Open pre-computed polygenic scores. My PGS-computing code and the 1000 Genomes files were made publicly available on OSF (https://osf.io/g9yx8/). They were converted to .csv format so that anyone can load them on R without having to convert them from VCF format or PLINk-like formats (i.e. .bed). I will compute correlations between the latest polygenic score, as inferred from the largest GWAS of Educational attainment (EDU) to date and the polygenic score inferred from previous GWAS of Educational attainment and IQ (Piffer, 2015).
PS_IQ=read.csv(file.choose(),header=TRUE)#Lee_PGS_1kg - IQ_EDU.csv
PS_IQ$Leeetal_PGS=scale(PS_IQ$Leeetal2018,center = TRUE, scale= TRUE)
PS_IQ$Piffer2015_PGS=scale(PS_IQ$Piffer2015,center=TRUE, scale=TRUE)
library(ggplot2)
library(ggrepel)
Show standardized PGS from latest EDU GWAS (Lee et al., 2018) and population IQs
PS_IQ[-c(2,3)]
## Population Piffer.2015.IQ Leeetal_PGS Piffer2015_PGS
## 1 Afr.Car.Barbados 83.0 -1.37594223 -1.25437693
## 2 US Blacks 85.0 -1.34771901 -1.04680466
## 3 Bengali Bangladesh 81.0 -0.23772175 0.02962202
## 4 Chinese Dai NA 1.00457195 0.83495705
## 5 Utah Whites 99.0 0.67001603 0.52870288
## 6 Chinese, Bejing 105.0 1.52051142 1.53140171
## 7 Chinese, South 105.0 1.32390023 1.32496372
## 8 Colombian 83.5 0.15170640 0.02281637
## 9 Esan, Nigeria 71.0 -1.37653934 -1.38935562
## 10 Finland 101.0 1.01435644 0.64439890
## 11 British, GB 100.0 0.50219103 0.67502432
## 12 Gujarati Indian, Tx NA 0.14736720 0.33360764
## 13 Gambian 62.0 -1.37601288 -1.56630247
## 14 Iberian, Spain 97.0 0.88241636 0.52416578
## 15 Indian Telegu, UK NA 0.16962908 0.26555116
## 16 Japan 105.0 1.44907202 1.41116859
## 17 Vietnam 99.4 1.08120251 1.22741609
## 18 Luhya, Kenya 74.0 -1.44924767 -1.69220696
## 19 Mende, Sierra Leone 64.0 -1.60059964 -1.49257461
## 20 Mexican in L.A. 88.0 -0.36510679 0.04436759
## 21 Peruvian, Lima 85.0 -1.06348465 0.19749467
## 22 Punjabi, Pakistan 84.0 -0.09592599 0.16346643
## 23 Puerto Rican 83.5 0.02261036 -0.04524011
## 24 Sri Lankan, UK 79.0 -0.03207193 -0.08834255
## 25 Toscani, Italy 99.0 0.69588907 0.45043793
## 26 Yoruba, Nigeria 71.0 -0.31506821 -1.63435895
Corelation between IQ and EDU 2018 PGS:
Correlationb between EDU 2018 PGS and Piffer 2015 PGS
Show correlation matrix plot
## Piffer.2015.IQ Leeetal_PGS Piffer2015_PGS
## Piffer.2015.IQ 1.00 0.87 0.91
## Leeetal_PGS 0.87 1.00 0.91
## Piffer2015_PGS 0.91 0.91 1.00
## Piffer.2015.IQ Leeetal_PGS Piffer2015_PGS
## Piffer.2015.IQ 1 0.87 0.91
## Leeetal_PGS NA 1.00 0.91
## Piffer2015_PGS NA NA 1.00
References:
Lee et al. (2018). Gene discovery and polygenic prediction from a 1.1-million-person GWAS of educational attainment“. Nature Genetics
Piffer, D. (2015). A review of intelligence GWAS hits: Their relationship to country IQ and the issue of spatial autocorrelation. Intelligence, 53: 43-50.
Piffer, D. (2018, May 25). 1000 Genomes frequencies. Retrieved from osf.io/g9yx8