1.05541   1.409  0.15873   
servic       -0.65203    0.62265  -1.047  0.29501   
women        -3.77696    1.80514  -2.092  0.03641 * 
offer         0.61213    1.14825   0.533  0.59397   
design        1.00704    0.47087   2.139  0.03246 * 
first        -1.80802    1.85179  -0.976  0.32888   
flavor        1.39811    0.81419   1.717  0.08595 . 
food         -0.44529    0.80000  -0.557  0.57779   
includ       -1.72029    1.07041  -1.607  0.10802   
line          0.53328    0.81952   0.651  0.51522   
mani          7.96284    3.75433   2.121  0.03392 * 
product       0.20895    0.51318   0.407  0.68389   
sold         -2.63678    1.52111  -1.733  0.08301 . 
store         0.04211    0.96051   0.044  0.96503   
activ        -0.75293    1.00816  -0.747  0.45517   
apparel       1.59529    1.12571   1.417  0.15644   
brand        -1.11906    1.16627  -0.960  0.33730   
cloth         0.78342    0.71089   1.102  0.27045   
look         -0.71179    0.88199  -0.807  0.41965   
mix          -0.60436    0.85029  -0.711  0.47723   
attach       -0.44215    0.96016  -0.460  0.64516   
hold          0.55615    0.89068   0.624  0.53236   
start         1.18762    1.42454   0.834  0.40446   
get           1.82289    1.20177   1.517  0.12931   
learn         0.53185    1.08730   0.489  0.62474   
work          2.57159    1.11925   2.298  0.02158 * 
made         -1.86208    0.65673  -2.835  0.00458 **
help         -0.36074    0.57798  -0.624  0.53254   
fit          -0.58490    0.89981  -0.650  0.51568   
combin       -0.83188    1.32222  -0.629  0.52925   
fun          -2.87383    1.08123  -2.658  0.00786 **
keep          1.36077    0.82394   1.652  0.09863 . 
kid           0.23694    0.64029   0.370  0.71135   
compani       1.18010    0.62804   1.879  0.06024 . 
remov        -3.11498    1.63439  -1.906  0.05666 . 
babi         -0.76325    0.81849  -0.933  0.35107   
easier        4.43066    2.29440   1.931  0.05347 . 
like         -1.52527    0.85146  -1.791  0.07324 . 
protect      -0.18129    0.84835  -0.214  0.83078   
quick        -4.43415    1.81948  -2.437  0.01481 * 
size          5.15593    1.56903   3.286  0.00102 **
solut         1.91431    1.31133   1.460  0.14434   
time          1.18022    1.13463   1.040  0.29826   
yet           0.74669    1.63082   0.458  0.64705   
use           0.07470    0.55258   0.135  0.89247   
back          0.07246    0.96294   0.075  0.94002   
buy          -1.01038    0.99270  -1.018  0.30876   
sell          0.81741    0.85056   0.961  0.33654   
year         -0.40376    1.59208  -0.254  0.79980   
accessori    -0.73726    0.88299  -0.835  0.40374   
color        -0.28686    1.17514  -0.244  0.80715   
onlin         0.91746    0.66083   1.388  0.16503   
user          0.76273    0.83294   0.916  0.35982   
bar          -0.84639    0.73663  -1.149  0.25055   
enjoy         0.46349    1.14770   0.404  0.68633   
ingredi       3.79909    1.29843   2.926  0.00343 **
just         -0.45994    0.98892  -0.465  0.64186   
market       -0.16372    1.33431  -0.123  0.90234   
natur        -0.19853    0.91172  -0.218  0.82762   
safe         -2.30664    1.04935  -2.198  0.02794 * 
well          2.60174    1.52706   1.704  0.08843 . 
famili        1.65162    0.93295   1.770  0.07667 . 
fashion       0.32101    0.87363   0.367  0.71329   
base         -4.50575    2.35657  -1.912  0.05588 . 
custom       -2.11684    1.19325  -1.774  0.07606 . 
high          0.75985    1.12902   0.673  0.50094   
person       -1.39812    1.29421  -1.080  0.28001   
bottl         0.29612    0.55516   0.533  0.59376   
around       -0.46041    0.94044  -0.490  0.62443   
materi        1.52659    1.38069   1.106  0.26887   
featur       -2.08686    0.98793  -2.112  0.03466 * 
live          0.54471    1.20989   0.450  0.65256   
instead      -2.63975    1.46863  -1.797  0.07227 . 
three        -1.18929    2.08087  -0.572  0.56764   
uniqu        -0.49797    0.93513  -0.533  0.59437   
allow         0.20608    0.67246   0.306  0.75925   
special      -1.24650    1.24212  -1.004  0.31560   
dog           1.32532    0.86229   1.537  0.12430   
need          4.15059    1.44565   2.871  0.00409 **
cover        -0.24652    0.72274  -0.341  0.73303   
run          -0.88134    1.59081  -0.554  0.57956   
allnatur     -3.16979    1.50423  -2.107  0.03510 * 
blend         4.09419    1.27400   3.214  0.00131 **
patent       -1.66102    1.70599  -0.974  0.33024   
place        -0.94410    1.32998  -0.710  0.47779   
clean         5.00793    2.45679   2.038  0.04151 * 
easili       -1.49493    1.24409  -1.202  0.22951   
way          -1.05080    0.99775  -1.053  0.29226   
busi         -0.91467    0.95022  -0.963  0.33576   
mobil         0.25656    0.97990   0.262  0.79346   
even          1.10226    0.93982   1.173  0.24086   
take         -1.14085    0.96810  -1.178  0.23862   
X100          2.64434    2.12318   1.245  0.21296   
creat         0.22639    0.94755   0.239  0.81117   
shape        16.42611  807.58450   0.020  0.98377   
usa           1.58235    1.59235   0.994  0.32036   
will         -1.67374    1.51380  -1.106  0.26888   
give          1.13749    1.25293   0.908  0.36395   
want         -1.68933    1.24480  -1.357  0.17475   
shoe          1.61753    0.81200   1.992  0.04637 * 
bag          -2.14254    1.21067  -1.770  0.07678 . 
men          -2.25730    1.07350  -2.103  0.03549 * 
money         1.66319    1.92540   0.864  0.38769   
plastic       3.76371    1.50401   2.502  0.01233 * 
power        -0.74749    0.94059  -0.795  0.42678   
produc       -0.33084    0.90878  -0.364  0.71583   
travel        2.80501    1.15337   2.432  0.01502 * 
without       1.80873    0.88589   2.042  0.04118 * 
premium      -1.93448    1.22851  -1.575  0.11534   
fresh        -5.04811    1.90929  -2.644  0.00819 **
bring        -2.32836    2.11981  -1.098  0.27204   
come         -0.49837    0.95154  -0.524  0.60045   
effect       -0.01882    2.77454  -0.007  0.99459   
reduc         1.95266    1.44034   1.356  0.17520   
tradit       -8.63026    3.25467  -2.652  0.00801 **
serv         -0.05759    1.62920  -0.035  0.97180   
avail        -2.52570    1.43634  -1.758  0.07868 . 
anyon         0.15305    1.25718   0.122  0.90311   
small        -0.64001    1.27107  -0.504  0.61460   
skin          2.34537    0.99340   2.361  0.01823 * 
builtin       0.67070    1.04534   0.642  0.52113   
pad           2.07447    1.19926   1.730  0.08367 . 
system       -0.83138    0.85663  -0.971  0.33179   
train         0.34564    1.16210   0.297  0.76614   
altern        1.72016    1.60681   1.071  0.28438   
home         -1.06135    1.10663  -0.959  0.33752   
tool         -1.58877    1.10566  -1.437  0.15073   
box           2.71502    1.47950   1.835  0.06649 . 
contain      -0.91460    2.02342  -0.452  0.65126   
water        -0.32949    0.71449  -0.461  0.64469   
peopl        -0.03831    0.93659  -0.041  0.96737   
transform     2.02989    1.07408   1.890  0.05877 . 
day           1.82357    1.87427   0.973  0.33058   
real         -1.78403    1.42458  -1.252  0.21045   
light         1.14647    0.86203   1.330  0.18353   
free         -0.49292    1.77178  -0.278  0.78085   
packag        6.79112    4.44347   1.528  0.12643   
name          1.87736    1.61658   1.161  0.24551   
now          -0.88911    1.63214  -0.545  0.58592   
better       -2.29387    2.93279  -0.782  0.43413   
comfort      -2.18301    1.48263  -1.472  0.14091   
varieti      -2.10632    1.73416  -1.215  0.22452   
treat        -0.38959    1.09826  -0.355  0.72279   
everi        -1.35959    1.51032  -0.900  0.36801   
rang          0.24244    1.53444   0.158  0.87446   
drink         0.26446    1.09854   0.241  0.80976   
app           0.84936    1.00202   0.848  0.39664   
style        -0.28261    1.11296  -0.254  0.79955   
afford       -1.22264    1.91491  -0.638  0.52316   
dont          4.89579    2.72059   1.800  0.07193 . 
simpl        -0.09703    1.17915  -0.082  0.93442   
great         4.36794    1.82168   2.398  0.01650 * 
ratio        -3.77404    1.55851  -2.422  0.01545 * 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 686.12  on 494  degrees of freedom
Residual deviance: 411.44  on 329  degrees of freedom
AIC: 743.44

Number of Fisher Scoring iterations: 16
pR2(dealLogit)
         llh      llhNull           G2     McFadden         r2ML         r2CU 
-205.7201640 -343.0583578  274.6763875    0.4003348    0.4258714    0.5678663 
pred<-predict(dealLogit,dataShark,type='response')
tab<-table(Sharks$deal, pred > 0.5)
tab
       
        FALSE TRUE
  FALSE   200   44
  TRUE     58  193
accuracy<-sum(diag(tab))/sum(tab)
accuracy*100
[1] 79.39394
rfShark<-randomForest(deal~.,data=dataShark,importance=T)
rfShark

Call:
 randomForest(formula = deal ~ ., data = dataShark, importance = T) 
               Type of random forest: classification
                     Number of trees: 500
No. of variables tried at each split: 12

        OOB estimate of  error rate: 42.83%
Confusion matrix:
      FALSE TRUE class.error
FALSE   127  117   0.4795082
TRUE     95  156   0.3784861
plot(rfShark)

varImpPlot(rfShark)

LS0tDQp0aXRsZTogIlNoYXJrIFRhbmsgUGl0Y2ggQW5hbHlzaXMiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCmxpYnJhcnkocmVhZHIpDQpsaWJyYXJ5KHJwYXJ0KQ0KbGlicmFyeShycGFydC5wbG90KQ0KbGlicmFyeSh0bSkNCmxpYnJhcnkoU25vd2JhbGxDKQ0KbGlicmFyeSh3b3JkY2xvdWQpDQpsaWJyYXJ5KHBzY2wpDQpsaWJyYXJ5KHJhbmRvbUZvcmVzdCkNCmBgYA0KDQpgYGB7cn0NClNoYXJrcyA8LSByZWFkX2NzdigiRDovUEcgQnVzaW5lc3MgQW5hbHl0aWNzL1dTTUEvR3JvdXAgQXNzaWdubWVudC9TaGFyaytUYW5rK0NvbXBhbmllcyBEYXRhLmNzdiIpDQpoZWFkKFNoYXJrcykNClBpdGNoLlRvLnNoYXJrczwtU2hhcmtzJGRlc2NyaXB0aW9uDQp0YWJsZShTaGFya3MkZGVhbCkNCmBgYA0KDQpgYGB7cn0NCmNvcnB1c1NoYXJrPC1Db3JwdXMoVmVjdG9yU291cmNlKFBpdGNoLlRvLnNoYXJrcykpDQoNCndvcmRjbG91ZChjb3JwdXNTaGFyayxjb2xvcnMgPSByYWluYm93KDcpLG1heC53b3JkcyA9IDEwMCkNCmBgYA0KDQpgYGB7cn0NCmNvcnB1c1NoYXJrPC10bV9tYXAoY29ycHVzU2hhcmssdG9sb3dlcikNCmNvcnB1c1NoYXJrPC10bV9tYXAoY29ycHVzU2hhcmsscmVtb3ZlUHVuY3R1YXRpb24pDQoNCmNvcnB1c1NoYXJrPC10bV9tYXAoY29ycHVzU2hhcmsscmVtb3ZlV29yZHMsYygiY2FuIiwiYWxzbyIsc3RvcHdvcmRzKCJlbmdsaXNoIikpKQ0KY29ycHVzU2hhcms8LXRtX21hcChjb3JwdXNTaGFyayxzdGVtRG9jdW1lbnQpDQoNCndvcmRjbG91ZChjb3JwdXNTaGFyayxjb2xvcnMgPSByYWluYm93KDcpLG1heC53b3JkcyA9IDcwKQ0KYGBgDQoNCmBgYHtyfQ0KZnJlcVNoYXJrPC1Eb2N1bWVudFRlcm1NYXRyaXgoY29ycHVzU2hhcmspDQoNCnNwYXJjZVNoYXJrPC1yZW1vdmVTcGFyc2VUZXJtcyhmcmVxU2hhcmssMC45OCkNCg0KDQoNCmRhdGFTaGFyazwtZGF0YS5mcmFtZShhcy5tYXRyaXgoc3BhcmNlU2hhcmspKQ0KZGltKGRhdGFTaGFyaykNCmBgYA0KDQpgYGB7cn0NCmRhdGFTaGFyayRkZWFsPC1hcy5mYWN0b3IoU2hhcmtzJGRlYWwpDQpkYXRhU2hhcms8LWRhdGFTaGFya1ssYygxNjUsYygxOjE2NCkpXQ0Kc3RyKGRhdGFTaGFyaykNCmBgYA0KDQoNCmBgYHtyfQ0Kc2hhcmtDQVJUPC1ycGFydChkZWFsfi4sZGF0YT1kYXRhU2hhcmssbWV0aG9kPSJjbGFzcyIpDQojc2hhcmtDQVJUDQpycGFydC5wbG90KHNoYXJrQ0FSVCkNCmBgYA0KDQpgYGB7cn0NCmRlYWxMb2dpdDwtZ2xtKGRlYWx+LixkYXRhPWRhdGFTaGFyayxmYW1pbHk9ImJpbm9taWFsIikNCnN1bW1hcnkoZGVhbExvZ2l0KQ0KYGBgDQoNCmBgYHtyfQ0KcFIyKGRlYWxMb2dpdCkNCmBgYA0KDQpgYGB7cn0NCnByZWQ8LXByZWRpY3QoZGVhbExvZ2l0LGRhdGFTaGFyayx0eXBlPSdyZXNwb25zZScpDQoNCnRhYjwtdGFibGUoU2hhcmtzJGRlYWwsIHByZWQgPiAwLjUpDQp0YWINCmBgYA0KDQoNCmBgYHtyfQ0KYWNjdXJhY3k8LXN1bShkaWFnKHRhYikpL3N1bSh0YWIpDQphY2N1cmFjeSoxMDANCmBgYA0KDQoNCmBgYHtyfQ0KcmZTaGFyazwtcmFuZG9tRm9yZXN0KGRlYWx+LixkYXRhPWRhdGFTaGFyayxpbXBvcnRhbmNlPVQpDQpyZlNoYXJrDQpgYGANCg0KYGBge3J9DQpwbG90KHJmU2hhcmspDQoNCmBgYA0KDQpgYGB7cn0NCnZhckltcFBsb3QocmZTaGFyaykNCmBgYA0KDQo8aDM+Q2FsY3VsYXRpbmcgUkFUSU88L2gzPg0KYGBge3J9DQpkYXRhU2hhcmskcmF0aW88LVNoYXJrcyRhc2tlZEZvci9TaGFya3MkdmFsdWF0aW9uDQpgYGANCg0KYGBge3J9DQpzaGFya0NBUlQ8LXJwYXJ0KGRlYWx+LixkYXRhPWRhdGFTaGFyayxtZXRob2Q9ImNsYXNzIikNCiNzaGFya0NBUlQNCnJwYXJ0LnBsb3Qoc2hhcmtDQVJUKQ0KYGBgDQoNCmBgYHtyfQ0KZGVhbExvZ2l0PC1nbG0oZGVhbH4uLGRhdGE9ZGF0YVNoYXJrLGZhbWlseT0iYmlub21pYWwiKQ0Kc3VtbWFyeShkZWFsTG9naXQpDQpgYGANCg0KYGBge3J9DQpwUjIoZGVhbExvZ2l0KQ0KYGBgDQoNCmBgYHtyfQ0KcHJlZDwtcHJlZGljdChkZWFsTG9naXQsZGF0YVNoYXJrLHR5cGU9J3Jlc3BvbnNlJykNCg0KdGFiPC10YWJsZShTaGFya3MkZGVhbCwgcHJlZCA+IDAuNSkNCnRhYg0KYGBgDQoNCmBgYHtyfQ0KYWNjdXJhY3k8LXN1bShkaWFnKHRhYikpL3N1bSh0YWIpDQphY2N1cmFjeSoxMDANCmBgYA0KDQoNCmBgYHtyfQ0KcmZTaGFyazwtcmFuZG9tRm9yZXN0KGRlYWx+LixkYXRhPWRhdGFTaGFyayxpbXBvcnRhbmNlPVQpDQpyZlNoYXJrDQpgYGANCg0KYGBge3J9DQpwbG90KHJmU2hhcmspDQpgYGANCg0KDQpgYGB7cn0NCnZhckltcFBsb3QocmZTaGFyaykNCmBgYA0KDQo=